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Introduction



Ellipse fitting

Circular objects are projected as ellipses in images.

By fitting ellipses, we can detect circular objects in the scene.
— It is also used for detecting objects of approximately elliptic shape, e.g., human faces.
Circles are often used as markers for camera calibration.

Ellipse fitting provides a mathematical basis of various problems, including computation of
fundamental matrices and homographies.

From the fitted ellipse, we can compute the 3-D position of the circular object in the scene.



Ellipse-based 3-D analysis
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Ellipse representation

Task: Fit an ellipse in the form of
Ax? + 2Bxy + Cy? + 2fo(Dx + Ey) + f2F =0,

to noisy data points (zq,ya), @ = 1, ..., N.
e fo: scaling constant to make z,/fo and y,/ fo have orders O(1).
e For removing scale indeterminacy, the coefficients need to be normalized:

(1) F=1,

2) A+C=1,

(3) A2+ B>+ C*+D*+E?>+F?=1, (— We adopt this)
(4) A2+ B>+ C*+D*+ E* =1,
(5)
(6)

5) A24+2B2 4+ C? =1,

6) AC — B?=1.



Vector representation

Define

2
Lo

2% 0Ya
2
_ Ya _
S T R
2f0yo¢
f3

MmO QW

Then,
Ax? + 2Bxoya + Cyz + 2fo(Dxa + Eya) + f3F =0 & (£,,0) =0,
A2+ B*+C?*+D*+E*+ F? =1 & 16| = 1.
Task: Find a unit vector @ such that

(5&70)%07 azl,...7N.



Least squares (LS) approach

The simplest and the most naive method is the least squares (LS).

1. Compute the 6 x 6 matrix
N
1 T
M = N azz:l éaéa .

2. Solve the eigenvalue problem
M6 = )0,

and return the unit eigenvector 8 for the smallest eigenvalue .

Motivation: We minimize the algebraic distance:

1 & 1 Y 1 &
J= 5> (a0 = 5> 076.L10=(6, (N > €.£50)0) = (6, M),
a=1 a=1 a=1
=M

e The computation is very easy, and the solution is immediately obtained.
— Widely used since the 1970s.
e But produces a small and flat ellipse very different from the true shape.

— In particular, when the input points cover a small part of the ellipse.

How can we improve the accuracy?

e The reason for the poor accuracy is that the properties of image noise are not considered.
— We need to consider the statistical properties of noise.



Noise assumption

Let z,, and g, be the true values of observed z, and y,:
Loy :ja'i‘Axav Ya :ga'i_Ayow

Then, ~
Ea = ga + Alga + A2€a'

e £, the true value of £,
o A&, noise term linear in Az, and Ay,
o Ay€,: noise term quadratic in Az, and Ay,

72 2T 0 Az, Az?
AT 2AL0To + 2T0 AYo YAV AN TN
—2 - 2
: _ | va _ 2Ya AYa _ Ayg,
Ea - 2f0i'a ) A1£a - 2f0A$a ) A2€a - 0
2fola 2 foAyq 0

2 0 0



Covariance matrix

The noise terms Az, and Ay, are regarded as independent Gaussian random variables of mean 0
and variance o?:

E[Az,] = E[Ay.] =0, E[Axi] = E[Ayi] =02, E[Az,Ay,] = 0.

The covariance matrix of £, is defined by

Then,

2 Zala 0 foa O
i’aga 5?3 + gi jocgoc nga fOfZ'a
TalYo 7] 0 foga
VIE,] = o VolE,), Volg ) =a| . Tede o
[£a] g 0[504} 0[€a] foxa foya 0 fg 0
0 JfoZa  foUa O fs
0 0 0 0 0

OO OO oo

o o2: noise level

o Vul€,]: normalized covariance matriz
e The true values Z,, and g, are replaced by their observations z,, and y,, in actual computation.
— Does not affect the final results.



Ellipse fitting approaches

Algebraic methods

e We solve an algebraic equation for computing 6.
— The solution may or may not minimize any cost function.
e Our task is to find a good equation to solve.
— The resulting solution @ should be as close to its true value @ as possible.
o We need detailed statistical error analysis.
Geometric methods

o We minimize some cost function J.

— The solution is uniquely determined once the cost J is set.
e Our task is to find a good cost to minimize.

— The minimizing @ should be close to its true value .

— We need to consider the geometry of the ellipse and the data points.
e We need a convenient minimization algorithm.

— Minimization of a given cost is not always easy.



Algebraic Fitting



Iterative reweight

.LetOg=0and W, =1, a=1, ..., N.

2. Compute the 6 x 6 matrix

|
M==> Wyt
N 2 Wk
. Solve the eigenvalue problem
MO = )0,

and compute the unit eigenvector 8 for the smallest eigenvalue .
. If @ = 6( up to sign, return O and stop. Else, update W, and 0 to

We — 0y — 0,

(0.V0(€,10)°

and go back to Step 2.




Motivation of iterative reweight

Minimize the weighted sum of squares

N N
Z W (£,,.0)? %Z £ (0.6.£10) = (ngg) = (6, M0).

Oz:l a=1

=M

This is minimized by the unit eigenvector of M for the smallest eigenvalue.

The weight is W,, is optimal if it is inversely proportional to the variance of each term.
— Ideally, W, = 1/(6,V,[€,]0):

E[(€,.0)] = E[(0, A1€,A1€10)] = (0, E[A1€,01€.]0) = 0°(0,V5[£,10),
N————

=a2Vol€,]

The true 0 is unknown, so the weight is iteratively updated.
The iteration starts from the LS solution.



Renormalization (Kanatani 1993)

.LetOg=0and W, =1, a=1, ..., N.

2. Compute the 6 x 6 matrices

1 & 1 &
T _
M=~ ;:1: Wok £, N== > WaVol€,).

. Solve the generalized eigenvalue problem
MO = )\NG,
and compute the unit generalized eigenvector 6 for the smallest generalized eigenvalue .

. If @ ~ 6¢ up to sign, return O and stop. Else, update W, and 6 to

Wa‘* 00%0,

(6,V0[€,10)’

and go back to Step 2.




Motivation of renormalization

e From (£,,0) =0 or 510 = 0, we see that M@ = 0 for M = (1/N) Zgil Waéaéz.
— If M is known, @ is given by its eigenvector for eigenvalue 0, but M is unknown.
e The expectation of M is

N N
BIM] = Bl 3" Wal€ + AE)E, + A6, = M+ Blo > WAL, AE]]
a=1 a=1
1 X _ 1 Y _
=M+ ; W, E[AE,AEL] = M + o? N ; WaVolé,] = M + o°N.

=02Vo[€,]

=N

e M = E[M]—0*N ~ M — 02N, so we solve (M — ¢2N)§ = 0 or M6 = ¢2N8.
— We solve MO = AN for the smallest absolute value A.
e The optimal weight W,, = 1/(0,Vy[£,]0) is unknown, so it is iteratively updated.
e The iterations start from W, = 1, i.e, initially we solve M0 = AN for
M= (1/N)YN ¢.el and N = (1/N) N Vol€,]. — Taubin method.



Taubin method (Taubin 1991)

1. Compute the 6 x 6 matrices

1 & 1 &
M= &€ N=3> Vil
a=1 a=1

2. Solve the generalized eigenvalue problem
M6 = ANGO,

and compute the unit generalized eigenvector 6 for the smallest generalized eigenvalue .

e This method was derived by Taubin (1991) heuristically without considering statistical prop-
erties of noise.



Hyper-renormalization (Kanatani et al. 2012)

.LetOg=0and W, =1, a=1, ..., N.

2. Compute the 6 x 6 matrices

1 N
§
M - N Z Wa£a£a7
1 & 1 &
N = =3 Wa(Volga) +25ae™) - 5 o ((6as M5 ) Volo] + 28 [Vol€a] M7 €,£01 )

e S[-]: symmetrization operator (S[A] = (A+ A")/2).

e e=(1,0,1,0,0,0)"

e M : pseudoinverse of rank 5:

6.6] N 050;

251 s

M = 11010 +---+ u 060, — M =
~—~
~0

. Solve the generalized eigenvalue problem

M6 = \NO,

and compute the unit generalized eigenvector 6 for the smallest eigenvalue .
. If 8 = @, return @ and stop. Else, update Else, update W, and 0 to

Wa<— 00<—9,

(6,V0[£,16)

and go back to Step 2.

This method was derived so that the resulting solution has the highest accuracy.
The iterations start from W, = 1. — HyperLS.



HyperLS (Rangarajan and Kanatani 2009)

1. Compute the 6 x 6 matrices

N

Z o
1 _ .

NZ(VO ] +2SlgqeT]) - e (60 M5 €)VOlEa] + 28 1V0lEaI M5 €.60)).

2. Solve the generalized eigenvalue problem

L'MZ 2\

M6 = \N¥,

and compute the unit generalized eigenvector @ for the smallest generalized eigenvalue .

e This method was derived so that the highest accuracy is achieved among all non-iterative
schemes.



Summary of algebraic methods

All algebraic methods solve
M6 = )\N6,

where M and IN involve observed data. They may or may not involve 6.

N
%ZEQEI, (LS, Taubin, HyperLS)
M =
Z @, V . (iterative reweight, renormalization, hyper-renormalization)
ol€

I, (LS, iterative reweight)

N
NZ (Taubin)
) '
NZ 0. V (renormalization)

N = 1 N o N
NZ( o +25l,e7]) - Z( €or M5 EVlE] + 2SIVol€a] M5 €,€0]),  (HypeLS)
1 . - 1 & 1
— Ty - —§ - = M=-€ £71).
N(; 0 VO (Vo[ga] + 28[6046 ]) N2 —~ (0’ VO[SOJO)Q ((Eou M5 ga)VO[ga} + 28[‘/0[604] 5 éaga])
(hyper-renormalization)

e If M and IN do not involve @, we solve the generalized eigenvalue problem M6 = AN6.
— No iterations are necessary

e If M and IN involve 8, we iteratively solve the generalized eigenvalue problem.
— The weight is iteratively updated.

e N is generally not positive definite. — We solve NO = (1/A)M 0 instead.
— M is always positive definite for noisy data.



Characterization of algebraic methods

e Problem:
M(0)0 = \N(0)6.

e The data are noisy. — The solution has a distribution.

AL A

) controls the covariance of the solution. IN(8) determines the bias of the solution.

e Issue:

— What M (0) minimizes the covariance the most?
— What IN(0) minimizes the bias the most?

e Solution:
1 XN: £at The covariance reaches the theoretical accuracy bound up to O(a*)
Na: ) 0[ a )
1 o 1 &
1 —p T
0= ¥ 2 GTET gy (Ve + 25060eT]) - 2 GO e (6o M €W IE] + 2500 €M €60,

The bias is 0 up to O(c*)

e Hyper-renormalization achieves both.



Geometric Fitting



Geometric approach

(XU ’ yC() &>

Minimize the geometric distance S:

1 N _ 2 — \2 1 al 2
S:NZ((xa_xa) +(ya_ya)):NZda7
a=1 a=1

i.e., the average of the square distances d2 from data points (z, ¥« ) to the nearest points (Za, Ja)
on the ellipse.

The computation is very difficult:
e S is minimized subject to the constraint (£,,80) = 0.
— S does not contain 6, for which S is minimized.
— 6 is contained in the constraint (§,,60) = 0.
e The minimization is done in the joint space of @ and (Z1,71), ..., (TN, YN)-
— 0: structural parameter
— (Zw, Ya): nuisance parameters



Sampson error

If (x4, ya) is close to the ellipse, the square distance d2 is approximated by

(£.,0)?
(6,10[£,16)

Hence, the geometric distance S is approximated by the Sampson error:

€m9
Z CAGTAGE

di = (xa - ffoz)z + (y ya)

e Minimization is done in the space of 6.
— Unconstrained minimization without nuisance parameters.



FNS: Fundamental Numerical Scheme (Chojnacki et al. 2000)

.Let @ =03 =0and W, = 1.

2. Compute the 6 x 6 matrices

1Y 1o
M= Wabobar L= Wil 0)" ot
a=1 a=1

. Let
X=M-1L.

. Solve the eigenvalue problem
X0 =)0,

and compute the unit eigenvector 0 for the smallest eigenvalue .
. If @ =~ 6¢ up to sign, return O and stop. Else, update W, and 0 to

Wy — 0y — 0,

(6,V0[£,16)

and go back to Step 2.




Motivation of FNS

We can see that
VeJ =2(M — L)8 =2X86.

We iteratively solve the eigenvalue problem X8 = \6.
When the iterations have converged, it can be proved that A = 0.

— The solution satisfies VgJ = 0.
Initially L = O. — The iterations start from the LS solution.



Geometric distance minimization (Kanatani and Sugaya 2010)

1. Let Jj = 00, Zq = Ta, Ya = Ya, a0d To = Yo = 0.

2. Compute the normalized covariance matrix Vy[€,, ] using &, and g, and let

22 + 28470
2(Zafa + Jala + Lafa)
e _ | 93+ 2odo
* QfO(xoz + :1704)
2f0(ﬁa + ga)
Jo

3. Compute the 6 that minimizes the modified Sampson error

4. Update Ty, Yo, To and g, to

(ia)<_2(€z”6’)2(‘91 > 04) ;a Lo — Lo — T Jo < Ya — T
yOc (07 ‘/O[Ea]e) 02 93 95 fz ? « o s -~ - o
5. Compute
1N
* -2 )
=5 ;(% +9a)-

If J* = Jy, return 0 and stop. Else, let Jy « J* and go back to Step 2.




Motivation
e We first minimize the Sampson error J, say by FNS, and modify the data £, to £, using the
computed solution 6.

e Regarding them as data, we define the modified Sampson error J* and minimize it, say by
FNS.

e If this is repeated, the modified Sampson error J* eventually coincides with the geometric
distance S.

— We we obtain the solution that minimize S.

However,

e The Sampson error minimization solution and the geometric distance minimization solution
usually coincide up to several significant digits.

e Minimizing the Sampson error is practically the same as minimizing the geometric distance.



Bias removal

(Xa s Ya) ~

e The geometric fitting solution 6 is known to be biased:
E[0] # 6.

— An ellipse has a convex shape.
— Points are more likely to move outside the ellipse by random noise.
o If we write
0=0+A0+200+---, (AB: kth order in noise)
we have E[A10] = 0 but E[A20] # 0.
e Hyperaccurate correction: If we can evaluate E[A30], we obtain a better solution

0 =6— E[A0)].




Hyperaccurate correction (Kanatani 2006)

1. Compute 6 by FNS.
2. Estimate o2 by
.o (0,M0)
7 T 15N
using the value of M after the FNS iterations have converged.
3. Compute the correction term

2 N )

N
A= M 3 Wale0)6a + 13 M5 3 Wi(Ea, M3 Volé 0K,

a=1 =

Q»

where using the value of W, after the FNS iterations have converged, where M is the
pseudoinverse of M of rank 5.

4. Correct 0 to
0 — N6 — A.0],

where N|-] is a normalization operation.

e Since the bias is O(c?), the solution has the same accuracy as hyper-renormalization.



Experimental Comparisons



Some examples

Gaussian noise of standard deviation o is added (the dashed lines: the true shape)

30 data points Fitting examples for o = 0.5

D @ S
Y AN

° 5 4 467 8
1. LS 5. HyperLS
2. iterative reweight 6. hyper-renormalization
3. Taubin 7. FNS
4. renormalization 8. FNS + hyperaccurate correction
] method |2 4 6]7/8]

number of | left |4 4 4] 9
iterations | right |4 4 4| 8

e Methods 1, 3, and 5 are algebraic, hence non-iterative.
e Methods 7 and 8 have the same complexity.

— Hyperaccurate correction is an analytical procedure.
e F'NS requires about twice as many iterations.



Statistical comparison

0: true value (unit vector)  @: computed value (unit vector)

e The deviation is measured by the orthogonal error component:

ALt = Pyé, P;=1-60 .

e The bias B and the RMS error D are measured over M (= 10000) trials:

1 M
D=,|=> [lAate™]2.
’ M pt || ||

o KCR lower bound:




Bias and RMS error

Simulation over independent 10000 trials for different o.
(the dotted lines: the KCR lower bound)

0.1 0.3
0.08
0.2 - 8
0.06 2 5
1 5 e
0.04 o1 3 =
002t /a3l > > A .1 | L e
0 . . . 0 02 04 06 , 08
bias RMS error
1. LS 5. HyperLS
2. iterative reweight 6. hyper-renormalization
3. Taubin 7. FNS
4. renormalization 8. FNS + hyperaccurate correction
e LS and iterative reweight has large bias and hence large RMS errors.
e LS has some bias, which is reduced by hyperaccurate correction to a large extent.
e The bias of HyperLS and hyper-renormalization is very small.
e The iterations of iterative reweight and FNS do not converge for large o.



Bias and RMS error (enlargement)

0.1
0.08 2 6
1 4 7
0.06 3 5
0.04
0.02
0 0.1 0.2 0.3
RMS error
1. LS 5. HyperLS
2. iterative reweight 6. hyper-renormalization
3. Taubin 7. FNS
4. renormalization 8. FNS + hyperaccurate correction

e Hyper-renormalization outperforms FNS for small o.

e The highest accuracy is given by hyperaccurate correction of FNS.
— However, the FNS iterations may not converge for large o.

e Hyper-renormalization is robust to noise.

— The initial solution (HyperLS) is already very accurate.
— It is the best method in practice.

0.4



Real image example:

1. LS 5. HyperLLS

2. iterative reweight 6. hyper-renormalization

3. Taubin 7. FNS

4. renormalization 8. FNS + hyperaccurate correction

e Methods 1, 3, and 5 are algebraic, hence non-iterative.
e Methods 7 and 8 have the same complexity.

— Hyperaccurate correction is an analytical procedure.
e ML requires about twice as many iterations.

method

778

# of iter.

=N

Q| =~
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Robust Fitting



When does ellipse fitting fail?

Superfluous data

e Some segments may belong to other objects.

— Inliers: segments that belong to the object of interest
— Qutliers: segments that belong to different objects.

Difficult to find outliers if they are smoothly connected to inliers

Scarcity of information

o If the segment is too short and/or noisy, a hyperbola can be fit.

— How can we modify a hyperbola to an ellipse?
— How can we produce only an ellipse? — ellipse-specific method

Information is too scares to produce a good fit by any method.



RANSAC

Find an ellipse such that the number of points close to it is as large as possible.

1. Randomly select five points from the input sequence, and let &, ..., €5 be their vectors
2. Compute the unit eigenvector 8 of the matrix

5
Ms=> ¢,

a=1

for the smallest eigenvalue, and store it as a candidate.
3. Let n be the number of points in the input sequence that satisfy
(&0)°

((55 -z2)°+(y—9)° “)W <,

where d is a threshold for admissible deviation from ellipse, e.g., d = 2 (pixels). Store that
n.

4. Select a new set of five points from the input sequence, and do the same. Repeat this many
times, and return from among the stored candidate ellipses the one for which n is the largest.

>

O



Ellipse-specific method of Fitzgibbon et al. (1999)

The equation Az? + 2Bxy + Cy? + 2fo(Dx + Ey) + f@F = 0 represents an ellipse if and only if

AC - B*>0.
1. Compute the 6 x 6 matrices
0 01 0 00
N 0 -2 0 0 0 O
1 T 1 0 00 0O
M’Nz_:lgoff“ N=10 0000 o0
o 0 00000
0 0 0 0 0 O
2. Solve the generalized eigenvalue problem
M6 = \NG,

and compute the unit generalized eigenvector @ for the smallest generalized eigenvalue .

Motivation
e We minimize the algebraic distance (1/N) Egzl(fa, 0)? subject to

(AO ~B? :) (60,NO) = 1.

e NN is not positive definite.
— We solve NO = (1/X) M6 instead for the largest eigenvalue.



Random sampling of Masuzaki et al. (2013)

1. Fit an ellipse by the standard method. Stop, if the solution 0 satisfies
6105 — 03 > 0.

2. Else, randomly select five points among the sequence. Let &, &,, ..., &5 be their vector
representations.

3. Compute the unit eigenvector 0 of
5
-
M5 = Z £(x£a )
a=1

for the smallest eigenvalue.

4. If the resulting 6 does not define an ellipse, discard it. Newly select another set of five points
randomly and do the same.

5. If the resulting @ defines an ellipse, keep it as a candidate and compute its Sampson error.

6. Repeat this many times, and return from among the candidates the one with the smallest
Sampson error J.

e We can obtain an ellipse less biased than the solution of the method of Fitzgibbon et al.



Penalty method of Szpak et al. (2015)

Minimize

N
1 Z (£0,0) Alej*
N —= (0,Vol€ ) (6,N6)2’
using the Levenberg—Marquardt method.

e The first term: the Sampson error.
e (6, NO) = 0 at ellipse-hyperbola boundaries.
e )\: regularization constant



Comparison simulations

. Fitzgibbon et al.

— small flat ellipse

. hyper-renormalization

— hyperbola

. penalty method

— large ellipse close to 2

. random sampling

— between 1 and 3.



Real image examples

e Fitzgibbon et al. [1] produces a mall flat ellipse.

o If hyper-renormalization [2] returns an ellipse, random sampling [4] returns the same ellipse,
and the penalty method [3] fits an ellipse close to it.

e If hyper-renormalization [2] returns a hyperbola, the penalty method [3] fits a large ellipse
close to it.

e Random sampling [4] fits somewhat a moderate ellipse.
Conclusion

e If hyper-renormalization returns a hyperbola, any ellipse specific method does not produce
a reasonable ellipse.
— Ellipse specific methods do not make practical sense.
— Use random sampling if you need an ellipse by all means.



Fundamental Matrix Computation



Fundamental matrix

g Yo ) *

For two images of the same scene, the following epipolar equation holds:

z/ fo z'/ fo
(y/fo | . F|¥/fo])=0.
1 1

e fo: scale factor (= the size of the image)
o F: fundamental matriz
e To remove scale indeterminacy, F is normalized to unit norm: [|[F|| (= /32, -, 3 F7) =1

From the computed F', we can reconstruct the 3-D structure of the scene.



Vector representation

xrxr F11
ry' Fip
fox Fis
z/ fo z'/ fo yx' Fy
({y/fo|.F|y/fo])=0 < (£0)=0, €E=| ) |, O0=|1Ixn
1 1 Joy Fys
fox! F3
foy' F3o
g F33
[Fl[=1 < [6]=1
Task: From noisy observations &, ..., £, estimate a unit vector € such that

(€.,0) =0, a=1,..,N.




Noise assumption

(Zas o)y (TL,, 70,0 true values of (zq,ya), (@, YL).
To =To +A%Za, Yo =Ta +AYa, o, =72, +A2, . =17, +Ay,.
Then, ~
€, =&, +A1E, + A2,
o £, true value of £,

e A€, noise term linear in Az, Ay,, Axl, and Ay, .
o Ay€,: noise term quadratic in Az, Ay,, Axl, and Ay, .

= =/ A A /
Tala 7 Azg + o AT, Talla
Zay 7 _ ; Az, Ayl
s g_j" Uo AT + T Ay, 0
gyl foAx, ,
B Yoy 2 Ay + JolA! Ay, Az,
E = gagtlx 9’ Alga = * J?()Ay ¢ @ k) AQS()/ = AyOLAy/a
foga foda! ’
JoT 0 0 0
f3 0



Covariance matrix

The noise terms Az, Ayqs, Az, and Ay, are regarded as independent Gaussian random variables
of mean 0 and variance o?:

E[Az,] = E[Ays] = E[A2,] = E[Ay,] =0, E[A2?] = E[Ay?] = E[Az,”] = E[Ay,”] = o2,
E[Az,Ay,] = E[Az], Ayl = E[Az,Ay] = E[Az], Ay,] = 0.

The covariance matrix of €, is defined by

V[E,] = E[AE,AEL].

Then,
Vg, = o*Vole],
24T TN, foTh,  ZTa¥a 0 0  fofa 0 0
e TLAUZ foll 0 TaTa 0 0 foTa O
foZl, foil, 3 0 0 0 0 0 0
jaga 0 0 gi + fg j;gzlx ijfx foga 0 0
Vol€a] = 0 Tl 0 Ty, Ya+yl fouh 0 fola O
0 0 0 foI,  foba G 0 0 0
fo.’fa 0 0 foil?a 0 0 3 0 0
0 foZa 0 0 foJa 0 0 f&@ 0
0 0 0 0 0 0 0 0 0

o o2: noise level

o Vul€,]: normalized covariance matrix



Fundamental matrix computation

algebraic methods

e non-iterative methods
— least squares (LS), Taubin method, hyperLS

e iterative methods
— iterative reweight, renormalization, hyper-renormalization
geometric methods

e Sampson error minimization (FNS)
e geometric error minimization
e hyperaccurate correction

However, ...



Rank constraint

The fundamental matrix F must have rank 0O:

det FF =0

Existing three approaches:
a posteriori correction:
e SVD correction
e optimal correction
internal access:
Parameterize F' such that det FF = 0 is identically satisfied, and do optimization in the
internal parameter space of a smaller dimension.
external access:

Do iteration in the external (redundant) space of € in such a way that 6 approaches the true
value and yet det F' = 0 holds at the time of convergence.




SDV correction

1. Compute F without considering the rank constraint.
2. Compute the SDV of F':

g1 0 0
F=U|0 oo, 0]|VT
0 0 g3

3. Correct F to
o1/\/0% + 03 0 0
F—U 0 o2/ \JoZ+o2 0|V
0 0 0

e The norm || F|| is scaled to 1



Optimal correction (Kanatani and Sugaya 2007)

1. Compute 8 without considering the rank constraint.
2. Compute the 9 x 9 matrix

N
o 1 (Poa)(Poéa) " T
M= — 2 X Po=1-60".
N2 (6.%E0) ’

Pg: projection matrix onto the space orthogonal to 6.

3. Compute the eigenvalues \y > -+ > A\g (= 0) of M and the corresponding unit eigenvectors
U1, Ug, ..., Ug (= 0). Then, define

1 juguy UugUg
Vo6l N ( A1 A )
4. Modify 6 to
0509 — 0305
0667 — 090,
0408 — 6705
t t 003 — 0209
0 —no— OV g g, — 6,60
3(6",Vp[0]0") 0-05 — 0,05
026 — 0503
0304 — 0601
0105 — 040,

N[-]: normalization to unit norm
5. If (8,8) ~ 0, return @ and stop. Else, update V;[0] to PgVy[8] P and go back to Step 3.

o V4[0] = My (truncated pseudoinverse of rank 8) = KCR lower bound.
e 15[0]0 = 0 is always ensured.



Internal access (Sugaya and Kanatani 2007)

SVD of F:
g1 0 0
F=U| 0 o2 O VT, 01 =cCoS¢p, 09 =sing.
0 0 0

We regard U, V', 01, and o5 as independent variables minimize the Sampson error J by Levenberg—
Marquardt method.

1. Compute an F' such that det F' = 0, and express its SDV in the form

cos ¢ 0 0
F=U/| 0 sin¢g 0|VT'.
0 0 0
2. Compute the Sampson error J, and let ¢ = 0.0001.
3. Compute the 9 x 3 matrices
0 F31 —Fy 0 F3 —Fp
0  Fz —Fy —F13 0
0  F3z3 —Fy Fio —Fpy 0
—F3 0 Iy 0 Iy —Ip
Fy=| —F3 0 Fi2|, Fy = | —Fb53 0 Iy
—F33 0 Fi3 Iy —Iy 0
Fyy —Fpy 0 0 F33 —Fy
Fyy —Fig 0 —F33 0 Fx
Fys —Fi3 0 F3 —F3 0

4. Compute the 9-D vector

o1U12Vi2 — o2U11 V11
o1U12Vag — 02U11 Vo1
01U12V33 — 02U11 V31
01U22V13 — 02U21 V11
9¢ = | 01U22Vaz — 02U21 Va1
01U22V32 — 02U21 V31
01U32V12 — 02U31 V11
01U32Vag — 02U31 Vo1
01U32V33 — 02U31 V31

5. Compute the 9 x 9 matrices
N T N
1 £.€ 1 (€ ,9
- = __SaSa il T P 1t
Naz::l (G,M][Ea]e)’ Naz::l 0 V() O[S(x]a

and let X = M — L.
6. Compute the first derivatives of J

oJ

V.J =2F} X0, Ve =2F| X0, 5= 2(04,X86).
and the second derivatives
Vew] = 2F X Fy, VerwJ =2FyXFy, Vew = 2F X Fy,
6J2 8va T 8VW/J T
— =2(0,,X0 =2F;X6 =2F,X0,.
a¢2 ( ¢ ¢)7 a¢ U o) ad) \4 ¢
7. Compute the 9 x 9 Hessian
Vowd VewwJ OV J/0¢
H = (Vew J) T Vorwd OV J/0d

(OVwJ/09)" (OVw J/09)T 0J?[0¢?

8. Solve the linear equation

Aw Vd
(H+cDH]) | Aw' | == | Vi J
A¢ 0J/0¢

DJ[-]: diagonal matrix of diagonalelements.



10.

11.

12.

Update U, V, and ¢ to

U’ = R(Aw)U, V' = R(AW)V, ¢ =+ Ag.
R(w): rotation around axis w by angle ||w||.
Update F to
cos ¢’ 0 0
F =U' 0 sing’ 0]V,
0 0 0
Compute the Sampson error J' of F'. If J' < J or J' ~ J are not satisfied, let ¢ < 10c and

go back to Step 8.

If F' ~ F, return F’ and stop. Else, let F « F' U « U’V «— V' ¢ « ¢, and c « ¢/10,

and go back to Step 3.




External access (Kanatani and Sugaya 2010)

1. Initialize 6.
2. Compute the 9 x 9 matrices M and L.

1L g8l 1 (£,,0)
M*N;W’ L= ey ol

3. Compute the 9-D vector 8 and the 9 x 9 matrix Py

0509 — 00

0507 — 0o,

0,05 — 0:0-

003 — 0209 totT
OT = | 6961 — 0367 |, PO"' =71 — %

0-05 — 60,04 e

0206 — 05605

0304 — 061

0105 — 040,

4. Compute the 9 x 9 matices X = M —L and Y = Pg: X Pyi. Compute the unit eigenvectors
v1 and vy of Y for the smallest two eigenvalues, and let 0 = (0,v1)v1 + (0,v2)vs.

5. Compute ' = N[Pg:8).

6. If @' ~ 0 up to sign, return ' as @ and stop. Else, let 8 «— N[0+ 0] and go back to Step 2.




Geometric distance minimization (Kanatani and Sugaya 2010)

1. Let JOZOO, i‘a:xa,ga :yo”-’i‘

A A S A ~ o~ o~y
o =Toy Un =Y, and Ty = Yo = T,

2. Compute the normalized covariance matrix Vp[€,,] using Zq, Ja, 4., and 7/, and let

Tall, + T T0 + Tall,
fO(‘%a +fz'a)

Yol + 2500 + Jady
Yabh + Uaba + Jala
fo(z4, +23)

fo(9n +90)

f3

3. Compute the 6 that minimizes the modified Sampson error

4. Update Z, §a, 2., and g, to

(i)~ o=l (0 3

To — Ta — Ta,

5. Compute

N
1 o, s
=5 2 i+ B0,
a=1

Ja — Ya

(£5,0)
(6,V5[£,16)

L

a:l

~ ~! ! ~/
— Ya, Ty Ty, — Ty

= =0

) o (f;)b (£5.6) (91 b,
£ ) \ba) (0.Volg]o) \O2 05

~/

If J* = Jy, return 0 and stop. Else, let Jy « J* and go back to Step 2.

07
s

)

e The Sampson error minimization solution and the geometric distance minimization solution
usually coincide up to several significant digits.

e Minimizing the Sampson error is practically the same as minimizing the geometric distance.



Examples

Image size: 600 x 600, noise level o = 1.0, computation error: EF= \/ijzl(Fl — Fj;)?
method E
LS + SVD 0.370992
FNS + SVD 0.142874 B 0.07380 —0.34355 —0.28357
optimal correction 0.026385 F = 0.2188  0.41655  0.33508
internal 0.062475 0.66823 —0.08789 —0.09100
external 0.026202
geometric distance minimization | 0.026149
0.21115 —0.52234 —0.38029 0.09265 —0.36657
LS+SVD: 0.32188  0.32504  0.18557 internal: 0.24157  0.40747
0.53935  0.05232 —0.02506 0.65177 —0.05101
0.09599 —0.41151 —0.34263 0.06067 —0.33702
FNS+SVD: 0.25978  0.36820  0.28133 external: 0.21213  0.42767
0.64538 —0.02586 —0.06821 0.66834 —0.10005
0.07506 —0.34616 —0.27188 0.06068 —0.33706
FNS + opt. correc.: 0.21826 0.43547  0.33471 geom. dist.: 0.21215 0.42764
0.65834 —0.09763 —0.09158 0.66833 —0.10002

e LS + SVD (= Hartley’s 8-point method) has poor accuracy.

e Optimal correction, internal access, and external access all have almost optimal
(= KCR lower bound).

o Geometric distance minimization by iterations results in little improvement.

—0.30765
0.33578
—0.07704

—0.27208
0.33980
—0.09306

—0.27210
0.33979
—0.09306




Homography Computation



Homography

S
(7
—| O %

Two images of a planar surface are related by a homography:

(Xas Ya)

x':foHllx+H12y+H13fO, y,:f0H21$+H22y+H23f0.
hs1z + H3oy + Hss fo hs1x + Hsoy + Hss fo
e fo: scale factor (= the size of the image)
This can be written as
x'/ fo Hyy Hyp His z/fo

yv/fo | | Hn He Has v/ fo
1 H3, Hizp Hss 1

=H
e ~: equality up to a nonzero constant
o H: homography matriz
e To remove scale indeterminacy, H is normalized to unit norm: [|[H| (= />, =13 Hfj) =1

From the computed H, we can reconstruct the position and orientation of the plane and compute
the relative camera positions.



Vector representation

z'/ fo Hy Hip His z/ fo z'/ fo Hyy Hyp Hiz z/ fo
y/fo | 2| Hn Ha Hos y/ fo « y'/fo | x| Ha1 Hse Hos y/fo | =
1 H3; Hzp Hss 1 1 H3z, Hizy Hss 1

The three components of this vector equation are (E(l)ﬁ) =0, (5(2),0) =0, and (E(S),O) =0,
where

Hyq 0 fox —xy’
His 0 foy —yy
Hyz 0 3 —foy'
H21 —f(]l' 0 .’ELC/
O0=|Hyn |, €V=|~foy|, ¢2=| o |, ¥=| w
Hos -8 0 fox!
Hsq xy —xx’ 0
Hsy vy —ya'’ 0
Hiss foy' — fox' 0

e [HI|=1 — 6] =1.
Task: From noisy observations 58“), estimate a unit vector 8 such that

€™ 9)~0, k=1,2,3, a=1,.,N.

ey

e The three equations are not linearly independent.

— If two of them are satisfied, the remaining one is automatically satisfied.

o o



Covariance matrices

The noise terms Az, Ayqs, Az, and Ay, are regarded as independent Gaussian random variables
of mean 0 and variance o?:

/2
[e%

] =0

E[Ax,] = E[Aya] = E[A2]) = E[Ay,] =0, B[Az?] = E[Ay?] = E[Ax),’”] = E[Ay
E[Az,Ay,] = E[Az], Ayl = E[Az,Ay] = E[Az], Ay,] = 0.
The covariance matrices of 5&’“) is defined by

VED[g ] = E[A P AEDT] (= a2V (e, )).

Then,

V(kl)[£ = TEpOT k) _ (8£(k) 85(’6) 85(’6) 8£(k) >
0 a a a a Oz ay Oz’ ay,

[0}
. T(ak): 9 x 4 Jacobi matrix
o ()]q: value for © = 24, Y = Yo, 2’ = 2L, and ¢ = y/,.

o Vo(kl) [€,]: the normalized covariance matrices



Iterative reweight

. Let 85 = 0 and W(gkl) =0, a=1,... N kl=1, 2 3.

2. Compute the 9 x 9 matrices

N 3
1
- - (k) ¢(k) ()T
M*N;kglwa Ea 6(1 N

. Solve the eigenvalue problem
M6 = )0,

and compute the unit eigenvector @ for the smallest eigenvalue .
. If @ ~ 6( up to sign, return O and stop. Else, update

Wi — (0.5"16.18)) . 60—,

and go back to Step 2.

0 Kronecker delta (1 for k = [ and 0 otherwise)
((0, v [0a]0)); the matrix whose (k,1) element is (8, V.""[0.]8).

((0, Vo(kl) [0a]0));: its pseudoinverse of truncated rank 2.

The initial solution corresponds to least squares.



Renormalization (Kanatani et al. 2000)

1. Let 8 = 0 and W = 6, a =1, .., N, k1 =1, 2, 3.
2. Compute the 9 x 9 matrices

1 h L BT 1 (kl)

a=1k,l=1

3. Solve the generalized eigenvalue problem
M6 = ANGO,

and compute the unit generalized eigenvector 6 for the generalized eigenvalue A of the smallest
absolute value.

4. If @ =~ 6y up to sign, return 8 and stop. Else, update

Wi — (0.v"Ie0) . 80—,

and go back to Step 2.

e The initial solution corresponds to the Taubin method.



Hyper-renormalization (Kanatani et al. 2014)

1. Let 8 = 0 and W = 6, a =1, .., N, k1 =1, 2, 3.
2. Compute the 9 x 9

M = WeR e,

2|~
WE
Mw

«

1k,
> kl
WDV, ]

1

2

I
=
M=

Q
Il
-

>

1

] =

=1
3
—m Y > W (€, Mgl Vi (6, + 281V €, M €D T)).

a=1k,l,mmn=1

3. Solve the generalized eigenvalue problem
M6 = \NG,

and compute the unit generalized eigenvector 6 for the generalized eigenvalue A of the smallest
absolute value.
4. If @ ~ 6¢ up to sign, return O and stop. Else, update
Wi — (0.v"IE0) . 80—,

and go back to Step 2.

e The initial solution corresponds to HyperLS



FNS (Kanatani and Niitsuma 2011)

1.Let 0 =0y =0and W =6, a=1, ..., N, kl=12,3.
2. Compute the 9 x 9 matrices

1N3 kl) ¢(K) (DT 1N3kl(kl)
=2 > WielelT, =330 Y o0V,

a=1k,l=1 a=1k,l=1

where
=D Wi
1=1
3. Compute the 9 x 9 matrix
X=M-1L.
4. Solve the eigenvalue problem

X6 =),

and compute the unit eigenvector @ for the smallest eigenvalue .
5. If 8 = 6y up to sign, return € and stop. Else, update

Wi — (0.v"le0) . 80—,

and go back to Step 2.

e This minimizes the Sampson error:

2

N 3
ZZ DR 0)Ed.0. Wi = (0. e)0)) .

e The initial solution corresponds to least squares.
e This reduces to the FNS of Chojnacki et al. (2000) for a single constraint.



Geometric distance minimization

We strictly minimize the geometric distance
R
S=x Z((xa — )’ + (Yo — Fa)? + (20, — T0)* + (yh — 9;)2)-
a=1

We first minimize the Sampson error J by FNS and modify the data 5&’“) to 5&’“)* using the
computed solution 6.
Regarding them as data, we define the modified Sampson error J* and minimize it by FNS.
If this is repeated, the modified Sampson error J* eventually coincides with the geometric
distance S.

— We we obtain the solution that minimize S.
The iterations do not alter the value of @ over several significant digits.

— Sampson error minimization is practically the same as geometric distance minimization.



Hyperaccurate correction

The geometric distance minimization solution is theoretically biased.

We can theoretically improve the accuracy by evaluating and subtracting the bias.
— hyperaccurate correction
However, the accuracy gain is very small.
— The bias of the solution is very small.
The data E,(f) consist of bilinear expressions in Z4, Yo, 25, and y/,.
— Unlike ellipse fitting, no quadratic terms such as x2
Noise in different images are assumed to be independent.

are involved,

— The bais of fundamental matrix computation is also small.



Examples

Image size: 500 x 500, noise level o = 1.0, computation error: F= \/ZS (Hij — Hi;)?

ij=1
method E
LS 1.15042 x 102
iterative reweight 1.07295 x 102
Taubin 0.73568 x 10~ 057773 0.00000
renormalization 0.71149 x 10 -
_o H ={0.00000 0.47171
HyperLS 0.73513 x 10 0.00000 —0.31587
hyper-renormalization 0.71154 x 1072 ' '
FNS 0.70337 x 1072
geometric distance minimization | 0.70304 x 102
hyperaccurate correction 0.70296 x 1072
0.21115 —-0.52234 —0.38029 0.57690 —0.00023
LS: 0.32188 0.32504 0.18557 hyper-renorm.: 0.00155 0.47284
0.53935  0.05232 —0.02506 —0.00679 —0.33143
0.57694 —0.00020 —0.00018 0.57695 —0.00020
FNS: 0.00158  0.47282  0.00001 | geom dist.: 0.00158  0.47282
—0.00671 —0.33138  0.57769 —0.00571 —0.33135

LS and iterative reweight have poor accuracy.

Taubin and HyperLS improve the accuracy.
Renormalization and hyper-renormalization further improve the accuracy.

FNS ~ geometric distance minimization ~ hyperaccurate correction

FNS is the most suitable in practice.

0.00000
0.00000
0.57773

—0.00018
0.00001
0.57768

—0.00018
0.00001
0.57769
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