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Introduction



What is geometric algebra?

Geometric algebra = Clifford’s algebra
= Hamilton’s algebra + Grassmann’s algebra

coupled with

Grassmann—Cayley algebra (= projective geometry)
+ conformal geometry.

Historical developments

. Hamilton s, algebra Clifford’s algebra
Grassmann’s algebra

e
Gibbs Clifford

simpler «— — more general



Algebras

An algebra is a set of elements closed under addition, scalar multiplication, and products:
algebra = vector space + products.

e The products must be associative: (AB)C = A(BC).

— They need not be commutative: AB # BA.
e The products are linearly distributive to the addition and scalar multiplication:

a(A+ B) =aA+ aB, (a+ B)A = aA + pA.

e Examples of algebras:
— The set of real numbers R
— The set of complex numbers C
— The set of polynomials
— The set of n x n matrices GL(n)



Formal sum

We can add anything: the sum is merely a set.
oranges + apples = {oranges, apples}.
The usual summation rules are applied:

(2 oranges + 3 apples) + 3 oranges = 5 oranges + 3 apples.



Hamilton’s quaternion algebra

Sir William Rowan Hamilton (1805-1865)



Quaternions

e Consider an algebra generated by 1 and symbols i, j, and k
(= the smallest algebra that contains 1, 4, j, and k).

e We require that the product (quaternion product) be subject to the rule

7:2:j2:k2:_1,

|1 ik

ij =k, jk =1, ki = j, Lrooe gk
. . . : . : A
Ji = —1ij, kj = —jk, ik = —ki. ili -k -1
Elk §j - -1

— The quaternion product is not commutative.
e Each member (quaternion) g of this algebra is a formal sum in the form

q=a-+fi+~vj+dk
cf. The set of complex numbers is an algebra generated by 1 and a symbol ¢ with the product rule
i? = —1.

— Each member z (complex number) is a formal sum in the form z = a + 0.
— The set of complex numbers is a subalgebra of the quaternion algebra.




Vectors and quaternions

e If a 3-D vector a = aje; + ases + aszes is identified with the quaternion a = a1i + asj + azk, a quaternion
can be expressed in the form

_ ] | + Ok
q a +pBi+vj+
scalarpart vectorpart
= «a+a.

e The product of two quaternions ¢ = o + a and ¢’ = (3 + b has the form

q¢' = (aff — {(a,b)) + ab+ fa+a x b

(a, b) : the inner product of @ and b a x b : the vector product of a and b
e The quaternion product of two vectors a and b is

ab=—{(a,b)+a xb.

— The quaternion product computes the inner product (a,b) and the vector product a x b at the same
time.



Conjugate and inverse

e The conjugate of a quaternion ¢ = a + a is defined to be
¢ =a—a.

e Then, we have
9a" = ¢'q=a® + |la]? (= [a]?)

e This means

T T
q q
q = q=1.
lgll* el

Hence, every g (# 0) has its inverse:

;
_ q _ _
ql:W7 ¢ ' =q '¢g=1.

— The set of all quaternions is a field.



Rotation

e Suppose a vector & = xi + yj + zk is rotated around I (unit vector) by angle Q to ' = 2’i + ¢'j + 2'k.
Then,

/ T Q . Q
x' = qxq’', q = cos — + lsin —. o)
2 2
e In terms of the axis I and the angle ), we obtain Rodrigues’s formula: X
' =xzcosQ+1xxsinQ+ (z,1)I(1 — cosQ).
e In matrix form, we can write |
a’ @+ai—i—a3 2ng—qas) Anas+aa) \ (= 0
v |=| 2(e2q1+qogs) qo—ai+az—a3 2(q2q3—qoq) |( v |-

2 2(g3q1—qoq2)  2(g3q2+qoq) @—ai—az+a3 )\ =

or

z’ cosQ—Hf(l—cosQ) l1l2(1—cos Q) —l3sin Q lil3(1—cos Q) +I2sin ) T
y = lali(1—cosQ)+l3sin Q  cos Q+13(1—cos Q)  lalz(1—cosQ)—l1sinQ || v | .

2’ I3l1(1—cos Q) —lasinQ I3l2(1—cos Q)+l sinQ  cos Q+13(1—cos Q) z



Grassmann’s outer product algebra

Hermann Giinther Grassmann (1809-1877),



Outer product and multivectors

e Consider an algebra generated by 1 and symbols e, es, and e3 and require that the product (outer or
exterior product) be subject to the rule

e;Nej=—ejNe;, 1,5=1,2,3. In particular, e; Ae; = 0,4 =1, 2, 3.

— The outer product is anticommutative.
e Each member (multivector) C of this algebra is a formal sum in the form

C= « 4+ aje1 + ases + azes +biea A es + baes A ey + bger Aea+cep Aea Aes.

scalarpart vectorpart bivectorpart trivectorpart

— The symbol e; is interpreted to be the (oriented) unit vector along the x;-axis.

— The bivector e; A e;j is interpreted to be the (oriented) plane spanned by e; and e;.

— The trivector e; A e; A ey, is interpreted to be the (oriented) volume spanned by e;, €, and ey.
— The Grassmann algebra is an 8-D vector space.

1 e] e es ea N\ es ez N\ ey e1 N\ ez e1 Nea Nes

1 1 el ) es ea N es ez N\ ey e1 N\ ez e1 Nea Nes
el el 0 e1 Neo —e3 Ne1 e1 Nea Nes 0 0 0
€2 e —e1 Aea 0 e2 N e3 0 0 0 0
e3 es e3 Ney —ea A es 0 0 0 0 0
ea N\ es e N\ es e1 Neax Aes 0 0 0 0 0 0
e3 N ey ez Ney 0 ez Nei Neg 0 0 0 0 0
el N\eg e1 N eg 0 0 e1 Nex Nes 0 0 0 0
e1 Nea Aes e1 Nea Aes 0 0 0 0 0 0 0



Vector calculus of Grassmann’s algebra
e For vectors a = aie; + ases + agez, b = byey + boes + bgez, and ¢ = creq + caes + c3e3,
a Ab = (azbs — aszba)es A es + (agby — arbs)es Aer + (a1bs — agbi)er Aeg,

aANbANec= (a1b263 + CLngCl + agblcg — CLngCl — a2b103 — albgcg)el Nea N es.

e Their square norms are defined by (anb)O
||a AN bH2 = (a2b3 - a3b2)2 + (a3b1 — a1b3)2 + (a162 - a2b1)3, llp bl ()
||a AbA C||2 = (a1b263 + agbgcy + asbicy — asbacy — asbics — a1b362)2. b Ty
& )Q:: “a/\bH i

— |la A b||? equals the squared area of the parallelogram defined by a and b. S
— |la A b A c||? equals the squared volume of the parallelepiped defined by a, b, and c.

e If we define the duals of bivectors and trivectors by

(62 A 63)* = e, (63 AN 81)* = e2, (61 A\ 62)* = e3, (61 Neg A 83)* =1, M

then [ ]

c
(a Ab)* =a x b (vector product), "

(anbAc)" =]a,b,c| (scalar triple product). a



Direct and dual representations

e The equation of an object is an equality satisfied by the position vector « if and only if it belongs to that
object.

e If it has the form x A (---) = 0, the expression (---) is called the direct representation.
e If it has the form x - (---) = 0, the expression (---) is called the dual representation.

subspace | direct representation dual representation
origin scalar trivector a Ab A c
line vector a bivector b A ¢
plane bivector a A b vector ¢
space trivector a Ab A ¢ scalar o
equation cA(---)=0 z-(---)=0




Clifford’s geometric algebra

William Kingdon Clifford (1845-1879)



e Consider an algebra generated by 1 and symbols ej, es, and e3 and require that the product (geometric or

Geometric product and multivectors

Clifford product) be subject to the rule

el =

2 _ 2 _
€9 = €3 =

1

)

€Z'€j = —ejei,

i # 7.

— The geometric product is not commutative.
e Each member (multivector) C of this algebra is a formal sum in the form

C:

« 4+ aje1 + ases + azes + bieses + baeser + bzeies +  cejeses
~ N——

scalarpart

vectorpart bivectorpart trivectorpart
— The Clifford algebra is an 8-D vector space.
1 el e es eses eseq e1€eo ejeses
1 1 el eg es eges ezeq ereg ejeses
e1 e1 1 el1ez —esze1  ejeges —es3 e2 eze3
e e —ere2 1 eges e3 ejezes —e2 esel
es es ese] —eges 1 —eg el eijeges e1e
eges eze3 ejezes —e3 e -1 —ere2 esel —eq
eseq eseq e3 ezele —eq erez -1 —eges3 —e2
erez ere2 —e2 el elezes —esze1 eze3 -1 —e3
ejezes3 | erezes eze3 ezel erez —eq —eg —e3 -1




Parity of the Clifford algebra

e A multivector consisting of an odd number of basis vectors is called an odd multivector:

A = aqre1 + ases + azez + cejeses
——

vectorpart trivectorpart

A multivector consisting of an even number of basis vectors is called an even multivector:

= b b b .
B «  +bieges + baeser + 0zeies

scalar bivectorpart

e The parities of multivectors are preserved by geometric products:
— (odd multivector)(odd multivector) = (even multivector).
— (even multivector)(even multivector) = (even multivector). < Attention!
— (odd multivector)(even multivector) = (odd multivector).



Hamilton’s algebra C Clifford’s algebra

e The geometric product of even multivectors is an even multivector.
— The set of even multivectors is a subalgebra of Clifford’s algebra.
e The subalgebra of even multivectors is the same as (i.e., isomorphic to) Hamilton’s algebra:

— If we let
1 = —eges, j = —eseq, k= —eqeq,
then 1 ; i &
2 =32 =k =1, 1 1 7 J k:.
i |1 =1 k —j
ij = k, ik =1, ki = j, R L A
' k| k § - -1



Grassmann’s algebra C Clifford’s algebra

For vectors @ = aieq + ases + azes and b = bie; + boes + bzes,
ab = a1by + asbs + azbs + (a2b3 — a3b2)62€3 + (a3b1 — albg)egel + (albg — agbl)eleg,
ba = biay + baas + bsas + (b2a3 — b3a2)€2€3 + (b3a1 — b1a3)63€1 + (b1a2 — b2a3)€1€2.

We define the outer product of vectors by antisymmetrization:
1 1
aAb= i(ab —ba), aAbArc= g(abc—i— bca + cab — cba — bac — ach).

— The outer product of four or more vectors is defined to be 0: a AbAcAd =--- =0.
— All the rules of the outer product are satisfied.
For vectors a = aje; + ases + ases, b = bye; + baes + bges, and ¢ = cie; + coes + c3e3,

alNb= (a2b3 — a3b2)6263 =+ (a3b1 — a1b3)€3€1 + (albg — a2b1)6162,
aANbAc= (a1b263 + agbscqy + asbicy — asbacy — asbics — a1b302)€1€263.

It turns out that symmetrization of the vector products is the inner product:

1
i(ab + ba) = a1by + azxbs + asbs = (a, b). In particular, a®> = ||a/|?.

Hence, the geometric product ab has the expression
ab=(a,b)+aAnb.

— The geometric product computes the inner product (a,b) and the outer product a Nb at the same time.



Inverses

e Since a? = ||a||?, we have
a a
a = a=1
lali> fla]?

Hence, every vector a (# 0) has its inverse:

-1_ _@a -1 _ -1 _
—W, aa =a a=1.

e The inverse of a product is the product of the inverses in the reversed order:
(abc. .. )71 — ... cilb_lail

e Bivector a A b and trivector a A b A ¢ have the following inverses:

cANbAha
lanbAc|?

bha

W, (a/\b/\c)fl:

(anb)~t =



Rotation

e Rotation is specified by an (oriented) plane in which the rotation takes place and the angle 2, whose sense

follows the orientation of that plane.

e An oriented plane is defined by a bivector a A b. The sense is so defined that a approaches toward b. We

define the (oriented) surface element T by

alb
la AB|

— The surface element Z does not depend on the choice of @ and b as long as they define the same plane

with the same sense.

e If a vector x is rotated to ' by angle  in the plane of surface element Z,

Q Q
' =RxR 1, REcosg—Ising.

— It can be shown that Z? = —1 and the inverse of R is given by

Q Q
R = cos§ +Isin§.

aAb

Q

X'

&




Grassmann—Cayley algebra

Hermann Giinther Grassmann (1809-1877)  Arthur Cayley (1821-1895)



4-D homogeneous space

e Consider an algebra generated by 1 and symbols eg, e, es, and ez with the outer product subject to the
rule

e; Nej = —e; Nej, 1,7 =0,1,2,3.
e A point (z,y,2) in 3-D space is represented by
p = eg + xep + yes + zes.
— The symbol eg is identified with the origin of the

3-D space, since (0,0,0) is represented by eq. -3
e The expression 7

U = uiey + ugeg + uszes

indicates the direction in 3-D and is interpreted to be the point at infinity in that direction.

— The magnitude is irrelevant: u and au for any « # 0 are regarded as the same direction and the same
point at infinity.



Lines
e The line L passing through 3-D positions x; and xs are represented by the bivector
L= P1 A D2,

where p; is the representations of x;; p; = eg + x;.

e The line L with orientation u passing through 3-D position @ is
represented by the bivector

L=uANp.

— Bivectors p; A p2 and u A p both define
the same 2-D subspace in 4-D.




Expression of lines

After expansion, the bivector L that represents a line has the following expression:

L =mqeg A ey +moeg Aea +mseg A es+nies Aes+ naes Aep +nsep Aes.

e m;, n;, i =1, 2, 3, are called the Plicker coordinates of L.
e The vector m = mie; + maoes + maes indicates the direction of the line L.

e The vector n = nje; + naes + nges is the surface normal to the supporting plane of L (= the plane passing
through L and the origin O).

e In terms of m and n, the bivector L can be written as L
L=eAm-—-n*

— For n = nyiey + noes + nges, its dual is
ES

n" = —nijeax N\ ez —nqgez Aeyp —nser N es.



Planes
The plane II passing through 3-D positions x1, ®2, and x3 is represented by the trivector
II =p1 Ap2 A ps.

The plane II passing through 3-D positions x;, x2, and 3 and containing
orientation u is represented by the trivector

II=uApi Aps.

The plane IT passing through 3-D position & and containing orientation w and v is represented by the
trivector

II=uAvAp.

The plane II passing through line L and 3-D position « is represented
by the trivector n

[I=LAp.

— Trivectors py A pa Aps, wApyr Aps, w Av Ap, and L A p all define the same 3-D subspace in 4-D.



Expressions of planes

After expansion, the trivector II that represents a plane has the following expression:

II =nieg Aeg Aes+naeg Aes Aep +nseg Aep Aes + her Aea Aes

n;, ¢ =1, 2, 3, and h are called the Pliicker coordinates of II.
The vector n = nie; + ngeq + nges is the surface normal to the plane II.
The value h is the distance of the plane II from the origin O.

In terms of n and h, the trivector II can be written as

II=—egAn*+hl, I =e; Nea ANes (volume element).

*

n* = —niezx N es —nqgez N ey —nsep N es.



Equations of lines and planes
e A point p is on line L if and only if
pAL=0 (“equation” of the line L).
— In terms of the Pliicker coordinates, this is equivalently written as

X m=n.

e A point p is on plane II if and only if

pAIl =0 (“equation” of the plane II).

— In terms of the Pliicker coordinates, this is equivalently written as

(n,x) = h.




Direct and dual representations

direct dual
points | representation qgq=¢eg+vy G =e ANy*"+1
equation pAqg=0 p-q¢*=0
lines | representation L=egAm-—n* L*=—eyg An+m*
equation pAL=0 p-L*=0
planes | representation | Il = —eg An* 4+ hl II* = heg — n
equation pAIl=0 p-II*=0



Duals

>

e The dual of point p = eg + x is a plane represented by trivector
p* =eg ANx* + I (dual plane).

e The dual of line L = eg A — n* is a line represented by bivector
L* = —eg An+m" (dual line).

e The dual of plane II = —eg A n* + Rl is a point represented by vector

-m
J 1M

IT* = hey — n (dual point).




Join

L
e The join of points p; and ps is the line L passing through them: /p/
2

L=piUps (=p1Ap2) Py
e The join of points p1, p2, and p3 is the plane IT pas passing through them:
Il =p1Up2Ups (=p1 Ap2 Aps).

e The join of a point p and a line L is the plane II passing through them:

|

MI=pUL (=pAL).



Meet

e The meet of a line L and a plane II is their intersection point p:

p=LNIL

e The meet of planes Iy and Il is their intersection line L:

L =TI, NTl,.

e The meet of planes Iy, Il5, and Il3 is their intersection point p:

p=1I; NIl N Ps.

A

s

\V_/

My

M3



Duality theorem
e The dual of the join of points p; and ps is the meet of their dual planes p; and p3:
(p1Up2)" =piNps.
Conversely, the dual of the meet of planes II; and Il is the join of their dual points Il and II3:
(I3 N1IIp)* = 117 UII5.
e The dual of the join of a point p; and a line L is the meet of the dual plane p* and the dual line L*:
(pUL)* =p*NL".

Conversely, the dual of the meet of a line L and a plane II is the join of their dual line L* and the dual
point, IT*:

(LNID* = L* UTI*.



Summary of duality

point p2 line Lo plane IIs
point p1 p1Up2 = p1 Ap2 p1ULy =p1 A Lo —
line L1 LiUpa=LiAp2 — LinNIly = (LT/\H;)*
plane 11 - ILiNLy = ( T/\L;)* I NIl = (HI/\H;)*

e The dual of the join of points p1, p2, and p3 is the meet of their dual planes Iy, I, and II3:
(p1Up2Ups)”™ =pi Np; N ps.
Conversely, the dual of the meet of planes II;, Il5, and II3 is the join of their dual points I3, I3, and 1I3:

(I, N1y N TI3)* = 117 U IT; U IT3.



Conformal geometric algebra

David Hestenes (1933-)



5-D non-Euclidean conformal space

Consider an algebra generated by 1 and symbols eg, e1, e2, e3, and ey, with the geometric product subject
to the rule:

e% = e% = e% =1, 6(2) =e2 = 0, €0€so + ooy = —2,
eieg + ege; = €iene + €xce; =0, eiej +eje; =0, 1,7 =1,2,3

We identify a 3-D vector  with @ = x1e7 + z2e2 + x3ez and call an element in the form
T = 2oy + T + ToCoo

simply a (5-D)“vector”.
The inner product of vectors is defined by symmetrization of the geometric product:

1

(z,y) = 5(961/ +yr) = (T, Y) — Yoo — Too¥o

The square norm is defined by
lz||? = (z,z) = 22 = ||2||* — 2T0T0o. This can be negative (Minkowski norm).

— A norm that is positive for all nonzero vectors is called a Fuclidean metric. A space with a Euclidean
metric is said to be a Fuclidean space.
— Conformal geometry is realized in an non-Euclidean space.



Outer product

e The outer product of vectors is defined by antisymmetrization of the geometric product:

1
TAY = §(xy—yx),

1
Ay Az = =(xyz +yze + zay — 2yx — yxrz — x2Y),

6
1
TAYNzZzAW = ﬂ(xyzw—y:czw+yzxw—yzw;z:+-~),
TANYNZANWAU = m(zyzwufyxzquryzzwuf~~).

— All the properties of the Grassmann outer product are satisfied.
— The outer product of six or more elements is zero.
e The geometric product of vectors is expressed as the sum of the inner product (symmetric part) and the
outer product (antisymmetric part):

xy = (z,y) + T Ay.

e Orthogonal vectors x and y (i.e., (z,y) = 0) are anticommutative: Ty = —yx.



Representation of geometric objects

e A 3-D point x is represented by a vector in the form
1 2
p=ey+x+ 5”3}\\ €oo-

— All points are represented by null vectors: ||p|* = 0.
1
— The inner product of points is their negative half square distance: (p,q) = —§||ac —y|%
e The line L passing through two points p; and ps is represented by the trivector
L= P1 A P2 N €eso-

— A point p is on line L if and only if p A L = 0 (“equation” of line).
— Any line L passes through the infinity: e, A L = 0.
e The plane II passing through three points p1, p2, and p3 is
represented by the 4-vector

IT=p1 Apa Aps A€o

— A point p is on plane IT if and only if p ATl = 0 (“equation” of plane).
— Any plane II passes through the infinity: e, A IT = 0.



Circles and spheres

e A circle S passing through points p1, p2, and ps is represented by a trivector

S = p1 Ap2 A ps.
P P,
— A point p is on circle S if and only if p A .S = 0 (“equation” of circle).
— A line L = p; A p2 A es is interpreted to be the circle passing through p; and ps and the infinity e..
e A sphere X passing through points py, po, p3, and p3 is represented by a 4-vector

¥ =p1 Ap2 Aps Apa.
— A point p is on sphere ¥ if and only if p A X = 0 (“equation” of sphere).

— A plane IT = p; A pa A p3 A es is interpreted to be the sphere passing through
p1, D2, and p3 and the infinity e.




Direct and dual representations

object direct representation dual representation
(isolated) point | p = eo + = + [[z[[Pecc/2 | P = €0 + = + ||| €00 /2
line p1 AP2 N\ e T N\ T2
PAUNex
plane P1LAP2AP3 A€o n + heso
P1AP2 AU N e p1— P2
pPAUL Nu2 N\ e
sphere p1 Ap2 Aps Apa c—1%e00/2
circle p1 Ap2 A ps o1 N\ o2
oNT
point pair p1 A\ p2 sNo
SN\
(flat) point PA e AL
1 AT A\ T3
equation pA(---)=0 p-(--)=0

e join for direct representations,

The outer product A indicates:

(direct representation) A (direct representation) = (direct representation of their join),

(dual representation) A (dual representation) = (dual representation of their meet).

e meet for dual representations.



Versors

e The geometric product of vectors
V = 0pvp_1-- V1
is called a versor when it acts on a geometric object in the form
V(- )VT,
where the conjugate V1 is defined by
Vi= (D)MW = (=Dko oyt k: the grade of the versor
e Versors preserve the outer product up to sign:
V@ AyA--- A2V = (=DFVzVT AVYVT A - A VD).
— A sphere (incl. plane) is mapped to a sphere (incl. plane):
PAMPIAP2ApsAps) =0 = P ALAPyADPSAPY) =0, p' =VpVi, pj=VpVT.

— A circle (incl. line) is mapped to a circle (incl. line):

PAIADP2ADP) =0 = P AP APLADE) =0, p' =VpVi, p;=VpVi.

e The versors preserve the inner product:

(z,y) = VYT, VyVty,



Conformal mapping

Versors induce conformal mappings (= angle-preserving mappings).
— Spheres (incl. planes) are mapped to spheres (incl. planes).
— Circles (incl. lines) are mapped to circles (incl. lines).

Well known conformal mappings include:
— Similarity

Rigid motion

— Rotation

— Reflection

Dilation

Translation

Identity

A typical unconventional conformal mapping is (spherical) inversion.

A conformal mapping is an isometry (= length preserving mapping) if and only if e, is mapped to itself:
VeV = eno.

— Well known isometries include rigid motion, rotation, reflection, translation, and identity



Examples of conformal versors

Reflector (grade 1):
Reflection with respect to the plane of surface unit normal n
and distance h from the origin.

T=n+hesx (=7 10).

Invertor (grade 1):
Inversion with respect to the sphere of center ¢ and radius r.

1 o

2 -1

o=c— =Tt o= —.
2 ’ r2




Examples of conformal versors

—
it
Translator (grade 2): Translation by . T \
_, 1 a1 2(-h)
Q—t—l—§teoo, 7; —T_t—1+§teoo. h-h
I,
e Translation is realized by consecutive reflections with respect to A
parallel planes. E
Rotor (grade 2) Rotation in the plane with surface element Z by angle Q.
Q Q Q Q B
R =cos — — Isin— R~ =cos = + Isin —.
cos 5 Sin R cos B + 1 sin B
e Rotation is realized by consecutive reflections with respect to 20 T
intersecting planes; the intersection is the axis of rotation. \8 /
e “Translation” is a rotation around an axis infinitely far away.

Dilator (grade 2): Dilation around the origin by e?/2.
D:coshg+(9$in%, Dil:cosh%f(?sing, O =egNes.

e Dilation is realized as consecutive inversions with respect to
concentric spheres.
Motor (grade 4): Rotation R followed by translation 7.

M =TR, Mt =R

g
N



Versors in the conformal space

name grade | expression
reflector 1 T=mn+ hes
invertor 1 o=c—1%/2
translator 2 Tt =1 —tew/2 = exp(—tes/2)
consecutive reflections for parallel planes
rotor 2 R =cosQ/2 —Tsin/2 = exp(—IQ/2)
consecutive reflections for intersecting planes
dilator 2 D = coshvy/2 + Osin~y/2 = exp Ov/2
consecutive inversions for concentric spheres
motor 4 M=TR

composition of rotation and translation



Camera imaging geometry



Perspective cameras

i e

d

Camera imaging geometry  Perspective projection

d: distance from the principal point
d= ftané. f: focal length
0  incidence angle

e A camera is a device to record the incoming rays of light.

— The depth information is lost.
e The image need not be planar as long as rays are recorded.
— It can be a sphere



Image sphere and stereoscopic projection

e All rays coming in front of the camera are recorded on a sphere centered on the optical axis passing through
the lens center O.

e The correspondence between the spherical and the planar images is a stereographic projection from the lens
center O.

e It is also an inversion with respect to a sphere at O with radius v/2f.



Fisheye lens cameras

2f

0/2

9 d: distance from the principal point
d=2ftan —. f: focal length
2 o
6  incidence angle

e All the scene in front is imaged within a circle of radius 2f around the principal point.
— The outside is the image of the scene behind.
e In the neighborhood of the principal point 8 ~ 0, the projection is approximately perspective: d =~ f tan6.



Image sphere and stereoscopic projection

P z=2f [

e All rays coming from around the camera are recorded on a sphere centered on the lens center O.

e The correspondence between the spherical and the planar images is a stereographic projection from the
“south pole” O of the image sphere.
— Cf. the relationship between the central and inscribed angles.
e It is also an inversion with respect to a sphere at O with radius 2v/2f.



Fisheye lens image example

A fisheye lens image of an outdoor scene.



Transformation from fisheye to perspective

e We can transform a fisheye image to a perspective image as if obtained by rotating the camera by any
angle.
e This technique can be used in various ways for vehicle-mounted camera applications.
— Drivers are assisted by a fisheye lens camera mounted in front, warned of approaching vehicles right
or left.
— Using multiple fisheye lens cameras, we can generate an image of the ground surface around the vehicle
as if seen from high above.



Other types of fisheye lens camera

name projection equation
1. perspective projection d= ftanf
2. stereographic projection d=2ftanf/2
3. ortogonal projection d= fsinf
4. equisolid angle projection d = 2fsinf/2
5. equidistance projection d= f0
2L
1
2
3
4
flL 5
1 1 1
/6 /3 /2



Omnidirectional cameras using a parabolic mirror

f 2/45
p p~_d

[

e Incoming rays toward the focus I’ are reflected as parallel rays upward.

— Parallel rays coming upward from below would be reflected to converge at the focus F.

From the figure, From the tangent double-angle formula,
d 2tand/2
tanf = ———. tanf = ——5——.
MU= T TR af YT tan?0/2
Hence,
0
d=2ftan —.
ftan 5

The imaging geometry is the same as the fisheye lens camera.



Stereoscopic projection an inversion

e Consider a hypothetical image sphere of radius 2f around the focus F' of the parabolic mirror.
e Consider a hypothetical image plane passes through the focus F’

Then,

e The image is a stereographic projection of the image sphere from its south pole.

e It is also an inversion of the image sphere with respect to an inversion sphere of radius 2v/2f around the
south pole of the image sphere.



Projection of lines in the scene

e Lines in the scenes are mapped to great circles on the image sphere.

e Since the mapping from the image sphere to the image plane is conformal, great circles are mapped to
circles in the image.

e Parallell lines in the scene are imaged as circles intersecting at common vanishing points corresponding to
the common end points at infinity.



Vanishing points and the focal length

p

— —— A
SN—

AN

(e}

e The vanishing points indicate the 3-D direction of the parallel lines.
e The vanishing point pair is a stereoscopic projection of a diameter segment of the image sphere.
e The focal length is computed from the position of the vanishing points.
— It is the geometric mean of the distances d and d’ of the vanishing points from the principal point:

Vdd'
2

f=



Omnidirectional cameras using a hyperbolic mirror

e Incoming rays toward one focus F' are reflected so that they converge to the other focus F’.

e The observed image is a projection of the image sphere around F' from a certain point onto the image plane
placed in a certain position.
— It is not a stereoscopic projection, so it is not a conformal mapping.
— Hence, a line in the scene is imaged as an ellipse in the image.



Omnidirectional image example

An indoors scene image taken by an omnidirectional camera with a hyperbolic mirror, and perspectively trans-
formed partial images.



Omnidirectional cameras using an elliptic mirror

e Incoming rays toward one focus F' are reflected as if diverging from the other focus F”.
e The observed image is a projection of the image sphere around F from a certain point onto the image plane
placed in a certain position.
— It is not a stereoscopic projection, so it is not a conformal mapping.
— Hence, a line in the scene is imaged as an ellipse in the image.
e For a given omnidirectional camera with an elliptic mirror, we can define an omnidirectional camera with
a hyperbolic mirror such that the resulting images are the same.



Conclusion



Conclusions

Is geometric algebra worth studying?
— Yes, definitely. It is a well-defined and very inspiring mathematics.
Does geometric algebra lead to new results of computer vision research?
— We don’t know. It depends on how it is used.
Geometric algebra provides a very nice and very concise description of geometry.
— However, it does not provide a means of numerical computation.
For numerical computation, many researchers of geometric algebra offer software tools, inside of which
high-dimensional matrix calculus is conducted.
— Numerical computation by such software is not necessarily efficient. Research is going on to optimize
the computation.
Currently, three types of research papers are published in relation to geometric algebra:
1. Propaganda papers, telling people how nice geometric algebra is.
2. Geometric modeling demonstrations using software tools.

— Scene modeling from video images taken by vehicle-mounted cameras.
— Computer graphics applications.
3. Techniques for improving the efficiency of geometric algebra software.



