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Abstract. In building a 3-D model of the environment from image and sensor data, one must �t to the data

an appropriate class of models, which can be regarded as a parameterized manifold, or geometric model ,

de�ned in the data space. In this paper, we present a statistical framework for detecting degeneracies

of a geometric model by evaluating its predictive capability in terms of the expected residual and derive

the geometric AIC . We show that it allows us to detect singularities in a structure-from-motion analysis

without introducing any empirically adjustable thresholds. We illustrate our approach by simulation

examples. We also discuss the application potential of this theory for a wide range of computer vision

and robotics problems.

Keywords: model selection, degeneracy detection, statistical estimation, AIC, maximum likelihood
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1. Introduction

1.1. Model Selection and Degeneracy

In order for a robot to operate and navigate au-

tonomously, it must build a 3-D model of the en-

vironment from image and sensor data. However,

image and sensor data are not necessarily accu-

rate. A basic approach to cope with this di�culty

is �tting a two- or three-dimensional model con-

sisting of primitives, such as lines, circles, planes,

cylinders, and spheres, to the observed data. This

requires the following two stages:

�

selecting an appropriate class of models;

�

�tting it to the data optimally.

These are also necessary in a more abstract level.

For example, we can analyze the 3-D structure

from motion images by assuming that the im-

ages are views of a moving object observed by

a stationary camera or a stationary object ob-

served by a moving camera. This assumption is

also a \model", which imposes a strong constraint,

called the epipolar constraint, on the observed im-

age motion. Since the observed images may not

completely agree with this model, we optimally �t

this model to the images.

In the past, the �tting stage has been exten-

sively studied, and many types of �tting schemes

have been proposed for various purposes. The

structure-from-motion algorithm has also been

studied by many researchers. However, a serious

di�culty is hidden in model �tting in general|

occurrence of degeneracy.

Example 1. Suppose we want to �t an ellipse to a

sequence of points in the image. If the points are

nearly collinear, ellipse �tting breaks down due to

numerical instability. So, if the points are nearly

collinear, we must decide that they are collinear

and �t a line. A line can be �tted robustly un-

less all the point are very close to each other.

If the points are su�ciently clustered, we must

decide that they are identical and robustly rep-

resent them by, say, their center of gravity (i.e.,

\point" �tting). However, how can we decide that

the points are \nearly" collinear or \closely" clus-

tered? A naive idea is to compare the residu-

als of least squares. For any point set, however,

the residual of ellipse �tting is always not more

than the residual of line �tting, which is always
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Fig. 1. Class A is never chosen whatever distance measure

is used.

not more than the residual of point �tting. This

is because the discrepancy between the data and

the model becomes larger as the model is more re-

stricted ; in terms of the residual, an ellipse is al-

ways the best �t.

Example 2. As is well known, the algorithm of

structure from motion fails if all the feature points

are coplanar in the scene. So, we must apply a

di�erent algorithm for a planar surface scene. In

practice, however, the images have noise, and the

general algorithm applied in the presence of noise

produces some (unreliable) solution even when the

object is a planar surface. How can we detect

this degeneracy? Again, the residual does not

work; the discrepancy of the data from the general

epipolar constraint is always no more than their

discrepancy from the planar surface constraint.

This is because planar surface constraint implies

the epipolar constraint and hence is stronger than

the epipolar constraint.

In general terms, the problem can be viewed as

�nding an optimal class for a given input pattern.

This is the goal of pattern recognition, and usually

the one that is the \closest" to the input measured

by an appropriate metric is chosen. However, it

is tacitly assumed in pattern recognition that the

classes into which the input is to be classi�ed are

disjoint . If class A is included in class B, class A

is never chosen whatever distance measure is used,

because the distance to class A is always not more

than that to class B (Fig. 1).

Although model selection that admits degen-

eracy has been studied by many researchers in

the past (Rosin and West 1995; Zabrodsky et

al. 1995), this theoretical di�culty has seldom

been noticed (Kanatani 1997a, 1997b); usually

an ad-hoc switching criterion with empirically ad-

justable thresholds is introduced. In this paper,

we analyze statistical behavior of residuals very

carefully and derive a criterion, which we call the

geometric AIC , for detecting degeneracy in geo-

metric inference for computer vision and robotics

applications. Then, we show numerical simula-

tions to illustrate the implications and e�ective-

ness of our approach.

1.2. Geometric Inference vs. Statistics

Model selection is one of the central subjects of

statistics. However, there is a wide gap between

traditional statistical inference and the geomet-

ric inference we are concerned with. The main

objective of traditional statistics is to infer the

(unknown) structure of a random phenomenon by

observing multiple data in domains that involve a

large degree of uncertainty, such as medicine, biol-

ogy, agriculture, economics, and politics. Usually,

we �rst assume multiple plausible models as candi-

dates and choose one according to some criterion.

One of the widely adopted criterion is theMDL

(minimum description length) (Rissanen 1984,

1987). The underlying logic is as follows. If the

candidate models are parameterized, all models

may explain the data to some extent if the pa-

rameters are appropriately adjusted. The MDL

principle demands that the model should explain

the data very well and at the same time have a

simple structure; if we do not know the true struc-

ture and if a simple model can explain the phe-

nomenon, why should we bother to add complex-

ity? Also, the MDL has been found to possess nice

asymptotic properties for linear regression models

(Barron and Cover 1991, Zhang 1992). Hence,

it suits structure-guessing problems such as image

segmentation (Gu et al. 1996, Leclerc 1989). How-

ever, the resulting model is hypothetical whichever

model is chosen.

In the geometric inference we are concerned

with, the model is not hypothetical; it is de�ni-

tive and determined by a geometrical law (such as

the epipolar constraint). What we are interested

in is whether or not degeneracy has occurred. For

this type of problem, the MDL may not be a good

criterion because we need not \guess" an unknown

structure. Since our attention is the existence of

a constraint on the parameters, it is natural to
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Fig. 2. Estimating a manifold S � A and f
�
a

�

g 2 S from

the data fa

�

g.

base the inference process primarily on the resid-

ual , i.e., the discrepancy between the data and the

model.

In the domain of traditional statistical estima-

tion, a statistical model is a combination of a de-

terministic mechanism and random noise; estimat-

ing the noise behavior is almost equivalent to esti-

mating the structure of the phenomenon. In most

cases, the parameters that characterize the noise

and the parameters that specify the deterministic

mechanism are estimated simultaneously. A geo-

metric model , on the other hand, merely states the

existence of a de�nitive and exact constraint; noise

is a characteristic of the measurement devices and

data processing operations. In other words, while

noise is the heart of a statistical model to be in-

ferred about, noise in geometric inference is an ex-

ternal agency independent of a geometric model.

It follows that in comparing two geometric mod-

els we must take into account the fact that the

noise is identical (but unknown) and has the same

characteristics for both models.

From these observation, we adopt a residual-

based analysis that underlies the AIC (Akaike

information criterion) (Akaike 1974). Since the

original AIC is de�ned in the framework of tra-

ditional statistical estimation, it cannot be used

for the geometric inference we are concerned with

in its original form. In this paper, we de�ne a

new version, which we call the geometric AIC , by

following the reasoning laid out by Akaike. We

illustrate our theory by simple examples and dis-

cuss its application potential for a wide range of

computer vision and robotics problems.

2. Geometric Models

2.1. De�nition

Let a

1

, ..., a

N

be m-dimensional vector data sam-

pled from an m

0

-dimensional manifold A � R

m

(R

m

denotes the m dimensional Cartesian space,

i.e., the set of all m-dimensional vectors); we call

A the data space. We write

a

�

=
�
a

�

+�a

�

; (1)

where
�
a

�

is the true position of datum a

�

. The

noise term �a

�

is assumed to be an independent

Gaussian random variable of mean 0 and covari-

ance matrix V [a

�

]. Since a

�

is constrained to be

in A, the covariance matrix V [a

�

] is generally sin-

gular. We assume that V [a

�

] has range T

�
a

�

(A)

(= the tangent space to A at
�
a

�

) and hence has

rank m

0

. We want to �nd a manifold S � A such

that the true values
�
a

�

are all in it. This problem

is stated as follows (Fig. 2):

Problem 1 Estimate a manifold S � A and m-

dimensional vectors f
�
a

�

g 2 S from the data fa

�

g.

In order to solve this problem, we parameter-

ize the manifold S by an n-dimensional vector u

constrained to be in an n

0

-dimensional manifold

U � R

n

; we call U the parameter space. It fol-

lows that the manifold S has n

0

degrees of free-

dom. We call a parameterized manifold a (geo-

metric) model . If it is a d-dimensional manifold

in an m

0

-dimensional data space and has n

0

free

parameters, we say that the model has dimension

d, codimension r = m

0

� d, and n

0

degrees of free-

dom .

Example 3. Suppose points are observed in three

dimensions. The following are typical models for

them:

1. Point model : their true positions all coincide

(Fig. 3(a)). This model consists of a single

point P ; it has dimension 0, codimension 3, and

three degrees of freedom. If it is constrained

to be at the coordinate origin, the constrained

model P

0

has zero degrees of freedom.

2. Line model : their true positions are all collinear

(Fig. 3(b)). This model consists of a line L; it

has dimension 1, codimension 2, and four de-

grees of freedom. If it is constrained to pass
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Fig. 3. (a) Point model P . (b) Line model L. (c) Plane

model �. (d) Space model R

3

.

through the coordinate origin, the constrained

model L

0

has two degrees of freedom.

3. Plane model : their true positions are all copla-

nar (Fig. 3(c)). This model consists of a plane

�; it has dimension 2, codimension 1, and three

degrees of freedom. If it is constrained to pass

through the coordinate origin, the constrained

model �

0

has two degree of freedom.

4. Space model : no constraint is imposed on their

true positions (Fig. 3(d)). This model consists

of the entire space R

3

; it has dimension 3, codi-

mension 0, and zero degrees of freedom.

2.2. Expected Residual

We de�ne the Mahalanobis norm of an m-

dimensional vector v with respect to V [a

�

] by

kvk

�

=

p

(v; V [a

�

]

�

v); (2)

where ( � )

�

denotes the (Moore-Penrose) general-

ized inverse. The proviso \with respect to V [a

�

]"

is omitted when understood.

Remark 1. A p-dimensional positive semi-de�nite

symmetric matrix A can be decomposed into the

form A =

P

p

i=1

�

i

v

i

v

>

i

(spectral decomposition),

where fv

i

g is an orthonormal system of the eigen-

vectors of A for eigenvalues f�

i

g. If �

1

� � � �

� �

m

> �

m+1

= � � � = �

p

= 0, the (Moore-

Penrose) generalized inverse of A is given by A

�

=

P

m

i=1

v

i

v

>

i

=�

i

.

Suppose a particular model S is given. Since

the noise is assumed to be Gaussian, themaximum

likelihood estimator of S and f
�
a

�

g for Problem 1

is obtained by minimizing

P

N

�=1

ka

�

�x

�

k

2

�

under

the constraint that fx

�

g 2 S. Let

^

S and f
^
a

�

g be

the resulting maximum likelihood estimators of S

and f
�
a

�

g (2

^

S), respectively. The residual

N

X

�=1

ka

�

�
^
a

�

k

2

�

(3)

measures how well the assumed model S �ts the

data fa

�

g. This appears to be a suitable mea-

sure of the goodness of the model. However, be-

cause

^

S and f
^
a

�

g are determined so as to mini-

mize the residual for the current data fa

�

g, the

residual can be made arbitrarily small by assum-

ing a loose model. In fact, if the manifold S has

a su�cient number of parameters, we can make S

pass through all the data fa

�

g by adjusting the

parameters. Such an arti�cial model may explain

the current data very well but may be unable to

predict the occurrence the data to be observed in

the future.

Example 4. Recall Example 3. If we assume

the space model R

3

, datum a

�

itself is an op-

timal estimator of
�
a

�

, i.e.,
^
a

�

= a

�

. Hence,

P

N

�=1

ka

�

�
^
a

�

k

2

�

= 0.

On the other hand, the square sum of estima-

tion errors

N

X

�=1

k
^
a

�

�
�
a

�

k

2

�

(4)

measures how accurate the estimators f

^

a

�

g are,

provided the model is correct. This may be a suit-

able measure of the goodness of the \estimator"

but cannot be used as a measure of the goodness

of the assumed model. In fact, it can be made ar-

bitrarily small by assuming a restrictive model; as
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Fig. 4. The Mahalanobis projection of a

�

onto manifold S

is the tangent point of the equilikelihood surface to S.

the model is more restricted, the deviation
^
a

�

�
�
a

�

is constrained in a smaller set.

Example 5. Recall Example 3. If we assume the

constrained point model P

0

, an optimal estimator

of
�
a

�

is 0 irrespective of observed value, i.e.,
^
a

�

= 0. Hence,

P

N

�=1

k

^

a

�

�

�

a

�

k

2

�

= 0.

Thus, the goodness of a model cannot be mea-

sured by the goodness of �tting or the accuracy of

estimation. What we propose here is to evaluate

the goodness of a model by its predicting capac-

ity : we consider future data fa

�

�

g that would be

observed if the noise occurred di�erently under the

same model . In other words, we require that the

residual for the future data

N

X

�=1

ka

�

�

�

^

a

�

k

2

�

(5)

be small. Since this is a random variable, we

take expectation to de�ne a de�nitive value for

the model:

I(S) = E

�

[E[

N

X

�=1

ka

�

�

�
^
a

�

k

2

�

]]: (6)

Here, E

�

[ � ] and E[ � ] denote expectation with re-

spect to the future data fa

�

�

g and the current data

fa

�

g, respectively; fa

�

�

g and fa

�

g are assumed to

be independent and subject to the same distribu-

tion. We call I(S) the expected residual of model

S and regard S as good if I(S) is small.

This idea was �rst introduced by Akaike (1969)

in relation to an autoregressive model and then ex-

tended to general statistical inference for estimat-

ing the parameters of a probability distribution

from which the data are sampled (Akaike 1974).

Akaike considered the expectation of the logarith-

mic likelihood with respect to the future data and

derived a criterion called the AIC (Akaike infor-

mation criterion), which has been widely used in

many applications of statistical inference. It can

be shown that the AIC can be viewed as an ap-

proximation to the entropy crierion (the Kullback-

Leibler information) (Kullback 1959). Following a

reasoning similar to that of Akaike, we now prove

the following theorem.

Theorem 1

I(S) = E[

N

X

�=1

ka

�

�

^

a

�

k

2

�

] + 2(dN + n

0

):

(7)

Theorem 1 implies that the future residual (5)

is larger than the current residual (3) by 2(dN +

n

0

) in expectation. Since the residual (3) mea-

sures the goodness of the �t, the additional term

2(dN + n

0

) can be interpreted to be the penalty

for the demension of the model and its degree of

freedom. In other words, when we minimize the

residual (3), we have to pay a penalty for using a

model with a high dimension and a large degree of

freedom. This observation leads to the following

de�nition of the geometric information criterion,

or geometric AIC for short:

AIC(S) =

N

X

�=1

ka

�

�

^

a

�

k

2

�

+ 2(dN + n

0

):

(8)

This is an unbiased estimator of the expected

residual I(S), and we use this as a measure for

the goodness of the model: if AIC(S

1

)< AIC(S

2

)

for models S

1

and S

2

, we prefer model S

1

because

S

1

is expected to have more predicting capacity

than model S

2

. We give some mathematical pre-

liminaries in Section 3 and prove Theorem 1 in

Section 4.
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Fig. 5. The relation between datum a

�

, its true value
�
a

�

2 S and the Mahalanobis projection
^
a

�

of a

�

onto S.

3. Mahalanobis Geometry

3.1. Mahalanobis Projection

First, we consider the case in which the model S

has no free parameters (n

0

= 0). Since the noise

is assumed to be Gaussian, the maximum likeli-

hood estimator
^
a

�

of
�
a

�

is the tangent point of

the equilikelihood surface (a�a

�

; V [a

�

]

�

(a�a

�

))

= constant, a 2 A, to the manifold S (Fig. 4). Let

us call

^

a

�

theMahalanobis projection of a

�

onto S

with respect to V [a

�

]. The proviso \with respect

to V [a

�

]" is omitted when understood from the

context.

We assume that the noise is su�ciently small ,

by which we mean that V [a

�

] = O(�

2

), � = 1, ...,

N , for an appropriately de�ned noise level �, as

compared with which the data space A and the

manifold S are assumed to be su�ciently smooth.

Intuitively, this means that � is small as compared

with a quantity that measures the \radius of cur-

vature" for the manifolds A and S. In the follow-

ing, we understand that we ignore high order ef-

fects due to the \curvatures" of A and S and omit

the proviso \in the �rst order approximation".

The following proposition is easily obtained

(Kanatani 1996a):

Proposition 1

ka

�

�
�
a

�

k

2

�

= ka

�

�
^
a

�

k

2

�

+ k
^
a

�

�
�
a

�

k

2

�

:

(9)

This can be interpreted as the Pythagoras theo-

rem, stating that three points a

�

,
^
a

�

, and
�
a

�

de-

�ne a \right-angled triangle," where the length

is measured in the Mahalanobis norm and the

orthogonality of vectors u and v is de�ned by

(u; V [a

�

]

�

v) = 0 (Fig. 5). In this sense,
^
a

�

is

the \foot" of the \perpendicular line" drawn from

a

�

to S.

Proposition 2

E[ka

�

�
�
a

�

k

2

�

] = m

0

;

E[ka

�

�

^

a

�

k

2

�

] = r;

E[k
^
a

�

�
�
a

�

k

2

�

] = d: (10)

Proof: By de�nition, a

�

�
�
a

�

is a Gaussian ran-

dom variable of mean 0 and covariance matrix

V [a

�

] of rank m

0

. Hence, ka

�

�
�
a

�

k

2

�

is subject

to a �

2

distribution with m

0

degrees of freedom.

On the other hand, ka

�

�
^
a

�

k

2

�

is subject to a �

2

distribution with r degrees of freedom (Kanatani

1996a). Since a

�

�

^

a

�

is obtained from a

�

�

�

a

�

by

a linear mapping,
^
a

�

�
�
a

�

= (a

�

�
�
a

�

)� (a

�

�
^
a

�

)

is subject to a �

2

distribution with m

0

� r (= d)

degrees of freedom (Kanatani 1996a). Since the

expectation of a �

2

distribution is equal to its de-

gree of freedom, we obtain eqs. (10).

3.2. Residual of Model Fitting

Now, we consider the case where the model S has

n

0

free parameters. Let

^

S be its maximum likeli-

hood estimator. We assume that this model con-

tains the true manifold

�

S. Let

~

a

�

and

^

a

�

be the

Mahalanobis projections of a

�

onto

�

S and

^

S , re-

spectively (Fig. 6). Since each datum a

�

is inde-

pendent,

P

N

�=1

ka

�

�
�
a

�

k

2

�

and

P

N

�=1

ka

�

�
~
a

�

k

2

�

are subject to �

2

distributions with m

0

N and rN

degrees of freedom, respectively. In other words,

the degrees of freedom of the residual decrease

from m

0

N to rN if the true value
�
a

�

is replaced

by the Mahalanobis projection
~
a

�

. However, if a

�

is projected onto the the maximum likelihood es-

timator

^

S, the degrees of freedom of the residual

further decrease by n

0

(Kanatani 1996a) (Fig. 6).

Namely, the residual

P

N

�=1

ka

�

�
^
a

�

k

2

�

is subject

to a �

2

distribution with rN � n

0

degrees of free-

dom. Thus, we obtain
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Fig. 6. The Mahalanobis projections
~
a

�

and
^
a

�

of datum

a

�

onto the true manifold

�

S and the the optimally �tted

manifold

^

S, respectively.

Proposition 3

E[

N

X

�=1

ka

�

�

�

a

�

k

2

�

] = m

0

N;

E[

N

X

�=1

ka

�

�
~
a

�

k

2

�

] = rN;

E[

N

X

�=1

ka

�

�
^
a

�

k

2

�

] = rN � n

0

: (11)

4. Expected Residual

4.1. Evaluation of the Expected Residual

We now evaluate the expected residual I(S) de-

�ned by eq. (6). Let
~
a

�

and
^
a

�

be the Maha-

lanobis projections of a

�

onto

�

S and

^

S , respec-

tively. Let a

�

�

be the future datum corresponding

to a

�

(Fig. 7).

Lemma 1

I(S) = E[

N

X

�=1

ka

�

�
^
a

�

k

2

�

]

+E[

N

X

�=1

k
^
a

�

�
~
a

�

k

2

�

]

+2dN + n

0

: (12)

Proof: Since the maximum likelihood estimators

f
^
a

�

g are determined from the current data fa

�

g,

they are independent of the future data fa

�

�

g.

Sorry. No �gure is avaliable here. See the jour-

nal for the �gure.

Fig. 7. Evaluation of the expected residual.

Hence, eq. (6) reduces to

I(S) = E

�

[E[

N

X

�=1

k(a

�

�

�
�
a

�

)

�(
^
a

�

�
�
a

�

)k

2

�

]]

= E

�

[

N

X

�=1

ka

�

�

�
�
a

�

k

2

�

]

+E[

N

X

�=1

k
^
a

�

�
�
a

�

k

2

�

]: (13)

Since fa

�

�

g and fa

�

g have the same distribution,

we have E

�

[ka

�

�

�
�
a

�

k

2

�

] = E[ka

�

�
�
a

�

k

2

�

]. So,

eq. (13) can be written as

I(S) = E[

N

X

�=1

ka

�

�
�
a

�

k

2

�

]

+E[

N

X

�=1

k

^

a

�

�

�

a

�

k

2

�

]: (14)

Consider the �rst term on the right-hand side.

Applying Proposition 1, we can write

E[

N

X

�=1

ka

�

�

�

a

�

k

2

�

]

= E[

N

X

�=1

ka

�

�
~
a

�

k

2

�

]

+E[

N

X

�=1

k
~
a

�

�
�
a

�

k

2

�

]: (15)
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From Proposition 3, we have

E[

N

X

�=1

ka

�

�
~
a

�

k

2

�

]

= E[

N

X

�=1

ka

�

�
^
a

�

k

2

�

] + n

0

: (16)

We also have

E[

N

X

�=1

k
~
a

�

�
�
a

�

k

2

�

] = dN: (17)

Hence, eq. (15) reduces to

E[

N

X

�=1

ka

�

�
�
a

�

k

2

�

]

= E[

N

X

�=1

ka

�

�
^
a

�

k

2

�

] + dN + n

0

: (18)

Next, consider the second term on the right-hand

side of eq. (14). If the noise is small, the Maha-

lanobis projection of
^
a

�

2

^

S onto the true mani-

fold

�

S coincides to a �rst approximation with the

Mahalanobis projection
~
a

�

of the datum a

�

onto

�

S (Fig. 7). Hence, we obtain from Proposition 1

and eq. (17)

N

X

�=1

k
^
a

�

�
�
a

�

k

2

�

=

N

X

�=1

k

^

a

�

�

~

a

�

k

2

�

+

N

X

�=1

k

~

a

�

�

�

a

�

k

2

�

=

N

X

�=1

k
^
a

�

�
~
a

�

k

2

�

+ dN: (19)

Substituting eqs. (18) and (19) into eq. (14), we

obtain eq. (12).

4.2. Accuracy of Parametric Fitting

In order to evaluate the second term on the right-

hand side of eq. (12), we need an explicit repre-

sentation of the model S. Suppose the model S is

represented by L equations in the form

F

(k)

(a;u) = 0; k = 1; :::; L; (20)

parameterized by an n-dimensional vector u con-

strained to be in an n

0

-dimensional manifold U �

R

n

, which we call the parameter space. The L

equations need not be algebraically independent;

we call the number r of independent equations the

rank of eq. (20). We assume that eq. (20) is non-

singular in the sense that each of the L equations

de�nes a manifold of codimension 1 in the m

0

-

dimensional data space A such that they intersect

with each other transversally (Kanatani 1996a)

(Fig. 8). This assumption ensures that eq. (20)

is a manifold of codimension r.

Let
�
u be the true value of u, i.e., the value that

realizes the true manifold

�

S. The moment matrix

is de�ned as follows (Kanatani 1996a):

�

M =

N

X

�=1

L

X

k;l=1

�

W

(kl)

�

(P

U

�
u

r

a

�

F

(k)

�

)

(P

U

�
u

r

a

�

F

(l)

�

)

>

; (21)

(

�

W

(kl)

�

) =

�

(r

a

�

F

(k)

�

; V [a

�

]r

a

�

F

(l)

�

)

�

�

:

(22)

Here, P

U

�
u

is the n-dimensional projection matrix

onto the tangent space T

�
u

(U) to the manifold U

at
�
u. The symbol r

a

( � ) denotes the vector whose

ith component is @( � )=@a

i

, where a

i

is the ith

component of a, and r

a

�

F

(k)

�

is the abbreviation

of r

a

F

(k)

(
�
a

�

;
�
u). In the following, we use an ab-

breviated notation to de�ne a matrix: (

�

W

(kl)

�

) de-

notes an L-dimensional matrix whose (kl) element

is

�

W

(kl)

�

; the right-hand side of eq. (22) denotes

the generalized inverse of the L-dimensional ma-

trix whose (kl) element is (r

a

�

F

(k)

�

; V [a

�

]r

a

�

F

(l)

�

).

Remark 2. Let V be a q-dimensional linear sub-

space of R

p

(q � q). The (orthogonal) projec-

tion P

V

of R

p

onto V is a p-dimensional matrix

such that P

V

r 2 V and r � P

V

r 2 V

?

for any

r 2 R

p

. It is symmetric ((P

V

)

>

= P

V

), idem-

potent ((P

V

)

2

= P

V

), and positive semi-de�nite

with rank q. If fv

i

g, i = 1, ..., q, is an orthonormal

basis of V , the projection P

V

has the expression

P

V

=

P

q

i=1

v

i

v

>

i

.
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Sorry. No �gure is avaliable here. See the jour-

nal for the �gure.

Fig. 8. (a) Two surfaces intersecting transversally. (b)

Two surfaces meeting non-transversally.

Let
^
u be the maximum likelihood estimator of

u, i.e., the value of u that realizes the maximum

likelihood estimator

^

S of S .

Lemma 2

N

X

�=1

k
^
a

�

�
~
a

�

k

2

�

= (
^
u�

�
u;

�

M(
^
u�

�
u)):

(23)

Proof: The Mahalanobis projection
~
a

�

of
^
a

�

2

^

S onto

�

S is given as follows (Kanatani 1996a):

~
a

�

=
^
a

�

� V [a

�

]

L

X

k;l=1

~

W

(kl)

�

F

(k)

(
^
a

�

;
�
u)

r

a

~

F

(l)

�

; (24)

(

~

W

(kl)

�

) =

�

(r

a

~

F

(k)

�

; V [a

�

]r

a

~

F

(l)

�

)

�

�

:

(25)

Here, r

a

~

F

(k)

�

is the abbreviation of

r

a

F

(k)

(
~
a

�

;
�
u). Since

^
a

�

2

^

S, we have

F

(k)

(

^

a

�

;

^

u) = 0; k = 1; :::; L: (26)

Letting �
^
u =

^
u�

�
u and taking a linear approxi-

mation, we obtain

F

(k)

(
^
a

�

;
�
u) = F

(k)

(
^
a

�

;
^
u��

^
u)

= �(r

u

^

F

(k)

�

;�

^

u); (27)

Sorry. No �gure is avaliable here. See the jour-

nal for the �gure.

Fig. 9. Accuracy of the optimal �tting

where r

u

denotes di�erentiation with respect

to u, and r

u

^

F

(k)

�

is the abbreviation of

r

u

F

(k)

(
^
a

�

;
^
u). Since eq. (27) is a linear approxi-

mation in �

^

u, we can replace r

u

^

F

(k)

�

by r

u

�

F

(k)

�

(= the abbreviation of r

u

F

(k)

(
�
a

�

;
�
u)) with errors

of O(�
^
u)

2

(Fig. 9). Consequently, eq. (24) is writ-

ten to a �rst approximation as

^
a

�

�
~
a

�

= V [a

�

]

L

X

k;l=1

~

W

(kl)

�

r

a

~

F

(k)

�

r

u

�

F

(l)>

�

�

^

u: (28)

From this, we see that

N

X

�=1

k
^
a

�

�
~
a

�

k

2

�

=

N

X

�=1

(V [a

�

]

L

X

k;l=1

~

W

(kl)

�

r

a

~

F

(k)

�

r

u

�

F

(l)>

�

�
^
u; V [a

�

]

�

V [a

�

]

L

X

m;n=1

~

W

(mn)

�

r

a

~

F

(m)

�

r

u

�

F

(n)>

�

�
^
u)

= (�
^
u;

0

@

N

X

�=1

L

X

k;l;m;n=1

~

W

(kl)

�

~

W

(mn)

�

r

u

�

F

(l)

�

r

a

~

F

(k)>

�

V [a

�

]V [a

�

]

�

V [a

�

]

r

a

~

F

(m)

�

r

u

�

F

(n)>

�

!

�
^
u)

= (�
^
u;

0

@

N

X

�=1

L

X

l;n=1

0

@

L

X

k;m=1

~

W

(lk)

�

(r

a

~

F

(k)

�

; V [a

�

]r

a

~

F

(m)

�

)

~

W

(mn)

�

!



10 Kanatani

r

u

�

F

(l)

�

r

u

�

F

(n)>

�

!

�

^

u)

= (�
^
u;

0

@

N

X

�=1

L

X

l;n=1

~

W

(ln)

�

r

u

�

F

(l)

�

r

u

�

F

(n)>

�

!

�
^
u); (29)

where we have used the de�ning equation (25)

of the L-dimensional matrix

~

W

�

= (

~

W

(kl)

�

) and

the identities V [a

�

]V [a

�

]

�

V [a

�

] = V [a

�

] and

~

W

�

~

W

�

�

~

W

�

=

~

W

�

. To a �rst approximation,

~

W

(kl)

�

can be replaced by

�

W

(kl)

�

de�ned by eq. (22).

Since we have �
^
u 2 T

�
u

(U) to a �rst approxima-

tion and hence P

U

�
u

�
^
u = �

^
u, we can write eq. (29)

as (�
^
u;

�

M�
^
u).

Proof of Theorem 1: The covariance matrix of

the maximum likelihood estimator
^
u is given to

a �rst approximation by the Cramer-Rao lower

bound de�ned as the generalized inverse of

�

M

(Kanatani 1996a):

�

V [
^
u] =

�

M

�

: (30)

Since this matrix generally has rank n

0

, the

quadratic form

(
^
u�

�
u;

�

M(
^
u�

�
u))

= (
^
u�

�
u;

�

V [
^
u]

�

(
^
u�

�
u)) (31)

is subject to a �

2

distribution with n

0

degrees of

freedom (Kanatani 1996a). Hence, its expecta-

tion is n, and Lemmas 1 and 2 imply eq. (7).

5. Geometric Information Criterion

5.1. Model Selection by AIC

Eq. (8) is not a convenient form for actual applica-

tions, because computing the residual

P

N

�=1

ka

�

�

^

a

�

k

2

�

requires knowledge of the covariance matri-

ces V [a

�

]. It is generally very di�cult to esti-

mate the noise characteristics exactly. However,

it is relatively easy to predict qualitative char-

acteristics such as homogeneity/inhomogeneity,

isotropy/anisotropy, and their relative degrees

from the characteristics of the imaging device and

the image processing operation. So, we assume

that the covariance matrices V [a

�

] are known only

up to scale and write

V [a

�

] = �

2

V

0

[a

�

]; (32)

where � is an appropriately de�ned constant that

measures the average magnitude of the noise. We

call � the noise level and V

0

[a

�

] the normalized co-

variance matrix . We assume that V

0

[a

�

] is known

but � is unknown.

De�ne the normalized residual by

J

0

[

^

S] =

N

X

�=1

(a

�

�

^

a

�

; V

0

[a

�

]

�

(a

�

�

^

a

�

)):

(33)

Multiplying eq. (8) by �

2

, we de�ne the normalized

geometric AIC of model S by

AIC

0

(S) = J

0

[

^

S ] + 2(dN + n

0

)�

2

: (34)

In the following, we call AIC

0

(S) and J

0

[

^

S ] sim-

ply the AIC and the residual , respectively. Given

a set of N data fa

�

g and two models S

1

and S

2

,

we regard model S

1

better than S

2

if AIC

0

(S

1

) <

AIC

0

(S

2

).

Remark 3. The usual AIC is obtained in the

asymptotic limit N ! 1 by applying the law

of large numbers and the central limit theorem

(Akaike 1974). However, eq. (8) is obtained in

the limit of small noise for a �xed number N of

the data. This leads to the following distinctive

features of the geometric AIC as compared with

the usual AIC:

�

The degree of freedom n

0

of the model has no

signi�cant e�ect for the geometric AIC if the

number N of data is large, whereas it plays a

dominant role in the usual AIC.

�

The dimension d of the model manifold plays

a dominant role in the geometric AIC, while

no such geometric concepts are involved in the

usual AIC.

�

The number N of data explicitly appears in the

expression for the geometric AIC, but it does

not in the usual AIC. This is because the true
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positions of the data play the role of what is

called nuisance parameters in statistics.

5.2. Model Comparison by AIC

In order to apply the AIC criterion, we need to

estimate the noise level � appropriately. This is

obvious; distinguishing one model from another is

meaningless if the noise level is high, while a small

di�erence between the residuals gives a strong clue

if the noise level is low. Note that noise is a char-

acteristic of the devices and data processing oper-

ations involved and is independent of the models

we are comparing , as we mentioned in Section 1.2.

However, estimating the noise level a priori is in

general very di�cult.

If model S is correct , J [

^

S] = J

0

[

^

S]=�

2

is sub-

ject to a �

2

distribution with rN � n

0

degrees of

freedom. Hence, an unbiased estimator of �

2

is

obtained in the form

�̂

2

=

J

0

[

^

S]

rN � n

0

; (35)

as long as rN � n

0

6= 0. However, we need the

true noise level � to judge if the model S is cor-

rect. This di�culty can be avoided if we focus on

comparing two models such that one implies the

other.

Let S

1

be a model of dimension d

1

and codi-

mension r

1

with n

0

1

degrees of freedom, and S

2

a

model of dimension d

2

and codimension r

2

with n

0

2

degrees of freedom. Suppose model S

2

is obtained

by adding an additional constraint to model S

1

.

We say that model S

2

is stronger than model S

1

,

or model S

1

is weaker than model S

2

, and write

S

2

� S

1

: (36)

In this case, J

0

[

^

S

2

] � J

0

[

^

S

1

] for whatever data

fa

�

g.

Suppose S

1

is a general model which is assumed

to be correct. Then, the squared noise level �

2

is

estimated by eq. (35) as log as rN�n

0

6= 0. Substi-

tuting it to �

2

in the expression for the geometric

AIC, we see that the condition for AIC

0

(S

2

) <

AIC

0

(S

1

) is

J

0

[

^

S

2

]

J

0

[

^

S

1

]

< 1 +

2(d

1

� d

2

)N + 2(n

0

1

� n

0

2

)

r

1

N � n

0

1

:

(37)

If this condition is satis�ed, the predicting capa-

bility is expected to increase by replacing the gen-

eral model S

1

by the strong model S

2

.

Example 7. Consider Example 3. We see that

P

0

� P; L

0

� L;

�

0

� �; P � L � R

3

: (38)

�

If the true positions are known to be coplanar,

we can infer that the plane on which the true

positions lie passes through the coordinate ori-

gin when

J

0

[

^

�

0

]

J

0

[

^

�]

< 1 +

2

N � 3

; (39)

and infer that the true positions are collinear

when

J

0

[

^

L]

J

0

[

^

�]

< 3 +

4

N � 3

: (40)

�

If the true positions are known to be collinear,

we can infer that the line on which the true po-

sitions lie passes through the coordinate origin

when

J

0

[

^

L

0

]

J

0

[

^

L]

< 1 +

2

N � 2

; (41)

and infer that the true positions are identical

when

J

0

[

^

P ]

J

0

[

^

P ]

< 2 +

3

N � 2

: (42)

�

If the true positions are known to be identical,

we can infer that the true position is at the

coordinate origin when

J

0

[

^

P

0

]

J

0

[

^

P ]

< 1 +

2

N � 1

: (43)
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5.3. Model Selection vs. Testing of Hypotheses

The model selection criterion given by eq. (37)

has a positive implication in contrast to the nega-

tive meaning of the statistical testing of hypothe-

ses , according to which the procedure is given as

follows. Since J

0

[

^

S

2

]=�

2

is subject to a �

2

dis-

tribution with r

2

N � n

0

2

degrees of freedom, the

hypothesis that \model S

2

is correct" is rejected

if

J

0

[

^

S

2

]

�

2

> �

2

r

2

N�n

0

2

;a

(44)

with signi�cance level a%, where �

2

q;a

is the upper

a% point of the �

2

distribution with q degrees of

freedom. If the square noise level �

2

is approxi-

mated by the estimator �̂

2

given by eq. (35), we

can rewrite (44) as

J

0

[

^

S

2

]

J

0

[

^

S

1

]

>

�

2

r

2

N�n

0

2

;a

r

1

N � n

0

1

: (45)

The left-hand side equals the ratio of the loga-

rithmic likelihoods of the two models, so this test

belongs to a class called the logarithmic likelihood

ratio test .

The interpretation of this test is that if eq. (45)

holds, the hypothesis that the model is S

2

is very

questionable with con�dence level (100� a)% be-

cause if the hypothesis is true, we are observing a

very rare event that occurs only with a probability

a%. Hence, we decide that there exists no reason

to favor model S

2

over S

1

. In other words, a sta-

tistical test can only reject a hypothesis when the

data do not support it within a speci�ed allowance

threshold. Its ultimate purpose is to negate a hy-

pothesis (hence called the null hypothesis) in favor

of a default hypothesis (called the alternative hy-

pothesis).

After all, any hypothesis is rejected in the pres-

ence of noise if the signi�cance level is lowered (or

the con�dence level is raised); the judgment is not

de�nitive in this sense, and it does not address the

issue of choosing one model in favor of another.

In contrast, the criterion given by eq. (37) gives a

positive and de�nitive assertion that model S

2

is

preferable to S

1

with regard to the predicting ca-

pability; it requires no knowledge about the noise

magnitude and no arbitrarily set thresholds.

5.4. Other criteria

In traditional statistics, the MDL and the AIC

are not the only criteria for the goodness of a

model. Existing criteria can be classi�ed roughly

into Bayesian, non-non-Bayesian , and empirical

types. Bayesian types include the MDL and the

BIC (Bayesian information criterion) of Schwarz

(1978) (see Clarke (1994), Clarke and Barron

(1990) and Matsushima et al. (1991) for other cri-

teria). Non-Bayesian types include the AIC and

the Cp of Mallows (1973). A typical empirical

method is cross validation: dividing the data into

two parts, the estimation (or learning) part and

the validation part , we �t a model to the estima-

tion part and evaluate the residual for the vali-

dation part. Many variations are conceivable for

this process. For example, we may �t a model to

the data after removing one datum, validate the

resulting �t by that datum, and repeat this for

each datum in turn. This technique is called jack-

knife. Or we may generate \simulation data" by

a computer many times in such a way that they

as a whole have the same statistical properties as

the original data and do �tting and validation by

using them. Such a simulation-oriented method is

called bootstrap (Efron and Tibshirani 1993).

The AIC can be viewed as \hypothetical cross

validation"; we validate our �t by imagining the

future data and compute the expectation. It ap-

pears at �rst sight that one can invent arbitrarily

many criteria by juggling with equations. How-

ever, a lot of comparative studies of di�erent crite-

ria in the past indicate that all behave more or less

similarly|particularly so asymptotically (e.g., see

Hannan and Quinn (1979), Shibata (1981), Stone

(1977)). All the criteria de�ned for traditional

statistical inference could be modi�ed to �t to our

geometric inference problem described in Section

2.1, just as we modi�ed the AIC into the geomet-

ric AIC, and it is very likely that we would end up

with more or less similar results. With no good

\criterion for choosing a criterion" at hand, we do

not have any evidence that other criteria would be

superior or inferior to the geometric AIC.
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6. 3-D Motion Analysis

7. Structural Singularity

The structure-from-motion algorithm for recon-

structing the 3-D object shape and the 3-D cam-

era motion from two views has been studied by

many researchers (Faugeras and Maybank 1990;

Kanatani 1994b; Longuet-Higgins 1981; Tsai and

Huang 1984; Weng, Ahuja and Huang 1993).

However, the algorithm fails if all the feature

points are coplanar in the scene. This is because a

planar surface is a degenerate critical surface that

gives rise to ambiguity of 3-D interpretation (Horn

1990; Maybank 1993; Negahdaripour 1990a,b).

Hence, a di�erent algorithm is necessary for a pla-

nar surface. The planar surface algorithm has

also been studied by many researchers (Kanatani

and Takeda 1995; Longuet-Higgins 1986, Weng et

al. 1991). However, both the general and the pla-

nar surface algorithms assume that the translation

of the camera is not zero; if the camera motion is

a pure rotation around the center of the lens, the

incoming rays of light are the same before and af-

ter the motion, so no 3-D information can be ob-

tained. If follows that the structure-from-motion

analysis must take the following steps:

1. Rotation test : We test if the translation is 0. If

so, output a warning message and stop.

2. Planarity test : We test if the object is a planar

surface. If so, apply the planar surface algo-

rithm.

3. Else, apply the general algorithm.

In practice, however, the images have noise,

and the general algorithm applied in the presence

of noise produces some (unreliable) solution even

when the camera motion is a pure rotation or the

object is a planar surface. In the past, the above

tests have been done by introducing an ad-hoc cri-

terion and an arbitrarily set threshold. For exam-

ple, based on the fact that the smallest eigenvalue

of a matrix involved in the analysis should be a

multiple root in the absence of noise if the object

is a planar surface, the object is judged as planar

if its smallest two eigenvalues are close enough.

However, how can we determine the threshold for

such a judgment?

�

We need to know the accuracy of the detected

feature points, because the threshold should be

set high if the accuracy is low while it should

be set low if the accuracy is high. However, the

accuracy is di�erent from image to image, so it

is almost impossible to predict it in advance.

�

Even if the accuracy can be predicted, what can

be obtained is a probability of the noise, since

the noise is a random phenomenon. We can set

the threshold in such a way that the probability

(the signi�cance level) that a planar surface is

judged as non-planar is a%. However, how can

we set that signi�cance level? The result of the

judgment di�ers if the signi�cance level is set

di�erent.

In the past, little attention has been paid to this

problem. Sometimes, thresholds are adjusted so

that the experiment in question works well. We

now show that this problem can be systemati-

cally solved by the use of the geometric AIC crite-

rion without knowing the magnitude of the image

noise and without introducing any arbitrarily set

thresholds.

7.1. General Model

De�ne an XY Z camera coordinate system such

that the origin O is at the center of the lens and

the Z-axis is along the optical axis. If the distance

between the origin O and the photo-cell array is

taken as the unit of length, the image plane can

be identi�ed with Z = 1; the imaging geometry

can be regarded as perspective projection onto it.

De�ne an xy image coordinate system on the im-

age plane Z = 1 such that the origin o is on the

optical axis and the x- and y-axes are parallel to

the X- and Y -axes, respectively. Then, a point

(x; y) on the image plane can be represented by

vector x = (x; y; 1)

>

.

Suppose the camera is rotated around the cen-

ter of the lens by R, and �nally translated by h

(Fig. 10). We call fh, Rg the motion parameters.

If we de�ne the X

0

Y

0

Z

0

camera coordinate system

and the x

0

y

0

image coordinate system with respect

to the camera after the motion, a point (x

0

; y

0

),

which can be represented by vector x

0

= (x

0

; y

0

; 1)

with respect to theX

0

Y

0

Z

0

coordinate system, can

be represented by vector Rx

0

with respect to the

XY Z coordinate system. If follows that vectors x

and x

0

can be images of the same point in the scene

if and only if the following epipolar equation holds

(Faugeras 1993; Kanatani 1993a; Maybank 1993;
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nal for the �gure.

Fig. 10. Epipolar geometry.

Weng, Huang and Ahuja 1993), where j � ; � ; � j de-

notes the scalar triple product of vectors:

jx;h;Rx

0

j = 0: (46)

Suppose we have N pairs of corresponding

points x

�

and x

0

�

, � = 1, ..., N . We decompose

the vectors x

�

and x

0

�

into the form

x

�

=
�
x

�

+�x

�

; x

0

�

=
�
x

0

�

+�x

0

�

; (47)

where
�
x

�

and
�
x

0

�

represent the positions suppos-

edly observed if noise did not exist. We regard the

noise terms �x

�

and �x

0

�

as independent Gaus-

sian random variables of mean 0 and respective

covariance matrices V [x

�

] and V [x

0

�

]. Since the

third components of vectors x

�

and x

0

�

are both

1, the covariance matrices V [x

�

] and V [x

0

�

] are

singular matrices of rank 2 whose ranges are the

XY and X

0

Y

0

planes, respectively.

The 2N vectors x

�

and x

0

�

, � = 1, ..., N , can

be viewed as six -dimensional data a

�

= x

�

�x

0

�

2

R

6

sampled from the four -dimensional data space

A = f(x; y; 1; x

0

; y

0

; 1)

>

jx; y; x

0

; y

0

2 Rg

� R

6

: (48)

Since the epipolar equation (46) de�nes a three-

dimensional manifold S in the four-dimensional

data space A.

From the epipolar equation (46), it is imme-

diately seen that the translation h can be deter-

mined only up to scale. Hence, the unknown mo-

tion parameters fh, Rg have �ve degrees of free-

dom. Consequently, the manifold S is a model of

dimension 3, codimension 1, and �ve degrees of

freedom. We decompose the covariance matrices

V [x

�

] and V [x

0

�

] into the noise level � and the nor-

malized covariance matrices V

0

[x

�

] and V

0

[x

0

�

] in

the form

V [x

�

] = �

2

V

0

[x

�

];

V [x

0

�

] = �

2

V

0

[x

0

�

]: (49)

The AIC of this model is

AIC

0

(S) = J

0

[

^

S ] + 2(3N + 5)�

2

: (50)

Let f

^

h,

^

Rg be the maximum likelihood estima-

tors of the motion parameters fh, Rg. They can

be computed accurately and e�ectively by a nu-

merical scheme called renormalization, and the

residual J

0

[

^

S] is computed as follows (Kanatani

1994b):

J

0

[

^

S] =

N

X

�=1

jx

�

;

^

h;

^

Rx

0

�

j

2

.�

(

^

h�

^

Rx

0

�

; V

0

[x

�

](

^

h�

^

Rx

0

�

))

+(

^

h� x;

^

RV

0

[x

0

�

]

^

R

>

(

^

h� x))

�

:

(51)

If this model is correct, J

0

[

^

S]=�

2

is subject to a �

2

distribution withN�5 degrees of freedom. Hence,

the squared noise level �

2

can be estimated by

�̂

2

=

J

0

[

^

S]

N � 5

: (52)

Remark 4. As is well known, the solution f

^

h,

^

Rg

of the motion parameters was not unique in gen-

eral (Faugeras 1993; Kanatani 1993a; Maybank

1993; Weng, Huang and Ahuja 1993). The exis-

tence of multiple solutions is due to the fact that

di�erent motion parameters can de�ne the same

manifold S. However, the maximum likelihood es-

timator

^

S of the manifold S is generally unique.

7.2. Planar Surface Model

Suppose the object is a planar surface. Let n be

its unit surface normal with respect to the XY Z

coordinate system, and d its distance (positive in

the direction n) from the origin O (Fig. 11); we
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Sorry. No �gure is avaliable here. See the jour-

nal for the �gure.

Fig. 11. Geometry of camera motion relative to a planar

surface.

call fn, dg the surface parameters. It can be eas-

ily shown that x and x

0

are images of the same

point on that plane if and only if the following

equation holds (Kanatani 1993a; Maybank 1993;

Weng, Huang and Ahuja 1993):

x

0

�Ax = 0: (53)

Here, A is a matrix de�ned by

A = R

>

(hn

>

� dI); (54)

which determines an image transformation called

homography. Only two component equations of

eq. (53) are independent. Hence, it de�nes a two-

dimensional manifold S

�

in the four-dimensional

data space A. The unknown surface parameters

fn, dg have three degrees of freedom, and the un-

known motion parameters fh, Rg have �ve de-

grees of freedom. Hence, the manifold S

�

is a

model of dimension 2, codimension 2, and eight

degrees of freedom. Let

^

S

�

be the maximum like-

lihood estimator of S

�

. The AIC of this model

is

AIC

0

(S

�

) = J

0

[

^

S

�

] + 2(2N + 8)�

2

: (55)

Let f
^
n,

^

dg and f

^

h,

^

Rg be the maximum like-

lihood estimators of the surface and motion pa-

rameters fn, dg and fh, Rg, respectively. They

can be computed accurately and e�ectively by a

numerical scheme called renormalization, and the

residual J

0

[

^

S

�

] is computed as follows (Kanatani

and Takeda 1995):

J

0

[

^

S

�

] =

N

X

�=1

(x

0

�

�

^

Ax

�

;

^

W

0

(x

0

�

�

^

Ax

�

)); (56)

^

W

0

=

�

x

0

�

�

^

AV

0

[x

�

]

^

A

>

� x

0

�

+

(

^

Ax

�

)� V

0

[x

0

�

]� (

^

Ax

�

)

�

�

2

: (57)

Here,

^

A is the estimate of matrix A obtained

by replacing fn, dg and fh, Rg by their maxi-

mum likelihood estimators f
^
n,

^

dg and f

^

h,

^

Rg, re-

spectively, in eq. (54). The product a � U � a

of a vector a = (a

i

) and a matrix U = (U

ij

)

is de�ned to be a matrix whose (ij) element is

P

3

k;l=1

"

ikl

"

jmn

a

k

a

m

U

ln

, where "

ijk

is the Ed-

dington epsilon , taking values 1 and �1 if (iji)

is an even and odd permutations of (123), respec-

tively, and value 0 otherwise. The symbol ( � )

�

r

denotes the rank-constrained generalized inverse.

Remark 5. Let A =

P

p

i=1

�

i

v

i

v

>

i

be the spectral

decomposition of a p-dimensional positive semi-

de�nite symmetric matrix A, where fv

i

g is an

orthonormal system of the eigenvectors of A for

eigenvalues f�

i

g (see Remark 1). If �

1

� � � � �

�

m

> �

m+1

= � � � = �

p

= 0, the rank-constrained

(Moore-Penrose) generalized inverse ofA for rank

r (� m) is given by (A)

�

r

=

P

r

i=1

v

i

v

>

i

=�

i

.

Remark 6. As is well known, the solution f
^
n,

^

dg and f

^

h,

^

Rg of the surface and motion param-

eters was not unique in general (Faugeras 1993;

Kanatani 1993a; Maybank 1993; Weng, Huang

and Ahuja 1993). This ambiguity is due to the

fact that di�erent surface and motion parameters

can de�ne the same manifold. However, the max-

imum likelihood estimator

^

S

�

of the manifold S

�

is generally unique.

7.3. Rotation Model

If the camera motion is a pure rotation around

the center of the lens, the incoming rays of light

are the same before and after the camera motion,

and hence no 3-D information can be obtained.

The necessary and su�cient condition for h = 0

is that all corresponding image points x and x

0

satisfy the following equation (Fig. 12):
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Sorry. No �gure is avaliable here. See the jour-

nal for the �gure.

Fig. 12. Pure rotation of the camera.

x�Rx

0

= 0: (58)

This equation has only two independent com-

ponent equations. Hence, it de�nes a two-

dimensional manifold S

R

in the four-dimensional

data space A. Since the unknown rotation R has

three degrees of freedom, the manifold S

R

is a

model of dimension 2, codimension 2, and three

degrees of freedom. Let

^

S

R

be the maximum like-

lihood estimator of S

R

. The AIC of this model

is

AIC

0

(S

R

) = J

0

[

^

S

R

] + 2(2N + 3)�

2

: (59)

Let

^

R be the maximum likelihood estimator of the

rotation R. The residual J

0

[

^

S

R

] is computed as

follows (Kanatani 1996a):

J

0

[

^

S

R

] =

N

X

�=1

(x

�

�

^

Rx

0

�

;

^

W

0

(x

�

�

^

Rx

0

�

)); (60)

^

W

0

=

�

x

�

�

^

RV

0

[x

0

�

]

^

R

>

� x

�

+(

^

Rx

0

�

)� V

0

[x

�

]� (

^

Rx

0

�

)

�

�

2

:(61)

Remark 7. The maximum likelihood estimator

^

R of the camera rotation R can be computed by

a numerical search algorithm (e.g., steepest de-

scent), minimizing eq. (11) viewed as a function

of

^

R. A good approximation of

^

R is analytically

obtained by applying the singular value decom-

position (Kanatani 1994a). Note that what we

Sorry. No �gure is avaliable here. See the jour-

nal for the �gure.

Fig. 13. Two planar grids are hinged together in the scene.

actually need is not the estimate

^

R itself but the

residual J

0

[

^

S

R

]. Since

^

R is the value that min-

imizes J

0

[

^

S

R

], the minimum value can be accu-

rately computed even from an approximate value

of

^

R.

7.4. Planarity Test and Rotation Test

It is easy to see that eqs. (53) and (58) both im-

ply the epipolar equation (46). It can also be seen

that eq. (53) reduces to eq. (58) if the matrix A in

eq. (53) is constrained to be a rotation matrix (i.e.,

an orthogonal matrix of determinant 1). Hence,

the following relation holds:

S

R

� S

�

� S : (62)

It follows that we always have J

0

[

^

S

R

] � J

0

[

^

S

�

] �

J

0

[

^

S]. Applying the comparison criterion (37), we

obtain the following procedures:

1. Planarity test : The object surface can be in-

ferred to be planar if

J

0

[

^

S

�

]

J

0

[

^

S]

< 3 +

4

N � 5

: (63)

2. Rotation test : The camera motion can be in-

ferred to be a pure rotation if

J

0

[

^

S

R

]

J

0

[

^

S ]

< 3 +

14

N � 5

: (64)

7.5. Experiments

We de�ned two planar grids hinged together with

angle ��� in the scene and generated images that
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Sorry. No �gure is avaliable here. See the jour-

nal for the �gure.

Fig. 14. Percentage of the instances judged to be planar.

Sorry. No �gure is avaliable here. See the jour-

nal for the �gure.

Fig. 15. An instance for which the object is judged to be

planar (� = 22

�

and � = 1).

simulate two views from di�erent camera positions

(Fig. 13). The image size and the focal length

were assumed to be 512 � 512 (pixels) and 600

(pixels), respectively. The x- and y-coordinates

of each grid point were perturbed by independent

random Gaussian noise of mean 0 and standard

deviation � (pixels). Using the grid points as fea-

ture points, we conducted the planarity test 100

times, each time using di�erent noise. For various

values of � and for � = 0:5 � 3:0, we computed the

percentage of the instances for which the object is

judged to be planar (Fig. 14). We see that the

threshold for the test is automatically adjusted to

the noise. Note that the purpose of the test is not

to know the true shape; the purpose is to test if

the object shape can be regarded as planar.

If � = 1.0, the percentage is approximately

50% for � = 22

�

. Fig. 15 shows one instance for

which the object is judged to be planar; Fig. 16

shows one instance for which the object is judged

to be non-planar. Fig. 17 shows the 3-D shapes

reconstructed from the general and planar sur-

face models. The true shape is superimposed in

dashed lines. We see that although the perturbed

images look almost the same, the reconstructed

shape from the general model has little sense if

the object is judged to be planar. In contrast, the

Sorry. No �gure is avaliable here. See the jour-

nal for the �gure.

Fig. 16. An instance for which the object is judged to be

non-planar (� = 22

�

and � = 1).

non-planar shape can be reconstructed fairly well

if the object is judged to be non-planar.

8. Further Applications

The geometric AIC can be applied to many other

problems in computer vision and robotics prob-

lems where geometric inference is involved. Here,

we merely list such possibilities without going into

the details.

8.1. 3-D Reconstruction by Stereo Vision

Stereo vision can be regarded as structure from

motion with known motion parameters fh, Rg.

Then, the epipolar equation (46) de�nes a model

S of dimension 3, codimension 1, and zero degrees

of freedom; the maximum likelihood estimator

^

S

of S is S itself. Hence, its AIC is

AIC

0

(S) = J

0

[

^

S ] + 6N�

2

: (65)

If the object is a planar surface, eq. (53) de�nes

a model S

�

of dimension 2, codimension 2, and

three degrees of freedom for known motion pa-

rameters fh, Rg. Hence, its AIC is

AIC

0

(S

�

) = J

0

[

^

S

�

] + 2(2N + 3)�

2

: (66)

If the base line between the two cameras is very

short, it is di�cult to distinguish objects at a �nite

distance from objects at in�nity in the presence

of image noise. The condition that corresponding

pair of image points fx, x

0

g is a projection of a

point at in�nity is given by eq. (58), which de�nes

a model S

1

of dimension 2, codimension 2, and

zero degrees of freedom. Its AIC is
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Fig. 17. (a) 3-D reconstruction from the images in Fig. 15.

(b) 3-D reconstruction from the images in Fig. 16.

AIC

0

(S

1

) = J

0

[

^

S

R

] + 4N�

2

: (67)

Since S

1

� S

�

� S, the object surface can be

inferred to be planar if

J

0

[

^

S

�

]

J

0

[

^

S]

< 3�

6

N

; (68)

and the object can be inferred to be at in�nity if

J

0

[

^

S

1

]

J

0

[

^

S]

< 3: (69)

Thus, we can build an intelligent stereo sytem

(Kanazawa and Kanatani 1996): if the object

is judged to be a planar surface, the system

outputs an optimally �tted planar surface in-

stead of a point-wise reconstructed shape (see

Kanazawa and Kanatani (1995) for this optimal

�tting scheme). Such ability would be very use-

ful in indoor environments where many objects

have planar surfaces. On the other hand, if the

object is judged to be in�nitely far away, the sys-

tem outputs a warning message, telling us that

the distparity is too small to do reliable 3-D re-

construction. Such ability would be very useful for

\mircostereo system" embedded in a robot manip-

ulator with a very short baseline.

8.2. 3-D Interpretation of Optical Flow

Optical 
ow is a 
ow �eld in an image caused by

an instantaneous motion of an object or a camera

in the scene. Hence, its 3-D analysis is done in al-

most the same way as in the case of �nite motion;

all we need to do is take the limit of in�nitesimal

motion. The structure-from-motion algorithm for

optical 
ow has been studied by many researchers

(Adiv 1985; Heeger and Jepson 1992; Kanatani

1993b; Ohta and Kanatani 1995; Yasumoto and

Medioni 1986). As in the case of �nite motion,

the algorithm fails if all the object is a planar sur-

face, because a planar surface is also a degenerate

critical surface for optical 
ow (Horn 1987; May-

bank 1985; Negahdaripour 1989). The planar sur-

face algorithm has also been studied by many re-

searchers (Kanatani 1987; Longuet-Higgins 1984;

Subbarao and Waxman 1986). However, both the

general and the planar surface algorithms assume

that the translation of the camera is not zero; if

the camera motion is a pure rotation around the

center of the lens, no 3-D information can be ob-

tained. Applying the same procedure as in the

case of �nite motion except taking the limit of in-

�nitesimal motion, we can formulate the rotation

test and the planarity test for optical 
ow (we

omit the details; see Kanatani 1996a).

Although the �nite motion analysis and opti-

cal 
ow analysis are completely parallel, one no-

table di�erence exists: optical 
ow analysis can

also be viewed as traditional statistical estima-

tion. In fact, the detected optical 
ow u can be

expressed in the form

u = F (x; Z(x);v; !) + e: (70)

Here, Z(x) is the depth of the object surface at

image point x; fv, !g are instantaneous transla-

tion velocity and angular velocity of the camera

motion, respectively; e denotes the error in opti-

cal 
ow detection (see Barron et al. (1996) and

Mitiche and Bouthemy (1996) for optical 
ow de-

tection techniques). Estimation of the depth Z(x)

and the motion parameters fv, !g from observed


ow u belongs to a standard problem of tradi-

tional estimation called nonlinear regression and

can also be treated in that framework (Endoh et

al. 1994; Tagawa et al. 1993, 1994; Young and

Chellappa 1992).

8.3. Curve Representation

In order to recognize objects in an image, the �rst

task is to detect boundaries that describe indi-

vidual objects. In such a processing, edges ob-

tained by an edge �lter are often represented as
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a collection of simple primitives such as straight

line segments, circular segments, conic segments,

and high order polynomial curves (Rosin andWest

1995).

However, such primitives have inclusion rela-

tions among themselves, so we cannot simply base

the judgement on the degree of discrepancy be-

tween the model and the data (Kanatani 1997b);

a high order polynomial curve is always selected

whatever distance measure is used. Although the

usual AIC can be used if the problem is in the

form of non-linear regression (Boyer et al. 1994),

the geometric AIC introduced here can be applied

to any type of parametric �tting of curves.

Using the geometric AIC, we can not only select

the best primitive for each segment but also au-

tomatically stop the segmentation process without

an arti�cial threshod ; we recursively subdivide a

curve until the geometric AIC no longer decreases

by a further subdivision.

8.4. Symmetry Detection

Finding if a �gure found in an image has a cer-

tain symmetry in the presence of noise is an inter-

esting problem, and Zabrodsky et al. (1995) in-

troduced as a measure of symmetry the sum of

squared distances over which individual vertices

must be moved to enforce the assumed symmetry.

This idea can be also used in computer aided

graphics (CAD) tools. For example, a user wants

draws a symmetric �gure of some kind, such as a

parallelogram, a rectangle, and a square, by ma-

nipulating a mouse, but manually input �gures

do not generally have the required symmetry. It

would be nice if the computer can detect the in-

tended symmetry in the input �gure and automat-

ically modify it to enforce the required symmetry.

However, symmetry classes have inclusion re-

lations among themselves; e.g., the set of squares

is a subset of the set of rectangles. This means

that we cannot simply base the judgement on the

degree of discrepancy from the required symme-

try; the weakest symmetry always has the small-

est discrepancy whatever distance measure is used

(Kanatani 1997a). The geometric AIC introduced

here can be applied to distinguish classes with in-

clusion relations without introducing any empiri-

cally adjustable thresholds (Triono and Kanatani

1996).

8.5. Continuous Measure for Active Vision

So far, we have focused only on comparing mod-

els based on the geometric AIC. However, we can

also use the geometric AIC to de�ne a continuous

measure that indicates how preferable a particular

model is (Kanatani 1996b). Recall that the geo-

metric AIC is an estimate of the expected residual

E
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0
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)

(71)

as a continuous measure of how preferable the

model S

2

is to the model S

1

. The model S

2

is

preferred if K < 1, but the magnitude of K itself

can be viewed as indicating the con�dence of this

judgement.

In structure from motion and stereo, This mea-

sure is useful not only for detcting degeneracy but

also measuing the information content of the im-

ages. As (i) image noise increases, (ii) the dispar-

ity between the two images decreases, and (iii) the

depth variance of the feature points decreases, this

measure decreases and we observe \virtual genen-

eracy". Hence, it serves as a criterion for active

vision (Aloimonos 1993); a robot actively controls

the camera in such a way that the information con-

tent of the images measured by them increases.

9. Concluding Remarks

9.1. Summary

In this paper, we have presented a statistical

framework for detecting degeneracies of a geomet-

ric model by evaluating its predictive capability

in terms of the expected residual and derived the

geometric AIC . We have applied it to structure-

from-motion analysis and shown that we can judge

whether or not the object can be regarded as a pla-

nar surface and whether or not the camera motion

can be regarded as pure rotation. We have illus-

trated our approach by simulation examples. We

have also suggested potential applications of our
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theory to 3-D reconstruction by stereo vision, 3-

D interpretation of optical 
ow, curve representa-

tion, symmetry detection, and active vision crite-

ria. Our theory is expected to play a crucial role

in model �tting for building a 3-D model of the

environment from image and sensor data.

9.2. Remaining Issues

Throughout this paper, we have assumed Gaus-

sian noise because Gaussian noise is most fun-

damental and practically important. Theoreti-

cally, however, our theory can be extended to

non-Gaussian noise. For a general noise model,

we need to consider the logarithmic likelihood in-

stead of the residual, and the generalized inverse

of the Fisher information matrix plays the role

the covariance matrix of Gaussian noise (Kanatani

1996a). However, such an extension does not seem

to have much practical signi�cance because of the

di�culty of estimating the parameters of a non-

Gaussian noise distribution

A more important issue in real applications is

detecting outliers that have very di�erent charac-

teristics from other data. Research in this direc-

tion is also in progress (Meer et al. 1991; Stewart

1995; Torr and Murray 1993), and we do not go

into the details in this paper, but the problem of

model selection still remains after removing out-

liers.
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