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Introduction



Ellipse fitting

• Circular objects are projected as ellipses in images.
• By fitting ellipses, we can detect circular objects in the scene.

– It is also used for detecting objects of approximately elliptic shape, e.g., human faces.
• Circles are often used as markers for camera calibration.
• Ellipse fitting provides a mathematical basis of various problems, including computation of

fundamental matrices and homographies.

From the fitted ellipse, we can compute the 3-D position of the circular object in the scene.



Ellipse-based 3-D analysis



Ellipse representation

Task: Fit an ellipse in the form of

(x   , y   )α α

Ax2 + 2Bxy + Cy2 + 2f0(Dx + Ey) + f2
0 F = 0,

to noisy data points (xα, yα), α = 1, ..., N .

• f0: scaling constant to make xα/f0 and yα/f0 have orders O(1).
• For removing scale indeterminacy, the coefficients need to be normalized:

(1) F = 1,

(2) A + C = 1,

(3) A2 + B2 + C2 + D2 + E2 + F 2 = 1, (→ We adopt this)
(4) A2 + B2 + C2 + D2 + E2 = 1,

(5) A2 + 2B2 + C2 = 1,

(6) AC −B2 = 1.



Vector representation

Define

ξα =


x2

α

2xαyα

y2
α

2f0xα

2f0yα

f2
0

 , θ =


A
B
C
D
E
F

 .

Then,

Ax2
α + 2Bxαyα + Cy2

α + 2f0(Dxα + Eyα) + f2
0 F = 0 ⇔ (ξα, θ) = 0,

A2 + B2 + C2 + D2 + E2 + F 2 = 1 ⇔ ‖θ‖ = 1.

Task: Find a unit vector θ such that

(ξα, θ) ≈ 0, α = 1, ..., N.



Least squares (LS) approach

The simplest and the most naive method is the least squares (LS ).
—————————

1. Compute the 6× 6 matrix

M =
1
N

N∑
α=1

ξαξ>
α .

2. Solve the eigenvalue problem
Mθ = λθ,

and return the unit eigenvector θ for the smallest eigenvalue λ.
—————————
Motivation: We minimize the algebraic distance:

J =
1
N

N∑
α=1

(ξα, θ)2 =
1
N

N∑
α=1

θ>ξαξ>
α θ = (θ,

( 1
N

N∑
α=1

ξαξ>
α︸ ︷︷ ︸

≡M

)
θ) = (θ, Mθ).

• The computation is very easy, and the solution is immediately obtained.
– Widely used since the 1970s.

• But produces a small and flat ellipse very different from the true shape.
– In particular, when the input points cover a small part of the ellipse.

How can we improve the accuracy?

• The reason for the poor accuracy is that the properties of image noise are not considered.
– We need to consider the statistical properties of noise.



Noise assumption

Let x̄α and ȳα be the true values of observed xα and yα:

xα = x̄α + ∆xα, yα = ȳα + ∆yα.

Then,
ξα = ξ̄α + ∆1ξα + ∆2ξα.

• ξ̄α: the true value of ξα

• ∆1ξα: noise term linear in ∆xα and ∆yα

• ∆2ξα: noise term quadratic in ∆xα and ∆yα

ξ̄α =


x̄2

α

2x̄αȳα

ȳ2
α

2f0x̄α

2f0ȳα

f2
0

 , ∆1ξα =


2x̄α∆xα

2∆xαȳα + 2x̄α∆yα

2ȳα∆yα

2f0∆xα

2f0∆yα

0

 , ∆2ξα =


∆x2

α

2∆xα∆yα

∆y2
α

0
0
0

 .



Covariance matrix

The noise terms ∆xα and ∆yα are regarded as independent Gaussian random variables of mean 0
and variance σ2:

E[∆xα] = E[∆yα] = 0, E[∆x2
α] = E[∆y2

α] = σ2, E[∆xα∆yα] = 0.

The covariance matrix of ξα is defined by

V [ξα] = E[∆1ξα∆1ξ
>
α ].

Then,

V [ξα] = σ2V0[ξα], V0[ξα] = 4


x̄2

α x̄αȳα 0 f0x̄α 0 0
x̄αȳα x̄2

α + ȳ2
α x̄αȳα f0ȳα f0x̄α 0

0 x̄αȳα ȳ2
α 0 f0ȳα 0

f0x̄α f0ȳα 0 f2
0 0 0

0 f0x̄α f0ȳα 0 f2
0 0

0 0 0 0 0 0

 .

• σ2: noise level
• V0[ξα]: normalized covariance matrix
• The true values x̄α and ȳα are replaced by their observations xα and yα in actual computation.

– Does not affect the final results.



Ellipse fitting approaches

Algebraic methods

• We solve an algebraic equation for computing θ.
– The solution may or may not minimize any cost function.

• Our task is to find a good equation to solve.
– The resulting solution θ should be as close to its true value θ̄ as possible.

• We need detailed statistical error analysis.

Geometric methods

• We minimize some cost function J .
– The solution is uniquely determined once the cost J is set.

• Our task is to find a good cost to minimize.
– The minimizing θ should be close to its true value θ̄.
– We need to consider the geometry of the ellipse and the data points.

• We need a convenient minimization algorithm.
– Minimization of a given cost is not always easy.



Algebraic Fitting



Iterative reweight

—————————
1. Let θ0 = 0 and Wα = 1, α = 1, ..., N .
2. Compute the 6× 6 matrix

M =
1
N

N∑
α=1

Wαξαξ>
α .

3. Solve the eigenvalue problem
Mθ = λθ,

and compute the unit eigenvector θ for the smallest eigenvalue λ.
4. If θ ≈ θ0 up to sign, return θ and stop. Else, update Wα and θ to

Wα ←
1

(θ, V0[ξα]θ)
, θ0 ← θ,

and go back to Step 2.
—————————



Motivation of iterative reweight

Minimize the weighted sum of squares

1
N

N∑
α=1

Wα(ξα, θ)2 =
1
N

N∑
α=1

Wα(θ, ξαξ>
α θ) = (θ,

( 1
N

N∑
α=1

Wαξαξ>
α︸ ︷︷ ︸

≡M

)
θ) = (θ, Mθ).

• This is minimized by the unit eigenvector of M for the smallest eigenvalue.
• The weight is Wα is optimal if it is inversely proportional to the variance of each term.

– Ideally, Wα = 1/(θ, V0[ξα]θ):

E[(ξα, θ)2] = E[(θ, ∆1ξα∆1ξ
>
α θ)] = (θ, E[∆1ξα∆1ξ

>
α ]︸ ︷︷ ︸

=σ2V0[ξα]

θ) = σ2(θ, V0[ξα]θ),

• The true θ is unknown, so the weight is iteratively updated.
• The iteration starts from the LS solution.



Renormalization (Kanatani 1993)

—————————
1. Let θ0 = 0 and Wα = 1, α = 1, ..., N .
2. Compute the 6× 6 matrices

M =
1
N

N∑
α=1

Wαξαξ>
α , N =

1
N

N∑
α=1

WαV0[ξα].

3. Solve the generalized eigenvalue problem

Mθ = λNθ,

and compute the unit generalized eigenvector θ for the smallest generalized eigenvalue λ.
4. If θ ≈ θ0 up to sign, return θ and stop. Else, update Wα and θ to

Wα ←
1

(θ, V0[ξα]θ)
, θ0 ← θ,

and go back to Step 2.
—————————



Motivation of renormalization

• From (ξ̄α, θ) = 0 or ξ̄
>
α θ = 0, we see that M̄θ = 0 for M̄ = (1/N)

∑N
α=1 Wαξ̄αξ̄

>
α .

– If M̄ is known, θ is given by its eigenvector for eigenvalue 0, but M̄ is unknown.
• The expectation of M is

E[M ] = E[
1
N

N∑
α=1

Wα(ξ̄α + ∆ξα)(ξ̄α + ∆ξα)>] = M̄ + E[
1
N

N∑
α=1

Wα∆ξα∆ξ>
α ]

= M̄ +
1
N

N∑
α=1

Wα E[∆ξα∆ξ>
α ]︸ ︷︷ ︸

=σ2V0[ξα]

= M̄ + σ2 1
N

N∑
α=1

WαV0[ξα]︸ ︷︷ ︸
=N

= M̄ + σ2N .

• M̄ = E[M ]− σ2N ≈ M − σ2N , so we solve (M − σ2N)θ = 0 or Mθ = σ2Nθ.
– We solve Mθ = λNθ for the smallest absolute value λ.

• The optimal weight Wα = 1/(θ, V0[ξα]θ) is unknown, so it is iteratively updated.
• The iterations start from Wα = 1, i.e, initially we solve Mθ = λNθ for

M = (1/N)
∑N

α=1 ξαξ>
α and N = (1/N)

∑N
α=1 V0[ξα]. → Taubin method .



Taubin method (Taubin 1991)

—————————
1. Compute the 6× 6 matrices

M =
1
N

N∑
α=1

ξαξ>
α , N =

1
N

N∑
α=1

V0[ξα].

2. Solve the generalized eigenvalue problem

Mθ = λNθ,

and compute the unit generalized eigenvector θ for the smallest generalized eigenvalue λ.
—————————

• This method was derived by Taubin (1991) heuristically without considering statistical prop-
erties of noise.



Hyper-renormalization (Kanatani et al. 2012)

—————————
1. Let θ0 = 0 and Wα = 1, α = 1, ..., N .
2. Compute the 6× 6 matrices

M =
1
N

N∑
α=1

Wαξαξ>
α ,

N =
1
N

N∑
α=1

Wα

(
V0[ξα] + 2S[ξαe>]

)
− 1

N2

N∑
α=1

W 2
α

(
(ξα, M−

5 ξα)V0[ξα] + 2S[V0[ξα]M−
5 ξαξ>

α ]
)
.

• S[ · ]: symmetrization operator (S[A] = (A + A>)/2).
• e = (1, 0, 1, 0, 0, 0)>

• M−
5 : pseudoinverse of rank 5:

M = µ1θ1θ
>
1 + · · ·+ µ6︸︷︷︸

≈0

θ6θ
>
6 → M−

5 =
θ1θ

>
1

µ1
+ · · ·+ θ5θ

>
5

µ5
.

3. Solve the generalized eigenvalue problem

Mθ = λNθ,

and compute the unit generalized eigenvector θ for the smallest eigenvalue λ.
4. If θ ≈ θ0, return θ and stop. Else, update Else, update Wα and θ to

Wα ←
1

(θ, V0[ξα]θ)
, θ0 ← θ,

and go back to Step 2.
—————————

• This method was derived so that the resulting solution has the highest accuracy .
• The iterations start from Wα = 1. → HyperLS .



HyperLS (Rangarajan and Kanatani 2009)

—————————
1. Compute the 6× 6 matrices

M =
1
N

N∑
α=1

ξαξ>
α ,

N =
1
N

N∑
α=1

(
V0[ξα] + 2S[ξαe>]

)
− 1

N2

N∑
α=1

(
(ξα, M−

5 ξα)V0[ξα] + 2S[V0[ξα]M−
5 ξαξ>

α ]
)
.

2. Solve the generalized eigenvalue problem

Mθ = λNθ,

and compute the unit generalized eigenvector θ for the smallest generalized eigenvalue λ.
—————————

• This method was derived so that the highest accuracy is achieved among all non-iterative
schemes.



Summary of algebraic methods

All algebraic methods solve
Mθ = λNθ,

where M and N involve observed data. They may or may not involve θ.

M =


1
N

N∑
α=1

ξαξ>
α , (LS, Taubin, HyperLS)

1
N

N∑
α=1

ξαξ>
α

(θ, V0[ξα]θ)
. (iterative reweight, renormalization, hyper-renormalization)

N =



I, (LS, iterative reweight)
1
N

N∑
α=1

V0[ξα], (Taubin)

1
N

N∑
α=1

V0[ξα]
(θ, V0[ξα]θ)

, (renormalization)

1
N

N∑
α=1

(
V0[ξα] + 2S[ξαe>]

)
− 1

N2

N∑
α=1

(
(ξα, M−

5 ξα)V0[ξα] + 2S[V0[ξα]M−
5 ξαξ>

α ]
)
, (HypeLS)

1
N

N∑
α=1

1
(θ, V0[ξα]θ)

(
V0[ξα] + 2S[ξαe>]

)
− 1

N2

N∑
α=1

1
(θ, V0[ξα]θ)2

(
(ξα, M−

5 ξα)V0[ξα] + 2S[V0[ξα]M−
5 ξαξ>

α ]
)
.

(hyper-renormalization)

• If M and N do not involve θ, we solve the generalized eigenvalue problem Mθ = λNθ.
– No iterations are necessary

• If M and N involve θ, we iteratively solve the generalized eigenvalue problem.
– The weight is iteratively updated.

• N is generally not positive definite. → We solve Nθ = (1/λ)Mθ instead.
– M is always positive definite for noisy data.



Characterization of algebraic methods

• Problem:
M(θ)θ = λN(θ)θ.

• The data are noisy. → The solution has a distribution.

θ
θ

θ
θ

M(θ) controls the covariance of the solution. N(θ) determines the bias of the solution.

• Issue:
– What M(θ) minimizes the covariance the most?
– What N(θ) minimizes the bias the most?

• Solution:

M(θ) =
1
N

N∑
α=1

ξαξ>
α

(θ, V0[ξα]θ)
, The covariance reaches the theoretical accuracy bound up to O(σ4)

N(θ) =
1
N

N∑
α=1

1
(θ, V0[ξα]θ)

(
V0[ξα] + 2S[ξαe>]

)
− 1

N2

N∑
α=1

1
(θ, V0[ξα]θ)2

(
(ξα, M−

5 ξα)V0[ξα] + 2S[V0[ξα]M−
5 ξαξ>

α ]
)
,

The bias is 0 up to O(σ4)

• Hyper-renormalization achieves both.



Geometric Fitting



Geometric approach

(x   , y  )αα
(x   , y  )αα

Minimize the geometric distance S:

S =
1
N

N∑
α=1

(
(xα − x̄α)2 + (yα − ȳα)2

)
=

1
N

N∑
α=1

d2
α,

i.e., the average of the square distances d2
α from data points (xα, yα) to the nearest points (x̄α, ȳα)

on the ellipse.

The computation is very difficult:
• S is minimized subject to the constraint (ξ̄α, θ) = 0.

– S does not contain θ, for which S is minimized.
– θ is contained in the constraint (ξ̄α, θ) = 0.

• The minimization is done in the joint space of θ and (x̄1, ȳ1), ..., (x̄N , ȳN ).
– θ: structural parameter
– (x̄α, ȳα): nuisance parameters



Sampson error

If (xα, yα) is close to the ellipse, the square distance d2
α is approximated by

d2
α = (xα − x̄α)2 + (yα − ȳα)2 ≈ (ξα, θ)2

(θ, V0[ξα]θ)
,

Hence, the geometric distance S is approximated by the Sampson error :

J =
1
N

N∑
α=1

(ξα, θ)2

(θ, V0[ξα]θ)
.

• Minimization is done in the space of θ.
– Unconstrained minimization without nuisance parameters.



FNS: Fundamental Numerical Scheme (Chojnacki et al. 2000)

—————————

1. Let θ = θ0 = 0 and Wα = 1.
2. Compute the 6× 6 matrices

M =
1
N

N∑
α=1

Wαξαξ>
α , L =

1
N

N∑
α=1

W 2
α(ξα, θ)2V0[ξα].

3. Let
X = M −L.

4. Solve the eigenvalue problem
Xθ = λθ,

and compute the unit eigenvector θ for the smallest eigenvalue λ.
5. If θ ≈ θ0 up to sign, return θ and stop. Else, update Wα and θ to

Wα ←
1

(θ, V0[ξα]θ)
, θ0 ← θ,

and go back to Step 2.

—————————



Motivation of FNS

• We can see that
∇θJ = 2(M −L)θ = 2Xθ.

• We iteratively solve the eigenvalue problem Xθ = λθ.
• When the iterations have converged, it can be proved that λ = 0.

– The solution satisfies ∇θJ = 0.
• Initially L = O. → The iterations start from the LS solution.



Geometric distance minimization (Kanatani and Sugaya 2010)

—————————

1. Let J∗
0 = ∞, x̂α = xα, ŷα = yα, and x̃α = ỹα = 0.

2. Compute the normalized covariance matrix V0[ξ̂α] using x̂α and ŷα, and let

ξ∗
α =


x̂2

α + 2x̂αx̃α

2(x̂αŷα + ŷαx̃α + x̂αỹα)
ŷ2

α + 2ŷαỹα

2f0(x̂α + x̃α)
2f0(ŷα + ỹα)
f0

 .

3. Compute the θ that minimizes the modified Sampson error

J∗ =
1
N

N∑
α=1

(ξ∗
α, θ)2

(θ, V0[ξ̂α]θ)
.

4. Update x̃α, ỹα, x̂α and ŷα to

(
x̃α

ỹα

)
← 2(ξ∗

α, θ)2

(θ, V0[ξ̂α]θ)

(
θ1 θ2 θ4

θ2 θ3 θ5

) x̂α

ŷα

f0

 , x̂α ← xα − x̃α, ŷα ← yα − ỹα.

5. Compute

J∗ =
1
N

N∑
α=1

(x̃2
α + ỹ2

α).

If J∗ ≈ J0, return θ and stop. Else, let J0 ← J∗ and go back to Step 2.

—————————



Motivation

• We first minimize the Sampson error J , say by FNS, and modify the data ξα to ξ∗
α using the

computed solution θ.
• Regarding them as data, we define the modified Sampson error J∗ and minimize it, say by

FNS.
• If this is repeated, the modified Sampson error J∗ eventually coincides with the geometric

distance S.
– We we obtain the solution that minimize S.

However,

• The Sampson error minimization solution and the geometric distance minimization solution
usually coincide up to several significant digits.
• Minimizing the Sampson error is practically the same as minimizing the geometric distance.



Bias removal

(x   , y  )αα
(x   , y  )αα

• The geometric fitting solution θ̂ is known to be biased :

E[θ] 6= θ̄.

– An ellipse has a convex shape.
– Points are more likely to move outside the ellipse by random noise.

• If we write
θ̂ = θ̄ + ∆1θ + ∆2θ + · · · , (∆kθ : kth order in noise)

we have E[∆1θ] = 0 but E[∆2θ] 6= 0.
• Hyperaccurate correction: If we can evaluate E[∆2θ], we obtain a better solution

θ̃ = θ̂ − E[∆2θ].

θ
θθ

J(θ)



Hyperaccurate correction (Kanatani 2006)

—————————

1. Compute θ by FNS.
2. Estimate σ2 by

σ̂2 =
(θ, Mθ)
1− 5/N

,

using the value of M after the FNS iterations have converged.
3. Compute the correction term

∆cθ = − σ̂2

N
M−

5

N∑
α=1

Wα(e, θ)ξα +
σ̂2

N2
M−

5

N∑
α=1

W 2
α(ξα, M−

5 V0[ξα]θ)ξα,

where using the value of Wα after the FNS iterations have converged, where M−
5 is the

pseudoinverse of M of rank 5.
4. Correct θ to

θ ← N [θ −∆cθ],

where N [ · ] is a normalization operation.

—————————

• Since the bias is O(σ4), the solution has the same accuracy as hyper-renormalization.



Experimental Comparisons



Some examples

Gaussian noise of standard deviation σ is added (the dashed lines: the true shape)

30 data points Fitting examples for σ = 0.5

1

2
7

5
8

6 3 4

1

2
3

5
4 6 7 8

1. LS 5. HyperLS
2. iterative reweight 6. hyper-renormalization
3. Taubin 7. FNS
4. renormalization 8. FNS + hyperaccurate correction

method 2 4 6 7/8
number of left 4 4 4 9
iterations right 4 4 4 8

• Methods 1, 3, and 5 are algebraic, hence non-iterative.
• Methods 7 and 8 have the same complexity.

– Hyperaccurate correction is an analytical procedure.
• FNS requires about twice as many iterations.



Statistical comparison

θ̄: true value (unit vector) θ̂: computed value (unit vector) θ

∆ θ

θ

O• The deviation is measured by the orthogonal error component:

∆⊥θ = P θ̄θ̂, P θ̄ ≡ I − θ̄θ̄
>

.

• The bias B and the RMS error D are measured over M (= 10000) trials:

B =
∥∥∥ 1

M

M∑
a=1

∆⊥θ(a)
∥∥∥, D =

√√√√ 1
M

M∑
a=1

‖∆⊥θ(a)‖2.

• KCR lower bound:

D ≥ σ√
N

√√√√tr
( 1

N

N∑
α=1

ξ̄αξ̄
>
α

(θ̄, V0[ξα]θ̄)

)−



Bias and RMS error

Simulation over independent 10000 trials for different σ.
(the dotted lines: the KCR lower bound)
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1. LS 5. HyperLS
2. iterative reweight 6. hyper-renormalization
3. Taubin 7. FNS
4. renormalization 8. FNS + hyperaccurate correction

• LS and iterative reweight has large bias and hence large RMS errors.
• LS has some bias, which is reduced by hyperaccurate correction to a large extent.
• The bias of HyperLS and hyper-renormalization is very small.
• The iterations of iterative reweight and FNS do not converge for large σ.



Bias and RMS error (enlargement)
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1. LS 5. HyperLS
2. iterative reweight 6. hyper-renormalization
3. Taubin 7. FNS
4. renormalization 8. FNS + hyperaccurate correction

• Hyper-renormalization outperforms FNS for small σ.
• The highest accuracy is given by hyperaccurate correction of FNS.

– However, the FNS iterations may not converge for large σ.
• Hyper-renormalization is robust to noise.

– The initial solution (HyperLS) is already very accurate.
– It is the best method in practice.



Real image example:

1
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1. LS 5. HyperLS
2. iterative reweight 6. hyper-renormalization
3. Taubin 7. FNS
4. renormalization 8. FNS + hyperaccurate correction

method 2 4 6 7/8
# of iter. 4 3 3 6

• Methods 1, 3, and 5 are algebraic, hence non-iterative.
• Methods 7 and 8 have the same complexity.

– Hyperaccurate correction is an analytical procedure.
• ML requires about twice as many iterations.



Robust Fitting



When does ellipse fitting fail?

Superfluous data

• Some segments may belong to other objects.
– Inliers: segments that belong to the object of interest
– Outliers: segments that belong to different objects.

Difficult to find outliers if they are smoothly connected to inliers

Scarcity of information

• If the segment is too short and/or noisy, a hyperbola can be fit.
– How can we modify a hyperbola to an ellipse?
– How can we produce only an ellipse? → ellipse-specific method

 1 

 2 

 4 

 3 

Information is too scares to produce a good fit by any method.



RANSAC

Find an ellipse such that the number of points close to it is as large as possible.

—————————
1. Randomly select five points from the input sequence, and let ξ1, ..., ξ5 be their vectors
2. Compute the unit eigenvector θ of the matrix

M5 =
5∑

α=1

ξαξ>
α ,

for the smallest eigenvalue, and store it as a candidate.
3. Let n be the number of points in the input sequence that satisfy(

(x− x̄)2 + (y − ȳ)2 ≈
) (ξ, θ)2

(θ, V0[ξ]θ)
< d2,

where d is a threshold for admissible deviation from ellipse, e.g., d = 2 (pixels). Store that
n.

4. Select a new set of five points from the input sequence, and do the same. Repeat this many
times, and return from among the stored candidate ellipses the one for which n is the largest.

—————————



Ellipse-specific method of Fitzgibbon et al. (1999)

The equation Ax2 + 2Bxy + Cy2 + 2f0(Dx + Ey) + f2
0 F = 0 represents an ellipse if and only if

AC −B2 > 0.

—————————
1. Compute the 6× 6 matrices

M =
1
N

N∑
α=1

ξαξ>
α , N =


0 0 1 0 0 0
0 −2 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 .

2. Solve the generalized eigenvalue problem

Mθ = λNθ,

and compute the unit generalized eigenvector θ for the smallest generalized eigenvalue λ.
—————————
Motivation
• We minimize the algebraic distance (1/N)

∑N
α=1(ξα,θ)2 subject to(

AC −B2 =
)
(θ, Nθ) = 1.

• N is not positive definite.
→ We solve Nθ = (1/λ)Mθ instead for the largest eigenvalue.



Random sampling of Masuzaki et al. (2013)

—————————
1. Fit an ellipse by the standard method. Stop, if the solution θ satisfies

θ1θ3 − θ2
2 > 0.

2. Else, randomly select five points among the sequence. Let ξ1, ξ2, ..., ξ5 be their vector
representations.

3. Compute the unit eigenvector θ of

M5 =
5∑

α=1

ξαξ>
α ,

for the smallest eigenvalue.
4. If the resulting θ does not define an ellipse, discard it. Newly select another set of five points

randomly and do the same.
5. If the resulting θ defines an ellipse, keep it as a candidate and compute its Sampson error.
6. Repeat this many times, and return from among the candidates the one with the smallest

Sampson error J .
—————————

• We can obtain an ellipse less biased than the solution of the method of Fitzgibbon et al.



Penalty method of Szpak et al. (2015)

Minimize

J =
1
N

N∑
α=1

(ξα, θ)2

(θ, V0[ξα]θ)
+

λ‖θ‖4

(θ, Nθ)2
,

using the Levenberg–Marquardt method.

• The first term: the Sampson error.
• (θ, Nθ) = 0 at ellipse-hyperbola boundaries.
• λ: regularization constant



Comparison simulations
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1. Fitzgibbon et al.
→ small flat ellipse

2. hyper-renormalization
→ hyperbola

3. penalty method
→ large ellipse close to 2

4. random sampling
→ between 1 and 3.



Real image examples
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 3 

• Fitzgibbon et al. [1] produces a mall flat ellipse.
• If hyper-renormalization [2] returns an ellipse, random sampling [4] returns the same ellipse,

and the penalty method [3] fits an ellipse close to it.
• If hyper-renormalization [2] returns a hyperbola, the penalty method [3] fits a large ellipse

close to it.
• Random sampling [4] fits somewhat a moderate ellipse.

Conclusion

• If hyper-renormalization returns a hyperbola, any ellipse specific method does not produce
a reasonable ellipse.

– Ellipse specific methods do not make practical sense.
– Use random sampling if you need an ellipse by all means.



Fundamental Matrix Computation



Fundamental matrix

(x   , y   )α α

(x  ’, y  ’)α α

For two images of the same scene, the following epipolar equation holds:

(

 x/f0

y/f0

1

 , F

 x′/f0

y′/f0

1

) = 0.

• f0: scale factor (≈ the size of the image)

• F : fundamental matrix

• To remove scale indeterminacy, F is normalized to unit norm: ‖F ‖ (≡
√∑

i,j=1,3 F 2
ij) = 1

From the computed F , we can reconstruct the 3-D structure of the scene.



Vector representation

(

 x/f0

y/f0

1

 ,F

 x′/f0

y′/f0

1

) = 0 ↔ (ξ, θ) = 0, ξ ≡



xx′

xy′

f0x
yx′

yy′

f0y
f0x

′

f0y
′

f2
0


, θ ≡



F11

F12

F13

F21

F22

F23

F31

F32

F33


.

‖F ‖ = 1 ↔ ‖θ‖ = 1.

Task: From noisy observations ξ1, ..., ξN , estimate a unit vector θ such that

(ξα, θ) ≈ 0, α = 1, ..., N.



Noise assumption

(x̄α, ȳα), (x̄′
α, ȳ′

α): true values of (xα, yα), (x′
α, y′

α).

xα = x̄α + ∆xα, yα = ȳα + ∆yα, x′
α = x̄′

α + ∆x′
α, y′

α = ȳ′
α + ∆y′

α.

Then,
ξα = ξ̄α + ∆1ξα + ∆2ξα.

• ξ̄α: true value of ξα

• ∆1ξα: noise term linear in ∆xα, ∆yα, ∆x′
α, and ∆yα’.

• ∆2ξα: noise term quadratic in ∆xα ∆yα, ∆x′
α, and ∆yα’.

ξ̄ =



x̄αx̄′
α

x̄αȳ′
α

f0x̄α

ȳαx̄′
α

ȳαȳ′
α

f0ȳα

f0x̄
′
α

f0ȳ
′
α

f2
0


, ∆1ξα =



x̄′
α∆xα + x̄α∆x′

α

ȳ′
α∆xα + x̄α∆y′

α

f0∆xα

x̄′
α∆yα + ȳα∆x′

α

f0∆yα

f0∆x′
α

f0∆y′
α

0


, ∆2ξα =



∆xα∆x′
α

∆xα∆y′
α

0
∆yα∆x′

α

∆yα∆y′
α

0
0
0
0


.



Covariance matrix

The noise terms ∆xα, ∆yα, ∆x′
α, and ∆yα are regarded as independent Gaussian random variables

of mean 0 and variance σ2:

E[∆xα] = E[∆yα] = E[∆x′
α] = E[∆y′

α] = 0, E[∆x2
α] = E[∆y2

α] = E[∆x′
α

2] = E[∆y′
α

2] = σ2,

E[∆xα∆yα] = E[∆x′
α∆y′

α] = E[∆xα∆y′
α] = E[∆x′

α∆yα] = 0.

The covariance matrix of ξα is defined by

V [ξα] = E[∆1ξα∆1ξ
>
α ].

Then,
V [ξα] = σ2V0[ξα],

V0[ξα] =



x̄2
α + x̄′2

α x̄′
αȳ′

α f0x̄
′
α x̄αȳα 0 0 f0x̄α 0 0

x̄′
αȳ′

α x̄2
α + ȳ′2

α f0ȳ
′
α 0 x̄αȳα 0 0 f0x̄α 0

f0x̄
′
α f0ȳ

′
α f2

0 0 0 0 0 0 0
x̄αȳα 0 0 ȳ2

α + x̄′2
α x̄′

αȳ′
α f0x̄

′
α f0ȳα 0 0

0 x̄αȳα 0 x̄′
αȳ′

α ȳ2
α + ȳ′2

α f0ȳ
′
α 0 f0ȳα 0

0 0 0 f0x̄
′
α f0ȳ

′
α f2

0 0 0 0
f0x̄α 0 0 f0ȳα 0 0 f2

0 0 0
0 f0x̄α 0 0 f0ȳα 0 0 f2

0 0
0 0 0 0 0 0 0 0 0


• σ2: noise level
• V0[ξα]: normalized covariance matrix



Fundamental matrix computation

algebraic methods

• non-iterative methods
– least squares (LS), Taubin method, hyperLS

• iterative methods
– iterative reweight, renormalization, hyper-renormalization

geometric methods

• Sampson error minimization (FNS)
• geometric error minimization
• hyperaccurate correction

However, ...



Rank constraint

The fundamental matrix F must have rank 0:

detF = 0

Existing three approaches:
a posteriori correction:

• SVD correction
• optimal correction

internal access:

Parameterize F such that det F = 0 is identically satisfied, and do optimization in the
internal parameter space of a smaller dimension.

external access:

Do iteration in the external (redundant) space of θ in such a way that θ approaches the true
value and yet detF = 0 holds at the time of convergence.

 det F = 0
SVD

 det F = 0  det F = 0



SDV correction

—————————
1. Compute F without considering the rank constraint.
2. Compute the SDV of F :

F = U

 σ1 0 0
0 σ2 0
0 0 σ3

 V >

3. Correct F to

F ← U

σ1/
√

σ2
1 + σ2

2 0 0
0 σ2/

√
σ2

1 + σ2
2 0

0 0 0

 V >

—————————

• The norm ‖F ‖ is scaled to 1



Optimal correction (Kanatani and Sugaya 2007)

—————————
1. Compute θ without considering the rank constraint.
2. Compute the 9× 9 matrix

M̂ =
1
N

N∑
α=1

(P θξα)(P θξα)>

(θ, V0[ξα]θ)
, P θ ≡ I − θθ>.

P θ: projection matrix onto the space orthogonal to θ.
3. Compute the eigenvalues λ1 ≥ · · · ≥ λ9 (= 0) of M̂ and the corresponding unit eigenvectors

u1, u2, ..., u9 (= θ). Then, define

V0[θ] =
1
N

(u1u
>
1

λ1
+ · · ·+ u8u

>
8

λ8

)
.

4. Modify θ to

θ ← N [θ − (θ†, θ)V0[θ]θ†

3(θ†, V0[θ]θ†)
], θ† =



θ5θ9 − θ8θ6

θ6θ7 − θ9θ4

θ4θ8 − θ7θ5

θ8θ3 − θ2θ9

θ9θ1 − θ3θ7

θ7θ2 − θ1θ8

θ2θ6 − θ5θ3

θ3θ4 − θ6θ1

θ1θ5 − θ4θ2


.

N [ · ]: normalization to unit norm

5. If (θ†, θ) ≈ 0, return θ and stop. Else, update V0[θ] to P θV0[θ]P θ and go back to Step 3.
—————————

• V0[θ] = M−
8 (truncated pseudoinverse of rank 8) = KCR lower bound .

• V0[θ]θ = 0 is always ensured.



Internal access (Sugaya and Kanatani 2007)

SVD of F :

F = U

 σ1 0 0
0 σ2 0
0 0 0

 V >, σ1 = cos φ, σ2 = sinφ.

We regard U , V , σ1, and σ2 as independent variables minimize the Sampson error J by Levenberg–
Marquardt method.
—————————

1. Compute an F such that det F = 0, and express its SDV in the form

F = U

 cos φ 0 0
0 sin φ 0
0 0 0

 V >.

2. Compute the Sampson error J , and let c = 0.0001.
3. Compute the 9× 3 matrices

F U =



0 F31 −F21

0 F32 −F22

0 F33 −F23

−F31 0 F11

−F32 0 F12

−F33 0 F13

F21 −F11 0
F22 −F12 0
F23 −F13 0


, F V =



0 F13 −F12

−F13 0 F11

F12 −F11 0
0 F23 −F22

−F23 0 F21

F22 −F21 0
0 F33 −F32

−F33 0 F31

F32 −F31 0


.

4. Compute the 9-D vector

θφ =



σ1U12V12 − σ2U11V11

σ1U12V22 − σ2U11V21

σ1U12V32 − σ2U11V31

σ1U22V12 − σ2U21V11

σ1U22V22 − σ2U21V21

σ1U22V32 − σ2U21V31

σ1U32V12 − σ2U31V11

σ1U32V22 − σ2U31V21

σ1U32V32 − σ2U31V31


.

5. Compute the 9× 9 matrices

M =
1
N

N∑
α=1

ξαξ>
α

(θ, V0[ξα]θ)
, L =

1
N

N∑
α=1

(ξα, θ)2

(θ, V0[ξα]θ)2
V0[ξα],

and let X = M −L.
6. Compute the first derivatives of J

∇ωJ = 2F>
UXθ, ∇ω′J = 2F>

V Xθ,
∂J

∂φ
= 2(θφ,Xθ).

and the second derivatives

∇ωωJ = 2F>
UXF U , ∇ω′ω′J = 2F>

V XF V , ∇ωω′J = 2F>
UXF V ,

∂J2

∂φ2
= 2(θφ, Xθφ),

∂∇ωJ

∂φ
= 2F>

UXθφ,
∂∇ω′J

∂φ
= 2F>

V Xθφ.

7. Compute the 9× 9 Hessian

H =

 ∇ωωJ ∇ωω′J ∂∇ωJ/∂φ
(∇ωω′J)> ∇ω′ω′J ∂∇ω′J/∂φ

(∂∇ωJ/∂φ)> (∂∇ω′J/∂φ)> ∂J2/∂φ2


8. Solve the linear equation

(H + cD[H])

 ∆ω
∆ω′

∆φ

 = −

 ∇ωJ
∇ω′J
∂J/∂φ

 .

D[ · ]: diagonal matrix of diagonalelements.



9. Update U , V , and φ to

U ′ = R(∆ω)U , V ′ = R(∆ω′)V , φ′ = φ + ∆φ.

R(w): rotation around axis w by angle ‖w‖.
10. Update F to

F ′ = U ′

 cos φ′ 0 0
0 sin φ′ 0
0 0 0

V ′>.

11. Compute the Sampson error J ′ of F ′. If J ′ < J or J ′ ≈ J are not satisfied, let c ← 10c and
go back to Step 8.

12. If F ′ ≈ F , return F ′ and stop. Else, let F ← F ′, U ← U ′, V ← V ′, φ← φ′, and c← c/10,
and go back to Step 3.

—————————



External access (Kanatani and Sugaya 2010)

—————————
1. Initialize θ.
2. Compute the 9× 9 matrices M and L.

M =
1
N

N∑
α=1

ξαξ>
α

(θ, V0[ξα]θ)
, L =

1
N

N∑
α=1

(ξα, θ)2

(θ, V0[ξα]θ)2
V0[ξα]

3. Compute the 9-D vector θ† and the 9× 9 matrix P θ†

θ† =



θ5θ9 − θ8θ6

θ6θ7 − θ9θ4

θ4θ8 − θ7θ5

θ8θ3 − θ2θ9

θ9θ1 − θ3θ7

θ7θ2 − θ1θ8

θ2θ6 − θ5θ3

θ3θ4 − θ6θ1

θ1θ5 − θ4θ2


, P θ† = I − θ†θ†>

‖θ†‖2

4. Compute the 9×9 matices X = M−L and Y = P θ†XP θ† . Compute the unit eigenvectors
v1 and v2 of Y for the smallest two eigenvalues, and let θ̂ = (θ, v1)v1 + (θ, v2)v2.

5. Compute θ′ = N [P θ† θ̂].
6. If θ′ ≈ θ up to sign, return θ′ as θ and stop. Else, let θ ← N [θ + θ′] and go back to Step 2.

—————————



Geometric distance minimization (Kanatani and Sugaya 2010)

—————————
1. Let J0 = ∞, x̂α = xα, ŷα = yα, x̂′

α = x′
α, ŷ′

α = y′
α, and x̃α = ỹα = x̃′

α = ỹ′
α = 0.

2. Compute the normalized covariance matrix V0[ξ̂α] using x̂α, ŷα, x̂′
α, and ŷ′

α, and let

ξ∗
α =



x̂αx̂′
α + x̂′

αx̃α + x̂αx̃′
α

x̂αŷ′
α + ŷ′

αx̃α + x̂αỹ′
α

f0(x̂α + x̃α)
ŷαx̂′

α + x̂′
αỹα + ŷαx̃′

α

ŷαŷ′
α + ŷ′

αỹα + ŷαỹ′
α

f0(ŷα + ỹα)
f0(x̂′

α + x̃′
α)

f0(ŷ′
α + ỹ′

α)
f2
0


.

3. Compute the θ that minimizes the modified Sampson error

J∗ =
1
N

N∑
α=1

(ξ∗
α, θ)2

(θ, V0[ξ̂α]θ)

4. Update x̃α, ỹα, x̃′
α, and ỹ′

α to

(
x̃α

ỹα

)
← (ξ∗

α, θ)

(θ, V0[ξ̂α]θ)

(
θ1 θ2 θ3

θ4 θ5 θ6

) x̂′
α

ŷ′
α

f0

 ,

(
x̃′

α

ỹ′
α

)
← (ξ∗

α, θ)

(θ, V0[ξ̂α]θ)

(
θ1 θ4 θ7

θ2 θ5 θ8

)  x̂α

ŷα

f0

 ,

x̂α ← xα − x̃α, ŷα ← yα − ỹα, x̂′
α ← x′

α − x̃′
α, ŷ′

α ← y′
α − ỹ′

α

5. Compute

J∗ =
1
N

N∑
α=1

(x̃2
α + ỹ2

α + x̃′
α

2 + ỹ′
α

2).

If J∗ ≈ J0, return θ and stop. Else, let J0 ← J∗ and go back to Step 2.
—————————

• The Sampson error minimization solution and the geometric distance minimization solution
usually coincide up to several significant digits.
• Minimizing the Sampson error is practically the same as minimizing the geometric distance.



Examples

Image size: 600× 600, noise level σ = 1.0, computation error: E=
√∑3

i,j=1(Fij − F̄ij)2

method E
LS + SVD 0.370992
FNS + SVD 0.142874
optimal correction 0.026385
internal 0.062475
external 0.026202
geometric distance minimization 0.026149

F̄ =

 0.07380 −0.34355 −0.28357
0.21858 0.41655 0.33508
0.66823 −0.08789 −0.09100



LS+SVD:

 0.21115 −0.52234 −0.38029
0.32188 0.32504 0.18557
0.53935 0.05232 −0.02506

 internal:

 0.09265 −0.36657 −0.30765
0.24157 0.40747 0.33578
0.65177 −0.05101 −0.07704


FNS+SVD:

 0.09599 −0.41151 −0.34263
0.25978 0.36820 0.28133
0.64538 −0.02586 −0.06821

 external:

 0.06067 −0.33702 −0.27208
0.21213 0.42767 0.33980
0.66834 −0.10005 −0.09306


FNS＋ opt. correc.:

 0.07506 −0.34616 −0.27188
0.21826 0.43547 0.33471
0.65834 −0.09763 −0.09158

 geom. dist.:

 0.06068 −0.33706 −0.27210
0.21215 0.42764 0.33979
0.66833 −0.10002 −0.09306


• LS + SVD (= Hartley’s 8-point method) has poor accuracy.
• Optimal correction, internal access, and external access all have almost optimal

(≈ KCR lower bound).
• Geometric distance minimization by iterations results in little improvement.



Homography Computation



Homography

(x  , y  )α α

(x ’, y ’)α α

Two images of a planar surface are related by a homography :

x′ = f0
H11x + H12y + H13f0

h31x + H32y + H33f0
, y′ = f0

H21x + H22y + H23f0

h31x + H32y + H33f0
.

• f0: scale factor (≈ the size of the image)

This can be written as  x′/f0

y′/f0

1

 '
H11 H12 H13

H21 H22 H23

H31 H32 H33


︸ ︷︷ ︸

≡H

 x/f0

y/f0

1

 .

• ': equality up to a nonzero constant
• H: homography matrix

• To remove scale indeterminacy, H is normalized to unit norm: ‖H‖ (≡
√∑

i,j=1,3 H2
ij) = 1

From the computed H, we can reconstruct the position and orientation of the plane and compute
the relative camera positions.



Vector representationx′/f0

y′/f0

1

 '
 H11 H12 H13

H21 H22 H23

H31 H32 H33

  x/f0

y/f0

1

 ↔

x′/f0

y′/f0

1

×
 H11 H12 H13

H21 H22 H23

H31 H32 H33

 x/f0

y/f0

1

 =

 0
0
0

 .

The three components of this vector equation are (ξ(1), θ) = 0, (ξ(2), θ) = 0, and (ξ(3), θ) = 0,
where

θ =



H11

H12

H13

H21

H22

H23

H31

H32

H33


, ξ(1) =



0
0
0
−f0x
−f0y
−f2

0

xy′

yy′

f0y
′


, ξ(2) =



f0x
f0y
f2
0

0
0
0
−xx′

−yx′

−f0x
′


, ξ(3) =



−xy′

−yy′

−f0y
′

xx′

yx′

f0x
′

0
0
0


.

• ‖H‖ = 1 → ‖θ‖ = 1.

Task: From noisy observations ξ(k)
α , estimate a unit vector θ such that

(ξ(k)
α , θ) ≈ 0, k = 1, 2, 3, α = 1, ..., N.

• The three equations are not linearly independent .
– If two of them are satisfied, the remaining one is automatically satisfied.



Covariance matrices

The noise terms ∆xα, ∆yα, ∆x′
α, and ∆yα are regarded as independent Gaussian random variables

of mean 0 and variance σ2:

E[∆xα] = E[∆yα] = E[∆x′
α] = E[∆y′

α] = 0, E[∆x2
α] = E[∆y2

α] = E[∆x′
α

2] = E[∆y′
α

2] = σ2,

E[∆xα∆yα] = E[∆x′
α∆y′

α] = E[∆xα∆y′
α] = E[∆x′

α∆yα] = 0.

The covariance matrices of ξ(k)
α is defined by

V (kl)[ξα] = E[∆1ξ
(k)
α ∆1ξ

(l)>
α ] (= σ2V

(kl)
0 [ξα]).

Then,

V
(kl)
0 [ξα] = T (k)

α T (l)>
α , T (k)

α =
(

∂ξ(k)

∂x

∂ξ(k)

∂y

∂ξ(k)

∂x′
∂ξ(k)

∂y′

)∣∣∣∣
α

.

• T (k)
α : 9× 4 Jacobi matrix

• ( · )|α: value for x = xα, y = yα, x′ = x′
α, and y′ = y′

α.

• V
(kl)
0 [ξα]: the normalized covariance matrices



Iterative reweight

—————————
1. Let θ0 = 0 and W

(kl)
α = δkl, α = 1, ..., N , k, l = 1, 2, 3.

2. Compute the 9× 9 matrices

M =
1
N

N∑
α=1

3∑
k,l=1

W (kl)
α ξ(k)

α ξ(l)>
α .

3. Solve the eigenvalue problem
Mθ = λθ,

and compute the unit eigenvector θ for the smallest eigenvalue λ.
4. If θ ≈ θ0 up to sign, return θ and stop. Else, update

W (kl)
α ←

(
(θ, V

(kl)
0 [θα]θ)

)−

2
, θ0 ← θ,

and go back to Step 2.
—————————

• δkl: Kronecker delta (1 for k = l and 0 otherwise)

•
(
(θ, V

(kl)
0 [θα]θ)

)
: the matrix whose (k, l) element is (θ, V

(kl)
0 [θα]θ).

•
(
(θ, V

(kl)
0 [θα]θ)

)−

2
: its pseudoinverse of truncated rank 2.

• The initial solution corresponds to least squares.



Renormalization (Kanatani et al. 2000)

—————————
1. Let θ0 = 0 and W

(kl)
α = δkl, α = 1, ..., N , k, l = 1, 2, 3.

2. Compute the 9× 9 matrices

M =
1
N

N∑
α=1

3∑
k,l=1

W (kl)
α ξ(k)

α ξ(l)>
α , N =

1
N

N∑
α=1

3∑
k,l=1

W (kl)
α V

(kl)
0 [ξα].

3. Solve the generalized eigenvalue problem

Mθ = λNθ,

and compute the unit generalized eigenvector θ for the generalized eigenvalue λ of the smallest
absolute value.

4. If θ ≈ θ0 up to sign, return θ and stop. Else, update

W (kl)
α ←

(
(θ, V

(kl)
0 [ξα]θ)

)−

2
, θ0 ← θ,

and go back to Step 2.
—————————

• The initial solution corresponds to the Taubin method.



Hyper-renormalization (Kanatani et al. 2014)

—————————
1. Let θ0 = 0 and W

(kl)
α = δkl, α = 1, ..., N , k, l = 1, 2, 3.

2. Compute the 9× 9

M =
1
N

N∑
α=1

3∑
k,l=1

W (kl)
α ξ(k)

α ξ(l)>
α ,

N =
1
N

N∑
α=1

3∑
k,l=1

W (kl)
α V

(kl)
0 [ξα]

− 1
N2

N∑
α=1

3∑
k,l,m,n=1

W (kl)
α W (mn)

α

(
(ξ(k)

α , M−
8 ξ(m)

α )V (ln)
0 [ξα] + 2S[V (km)

0 [ξα]M−
8 ξ(l)

α ξ(n)>
α ]

)
.

3. Solve the generalized eigenvalue problem

Mθ = λNθ,

and compute the unit generalized eigenvector θ for the generalized eigenvalue λ of the smallest
absolute value.

4. If θ ≈ θ0 up to sign, return θ and stop. Else, update

W (kl)
α ←

(
(θ, V

(kl)
0 [ξα]θ)

)−

2
, θ0 ← θ,

and go back to Step 2.
—————————

• The initial solution corresponds to HyperLS



FNS (Kanatani and Niitsuma 2011)

—————————
1. Let θ = θ0 = 0 and W

(kl)
α = δkl, α = 1, ..., N , k, l = 1, 2, 3.

2. Compute the 9× 9 matrices

M =
1
N

N∑
α=1

3∑
k,l=1

W (kl)
α ξ(k)

α ξ(l)>
α , L =

1
N

N∑
α=1

3∑
k,l=1

v(k)
α v(l)

α V
(kl)
0 [ξα],

where

v(k)
α =

3∑
l=1

W (kl)
α (ξ(l)

α , θ).

3. Compute the 9× 9 matrix
X = M −L.

4. Solve the eigenvalue problem
Xθ = λθ,

and compute the unit eigenvector θ for the smallest eigenvalue λ.
5. If θ ≈ θ0 up to sign, return θ and stop. Else, update

W (kl)
α ←

(
(θ, V

(kl)
0 [ξα]θ)

)−

2
, θ0 ← θ,

and go back to Step 2.
—————————

• This minimizes the Sampson error :

J =
1
N

N∑
α=1

3∑
k,l=1

W (kl)
α (ξ(k)

α ,θ)(ξ(l)
α , θ), W (kl)

α =
(
(θ, V

(kl)
0 [ξα]θ)

)−

2
,

• The initial solution corresponds to least squares.
• This reduces to the FNS of Chojnacki et al. (2000) for a single constraint.



Geometric distance minimization

We strictly minimize the geometric distance

S =
1
N

N∑
α=1

(
(xα − x̄α)2 + (yα − ȳα)2 + (x′

α − x̄′
α)2 + (y′

α − ȳ′
α)2

)
.

• We first minimize the Sampson error J by FNS and modify the data ξ(k)
α to ξ(k)∗

α using the
computed solution θ.
• Regarding them as data, we define the modified Sampson error J∗ and minimize it by FNS.
• If this is repeated, the modified Sampson error J∗ eventually coincides with the geometric

distance S.
– We we obtain the solution that minimize S.

• The iterations do not alter the value of θ over several significant digits.
– Sampson error minimization is practically the same as geometric distance minimization.



Hyperaccurate correction

• The geometric distance minimization solution is theoretically biased.
• We can theoretically improve the accuracy by evaluating and subtracting the bias.
→ hyperaccurate correction

• However, the accuracy gain is very small.
– The bias of the solution is very small.

• The data ξ(k)
α consist of bilinear expressions in xα, yα, x′

α, and y′
α.

– Unlike ellipse fitting, no quadratic terms such as x2
α are involved,

• Noise in different images are assumed to be independent.
– The bais of fundamental matrix computation is also small.



Examples

Image size: 500× 500, noise level σ = 1.0, computation error: E=
√∑3

i,j=1(Hij − H̄ij)2

method E
LS 1.15042× 10−2

iterative reweight 1.07295× 10−2

Taubin 0.73568× 10−2

renormalization 0.71149× 10−2

HyperLS 0.73513× 10−2

hyper-renormalization 0.71154× 10−2

FNS 0.70337× 10−2

geometric distance minimization 0.70304× 10−2

hyperaccurate correction 0.70296× 10−2

H̄ =

 0.57773 0.00000 0.00000
0.00000 0.47171 0.00000
0.00000 −0.31587 0.57773



LS:

 0.21115 −0.52234 −0.38029
0.32188 0.32504 0.18557
0.53935 0.05232 −0.02506

 hyper-renorm.:

 0.57690 −0.00023 −0.00018
0.00155 0.47284 0.00001
−0.00679 −0.33143 0.57768


FNS:

 0.57694 −0.00020 −0.00018
0.00158 0.47282 0.00001
−0.00671 −0.33138 0.57769

 geom dist.:

 0.57695 −0.00020 −0.00018
0.00158 0.47282 0.00001
−0.00571 −0.33135 0.57769


• LS and iterative reweight have poor accuracy.
• Taubin and HyperLS improve the accuracy.
• Renormalization and hyper-renormalization further improve the accuracy.
• FNS ≈ geometric distance minimization ≈ hyperaccurate correction
• FNS is the most suitable in practice.
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