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Chapter 1

Linear Space and Projection

1.1 Expression of Linear Mapping

A linear mapping from the n-dimensional space Rn to the m-dimensional is represented by an

m×n matrix A (↪→ Appendix A.1). One of the basic ways to specify it is to define an orthonormal

basis {u1, ..., un}, i.e., mutually orthogonal unit vectors, in Rn, which is called the domain, and

to specify the image, a1, ..., an, i.e., the m-dimensional vectors to which the basis vectors are to be

mapped (Fig. 1.1). Then, the matrix A is written in the form of Eq. (1.1) (↪→ Problem 1.1), where

the symbol ⊤ denotes transpose1. In fact, if we multiply Eq. (1.1) by ui from right, we obtain Aui

= ai from the orthonormality of Eq. (1.2), where δij is the Kronecker delta, which takes the value

1 for j = i and 0 for j ̸= i.

If we use the natural basis {e1, ... en}, where ei is the n-dimensional vector whose ith component

is 1 and whose other components are all 0, the vetor ai = (a1i, ..., ami)
⊤ is expressed in the form

of Eq. (1.3). In other words, the matrix A consists of the images a1, ..., an as its columns in that

order (Fig. 1.2).

Example. Rotation in two dimensions

Rotation by angle θ (anti-clockwise) in two dimensions is a linear mapping. The natural basis

vectors e1 = (1, 0)⊤ and e2 = (0, 1)⊤ are mapped to a1 = (cos θ, sin θ)⊤ and a2 = (− sin θ, cos θ)⊤,

respectively, after a rotation by angle θ (Fig. 1.3). Hence, rotation by angle θ is represented by the

matrix R(θ) =
(
cos θ − sin θ
sin θ cos θ

)
.

1Mathematicians often use the letter “t”, the initial of “transpose”, as the left superscript to write tu for the
transpose of vector u, while physicists and engineers usually use the symbol ⊤ as the right superscript to write it as
u⊤.
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CHAPTER 1. LINEAR SPACE AND PROJECTION 2

1.2 Subspaces, Projection, and Rejection

Let u1, ..., ur be a set of r linearly independent vectors in the n-dimensional space Rn. The set

U ⊂ Rn of all linear combinations of these vectors is called the r-dimensional subspace spanned by

u1, ..., ur. For instance, the subspace spanned by one vector is a line that extends along it, and

the subspace spanned by two vectors is the plane that passes through them.

Given a point P in Rn and a subpace U ⊂ Rn, the point Q ∈ U defined so that
−−→
PQ is orthogonal

to U is called the projection2 of P onto U , and
−−→
QP is said to be the rejection of Q from U (Fig. 1.4).

If we move the point Q to another point Q′ of U , we obtain from the Pythagorean theorem (↪→

Appendix Eq. (A.12)), we obtain Eq. (1.4). In other words, the projection Q is the closest point

of U from point P (↪→ Problem 1.2).

These facts are summarized in the form of Eq. (1.5), where U⊥ is the set of all vectors orthogonal

to U , called the orthogonal complement of U , which is also a subspace of Rn. Thus any vector of

Rn is expressed as the sum of its projection onto U and the rejection from it. Such an expression

is unique and called the direct sum decomposition of
−−→
OP to U and U⊥.

1.3 Projection Matrices

Let P U⊥ be the projection onto subspace U , and P U⊥ the projection onto its orthogonal complement

U⊥. By definition, Eqs. (1.6) and (1.7) hold. If we define an orthonormal basis {u1, ..., ur} of the

subspace U , it can be extended to an orthonormal basis {u1, ..., ur, ur+1, ..., un} of Rn. Equation

(1.6) means that P U maps the orthonormal basis vectors {u1, ..., un} of Rn to u1, ..., ur, 0, ...,

0, respectively. Similarly, Eq. (1.7) means that P U⊥ maps {u1, ..., un} to 0, ..., 0, ur+1, ..., un,

respectively. Hence, from Eq. (1.1), the mappings P U and are expressed as matrices in the form

of Eqs. (1.8) and (1.9), respectively, where P U and P U⊥ are called the projection matrices onto

subspaces U and U⊥, respectively.

Since
−−→
QP = P U

−−→
QP + P U⊥

−−→
QP = (P U +P U⊥)

−−→
QP for every point P , Eq. (1.10) holds, where I

is the identity matrix3. Hence, the identity matrix I is decomposed into the sum of the projection

matrix onto the subspace U and the projection matrix onto its orthogonal complement U⊥ in the

2It is formally called “orthogonal projection”, but we call it simply “projection”, since we do not consider other
types of projection in this book.

3Mathematicians often write it as E, the initial of the German word Einheit (“unit”), or U , the initial of “unit”
and calle it the “unit matrix”. Physicists and engineers usually write I, the initial of “identity”, and call it the
“identity matrix”.



CHAPTER 1. LINEAR SPACE AND PROJECTION 3

form of Eq. (1.11). Note that the identity matrix itself is the projection matrix onto the entire

space Rn.

Since the vector
−−→
OQ = P U

−−→
OP on the right side of Eq. (1.5) and the vector

−−→
QP = P U⊥

−−→
OP

are orthogonal to each other, we have ∥
−−→
OP∥2 = ∥

−−→
OQ∥2 + ∥

−−→
QP∥2. Hence, Eq. (1.12) holds for an

arbitrary vector x (Fig. 1.5).

For the projection matrix P U , Eqs. (1.13) and (1.14) hold 4(↪→ Problem 1.3).

Equation (1.13) states that P U is a symmetric matrix, as is evident from the definition of

Eq. (1.9). Equation (1.14) states that the projected point is unchanged if it is projected again,

which is evident from the meaning of projection. A matrix for which Eq. (1.14) holds is said to

be idempotent . It can be shown that a matrix that is symmetric and idempotent represents the

projection matrix onto some subspace (↪→ Problem 1.4).

1.4 Projection onto Lines and Planes

A line l starting from the origin O and extending in the direction of unit vector u is a one-

dimensional subspace.. The projection matrix P l onto the line l is given by Eq. (1.15). Hence, the

projection of
−−→
OP onto l is given by Eq. (1.16), where we write the inner product of vectors a and

b as ⟨a, b⟩ (= a⊤b) (↪→ Appendix A.2) . The right side of Eq. (1.16) is the vector lying on the line

l with length ⟨
−−→
OP,u⟩ (Fig. 1.6), signed so that it is positive in the direction of u and negative in

the opposite direction. This signed length is called the projected length. Thus, we conclude that

the inner product with a unit vector is the projected length onto the line in that direction.

A plane Π passing through the origin O having a unit vector n as its surface normal is an

(n−1)-dimensional subspace (strictly speaking, it is a “hyperplane”, but we call it simply a “plane”

if confusion does not occure). The line along the surface normal n is the orthogonal complement to

the plane Π. Hence, if Pn is the projection matrix onto Π, Eqs. (1.10) and (1.11) imply Eq. (1.17).

Hence, the projection of
−−→
OP onto Π is given by Eq. (1.18) (Fig. 1.7).

1.5 Schimidt Orthogonalization

A set of mutually orthogonal unit vectors is said to be an orthonormal system. We can convert n

given linear independent vectors a1, ..., an to an orthonormal system u1, ..., un as follows. First,

4Equation (1.14) is the defintion of the (not necessarily orthogonal) projection. The orthogonal projection is
defined by adding Eq. (1.13) (↪→ Footnote 2).



Problems of Chapter 1 4

let u1 = a1/∥a1∥. From Eq. (1.17), the projection matrix onto the subspace orthogonal to u1, i.e.,

the orthogonal complement, is I−u1u
⊤
1 . Hence, the projection of a2 onto it is given by Eq. (1.19),

which is orthogonal to u1. It follows that its normalization to unit norm u2 = a′
2/∥a′

2∥ is a unit

vector orthogonal to u1.

By the same argument, the projection matrix onto the subspace orthogonal to u1 and u2, i.e.,

the orthogonal complement, is I − u1u
⊤
1 − u2u

⊤
2 . Hence, the projection of a3 onto it is given by

Eq. (1.20), which is orthogonal to both u1 and u2. It follows that its normalization to unit norm u3

= a′
3/∥a′

3∥ is a unit vector orthogonal to both u1 and u2. Repeating the same argument, we see that

if we already have mutually orthogonal unit vectors u1, ..., uk−1, the projection matrix onto the

subspace orthogonal to u1, ..., uk−1, i.e., the orthogonal complement, is I−u1u
⊤
1 −· · ·−uk−1u

⊤
k−1.

Hence, the projection of ak onto it is given by Eq. (1.21), which is orthogonal to all of u1, ..., uk−1.

It follows that its normalization to unit norm uk = a′
k/∥a′

k∥ is a unit vector orthogonal to all of

u1, ..., u2. Repeating this for k = 1, ..., n, we obtain an orthonormal system u1, ..., un. This

procedure is called the (Gram–)Schimidt orthogonalization.

Problems of Chapter 1

1.1. (1) For an m-dimensional vector a =
(
ai

)
and an n-dimensional vector b =

(
bi

)
, which

denote vectors whose ith components are ai and bi, respectively, show that Eq. (1.19)

holds, where the right side designates the m× n matrix whose (i, j) element is aibj .

(2) Show that Eq. (1.20) holds, where tr denotes the trace of the matrix.

1.2. Express a point Q of subspace U in terms of the basis of U , and differentiate the square norm

from point P to show that the closest point of U from P is its projection Q.

1.3. Show that Eqs. (1.13) and (1.14) hold, using Eq. (1.9).

1.4.∗ Show that a symmetric and idempotent matrix P is the projection matrix onto some subspace.



Chapter 2

Eigenvalues and Spectral
Decomposition

2.1 Eigenvalues and Eigenvectors

For an n×n symmetric matrix, there exist n real numbers λ, called the eigenvalues, and n nonzero

vectors u, dalled the eigenvectors, such that Eq. (2.1) holds (↪→ Appendix A.9). The n eigenvalues

λ1, ..., λn, which may include overlaps, are given as the solution of the nth degree equation of

Eq. (2.2), called the characteristic equation, where I is the n × n identity matrix, and | · · · |

denotes the determinant. The nth degree polynomial ϕ(λ) is called the characteristic polynomial .

The n eigenvectors {ui}, i = 1, ..., n, can be chosen as an orthonormal system.

However, we need not actually solve the characteristic equation to obtain eigenvalues and eigen-

vectors. Various software tools which allow us to compute them with high accuracy and high speed

using iterations are available, including the Jacobi method and the Householder method .

2.2 Spectral Decomposition

Let λ1, ..., λn be the eigenvalues of A, and {ui}, i = 1, ..., n, the corresponding orthonormal system

of its eigenvectors, which defines an orthonormal basis of R. Eq, (2.1) implies that A mapps the

orthonormal basis vectors {ui} of Rn to λ1u1, ..., λnun, respectively. Hence, From Eq. (1.1) the

matrix A is written in the form of Eq. (2.3). In other words, a symmetric matrix can be expressed

in terms of its eigenvalues and eigenvectors. This is called the spectral decomposition, or sometimes

eigenvalue decompositon.

Since each term uiu
⊤
i of Eq. (2.3) is the projection matrix onto the direction, called the prin-

5



CHAPTER 2. EIGENVALUES AND SPECTRAL DECOMPOSITION 6

cipal axis, of each eigenvector ui. (↪→ Eq. (1.15)), Eq. (2.3) expresses the matrix A as a linear

combination of the projection matrices onto the principal axes. In other words, the transformation

of the space by a symmetric matrix is interpreted to be projections of each point onto the principal

axes directions, followed by multiplication by the respective eigenvalues, which are then summed

over all the principal axes.

The identity matrix I maps any orthonormal basis {ui}, i = 1, ..., n to itself, i.e., Iui = ui,

hence all eigenvalues are 1, meaning that it has the spectral decomposition in the form of Eq. (2.4).

2.3 Rank

The number of linearly independent vectors among the n columns of matrix A, or the number of

linearly independent vectors among its n rows, is called the rank of that matrix.

Consider an arbitrary linear combination of the columns a1, ..., an of A, which has the form of

Eq. (2.5), where we let c =
(
ci

)
. If r of the n eigenvalues are nonzero, we can let λr+1 = · · · = λn =

0 in Eq. (2.3) and write it as Eq. (2.6). This means that an arbitrary linear combination of the

columns of A is written as a linear combination of mutually orthogonal, hence linearly independent,

r vectors u1, ..., ur (↪→ Problem 2.1). Hence, the subspace spanned by a1, ..., an has dimension

r, meaning that only r of the n columns are linearly independent. Thus, the rank r of matrix A

equals the number of its nonzero eigenvalues. Since A is a symmetric matrix, this also holds for

the rows, i.e., only r of the n rows are linearly independent.

2.4 Diagonalization of Symmetric Matrices

Equation (2.3) is rewritten as Eq. (2.7) (↪→ Problem 2.2), where the matrix U of Eq. (2.8) is an

orthogonal matrix , i.e., a matrix whose columns are an orthonormal system, consisting of columnas

u1, ..., un, for which Eq. (2.9) holds (↪→ Problem 2.3). If U is an orthogonal matrix, so is its

transpose U⊤ (↪→ Problem 2.4). Hence, the rows of an orthogonal matrix are also an orthonormal

system. Multiplying Eq. (2.7) by U⊤ from left and U from right on both sides, we obtain from

Eq. (2.9) the equality of Eq. (2.10). Namely, a symmetric matrix is transformed, if multiplied

by a matrix consisting of its eigenvectors as columns from right and its transpose from left, to a

diagonal matrix whose diagonal elements are the eigenvalues. This is called the diagonalization of

a symmetric matrix.
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2.5 Inverse and Powers

If A is a nonsingular matrix , i.e., a matrix whose eigenvalues are all nonzero1, or whose rank is

n, it has its inverse A−1. Multiplying Eq. (2.1) by A−1 on both sides, we obtain u = λA−1u, or

A−1u = (1/λ)u. Hence, A−1 has the same eigenvectors as A with eigenvalues 1/λ. Hence A−1

has the spectral decomposition of Eq. (2.11) (↪→ Problem 2.5). As in the same way as Eqs. (2.7)

and (2.10), we obtain the relationships of Eq. (2.12).

From Eq. (2.1), we see that A2u = λAu = λ2u, A3u = λ2Au =λ3u, ... , so that ANu = λNu.

Hence, for an arbitrary natural number N , the matrix AN has the same eigenvectors as A with

eigenvalues λN . It follows that it has the spectral decomposition of Eq. (2.13). From this, we obtain,

as in the case of Eq. (2.12), the expressions of Eq. (2.14). It is easy to see that this also applies

to an arbitrary polynomial f(x) so that we obtain Eqs. (2.15) and (2.16). These equations can be

extend to an arbitrary function f(x) for which its power series expansion converges. Further more,

for any function f(x) for which f(λi), i = 1, ..., n is defined, we can define f(A) via Eq. (2.15). For

example, if all the eigenvalues of A is nonnegative (such a matrix is said to be positive semidefinite;

it is positive definite if al the eigenvalues are positive), its “square root”
√
A is defined by Eqs. (2.17)

and (2.18) (↪→ Problem 2.6).

We can view Eqs. (2.4) and (2.11) as special cases of Eq. (2.13) with N = 0, −1, where we define

A0 = I. For a nonsingular matrix A, we can write A−N = (A−1)N (= (AN )−1) for a natural

number N (↪→ Problem 2.7). Then, we can see by combining Eqs. (2.11) and (2.13) that Eq. (2.13)

holds for an arbitrary integer N . If A is a positive definite symmetric matrix, N can be extended

to an arbitrary real number.

Problems of Chapter 2

2.1. Show that mutually orthogonal nonzero vectors u1, ..., um are linearly independent.

2.2. Show that Eq. (2.19) holds for n-dimensional vectors a1, ..., am and b1, ..., bm, where A and

B are n×m matrices having columns a1, ..., am and columns b1, ..., bm, respectively.

2.3. Show that U is an orthogonal matrix, i.e., its columns form an orthonormal system, if and

only if Eq. (2.9 holds.

1We can alternatively say that a matrix is nonsingular if its determinant (= the product of all the eigenvalues) is
nonzero or if it has its inverse.
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2.4. Show that if U is an orthogonal matrix, so is U⊤, i.e., an orthogonal has not only orthonormal

columns but also orthonormal rows.

2.5. Show that the matrix A of Eq. (2.3) and the matrix A−1 of Eq. (2.11) satisfy A−1A = I by

computing their product.

2.6. For the matrix
√
A defined by Eq. (2.17) or by the first equation of Eq. (2.18), show that

(
√
A)2 = A holds.

2.7. Show that for a nonsingular matrix A, Eq. (2.20) holds for any natural number N .



Chapter 3

Singular Values and Singular
Decomposition

3.1 Singular Values and Singular Vectors

For an m×n matrix A which is not the zero matrix O, i.e., the matrix whose elements are all zero,

we call a positive number σ (> 0) the singular value, an m-dimensional vector u u (̸= 0) the left

singular vector , and an n-dimensional vector v ( ̸= 0) the right singular vector such that Eq. (3.1)

hold. The left and right singular vectors are also simply called the singular vectors. There exist

r set of such singular values and singular vectors, where r is the rank of the matrix A, i.e. the

number of linearly independent columns and the number of linearly independent rows (we discuss

this shortly).

Multiplying the second equation of Eq. (3.1) by A from left on both sides, and multiplying the

first equation by A⊤ from left on both sides, we see that Eq. (3.2) holds. Namely, the left singular

vector u is the eigenvector of the m×m symmetric matrix AA⊤, and the right singular vector v

is the n × n symmetric matrix A⊤A. The squared singular value σ2 is the eigenvalue of both of

them. (↪→ Problem 3.1). It is easy to see that AA⊤ and A⊤A have a common positive eigenvalue

σ2 and that their eigenvectors u and v are related by Eq. (3.1) (↪→ Problem 3.2).

Let σ1 ≥ · · · ≥ σr (> 0) be the singular values of A, where some of them may overlap. Since the

corresponding r left singular vectors u1, ..., ur and r right singular vectors are both eigenvectors

of symmetric matrices, they can be chosen to form orthonormal systems.

For actually computing the singular values and singular vectors, we need not compute the

eigenvalues and eigenvectors of AA⊤ and A⊤A. Various software tools that can compute them

9



CHAPTER 3. SINGULAR VALUES AND SINGULAR DECOMPOSITION 10

with high speed and high accuracy are available. A typical one consists of transformation to

a bidiagonal matrix by means of the Householder method and application of the Golub-Reinsch

method .

3.2 Singular Value Decomposition

An m×n matrix A defines a linear mapping from the n-dimensional space Rn to the m-dimensional

space Rm (hookrightarrow Appendix A.1). We can extend the orthonormal system u1, ..., ur of

the r left singular vectors to an orthonormal bais {u1, ..., ur, ur+1, ..., um} of Rm. Similarly, we

can extend the orthonormal system v1, ..., vr of the r right singular vectors to an orthonormal

basis {v1, ..., vr, vr+1, ..., vn} of Rn. From Eq. (3.2), these are eigenvectors of AA⊤ and A⊤A,

and Eq. (3.3) holds: the eigenvalues for ur+1, ..., um and vr+1, ..., vn are all 0. Hence, Avi = 0,

i = r + 1, ..., n (↪→ Problem 3.3(1)). This and the first equation of Eq. (3.1) means that A maps

the orthonormal basis vectors {v1, ..., vn} of Rn to σ1u1, ..., σrur, 0, ..., 0, respectively. Hence,

from Eq. (1.1), we see tht A is expressed in the form of Eq. (3.4).

Similarly, we see that A⊤ui = 0, i = r+1, ..., m (↪→ Problem 3.3(2)), and this and the second

equation of Eq. (3.1) means that A⊤ maps the orthonormal basis vectors {u1, ..., un} of Rm to

σ1v1, ..., σrvr, 0, ..., 0, respectively. Hence, from Eq. (1.1), we see tht A⊤ is expressed in the

form of Eq. (3.5), which is the transpose of Eq. (3.4) on both sides. Thus, an arbitrary matrix

is expressed in terms of its singular values and singular vectors. This is called the singular value

decomposition.

3.3 Column Domain and Row Domain

Let U be the subspace spanned by the n columns of A, and V the subspace spanned by its m rows.

We call the the column domain and the row domain, respectively.

Consider an arbitrary linear combination of the columns a1, ..., an of A, which has the form

of Eq. (3.6), where we let c =
(
ci

)
. From Eq. (3.4), this is rewritten as in Eq. (3.7). Namely, an

arbitrary linear combination of the columns of A is a linear combination of mutually orthogonal,

hence linearly independent (↪→ Problem 2.4), vectors u1, ..., ur. Hence, the column domain U

spanned by a1, ..., an is an r-dimensional subspace, for which u1, ..., ur are an orthonormal basis.

It follows that only r columns are linearly independent .
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The rows of A are the columns of A⊤. Hence, from Eq. (3.5) an arbitrary linear combination

of rows is expressed as a linear combination of v1, ..., vr. Thus, the row domain V spanned by

rows of A an r-dimensional subspace, for which v1, ..., vr are an orthonormal basis. It follows that

only r rows are linearly independent .

From these, we conclude that the rank r of A equals the number of the singular values of A

and that the left singular vectors {ui}, i = 1, ..., r, and the right singular vectors {vi}, i = 1, ...,

r, constitute the orthonormal basis of the columns domain U and the row domain V, respectively .

From Eq. (1.9), the projection matrix of Rm onto the column domain U and the projection

matrix of Rn onto the row domain V are respectively given as in Eq. (3.8). Since each ui, i = 1,

..., r, is ui ∈ U , we have P Uui = ui. Hence, operation of P U to Eq. (3.4) from left does not cause

any change. Similarly, we have P Vvi = vi for the rows. Hence, P V to Eq. (3.4) from right does

not cause any change. It follows that Eq. (3.9) hold.

3.4 Matrix Representation

As Eq. (2.7), Eq. (3.4) can be rewriten in the form of Eq. (3.10), where U and V are the matrices

defined by Eq. (3.11), which are m × r and n × r matrices consisting of singular vectors u1, ...,

ur and v1, ..., vr as columns, respectively. Rewriting Eq. (3.5) in the same way results in the

transpose of Eq. (3.10) on both sides.

Since the r columns of the matrices U and V are orthonormal systems, we obtain Eq. (3.12)

(↪→ Problem 3.5), where the right sides are the r × r identity matrix. We also obtain Eq. (3.13)

(↪→ Problem 3.6).

Problems of Chapter 3

3.1. Show that for any matrix A, the matrices AA⊤ and A⊤A are both positive semidefinite

symmetric matrices, i.e., symmetric matrices whose eigenvalues are all positive or zero.

3.2. Suppose one of the two matrices AA⊤ and A⊤A has a positive eigenvalue σ for A ̸= O.

Show that it is also the eigenvalue of the other matrix and that their eigenvectors u and v

are related by Eq. (3.1).

3.3. Show the following:
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(1) If AA⊤u = 0, then A⊤u = 0.

(2) If A⊤Av = 0, then Av = 0.

3.4. Show that Eq. (3.12) holds.

3.5. Show that Eq. (3.13) holds.



Chapter 4

Pseudoinverse

4.1 Pseudoinverse

If an m × n matrix A (̸= O) has the singular value decomposition in the form of Eq. (3.4), its

pseudoinverse, or generalized inverse, of the Moore-Penrose type is defined to be the n×m matrix

given by Eq. (4.1)1. If A is a nonsingular matrix, this coincides with the inverse A−1 of A (↪→

Problem 4.1). In this sense, the pseudoinverse is a generalization of the inverse.

If we define the matrices U and V as in Eq. (4.6), Eq. (4.1) can be written, as Eq. (3.10) in

the matrix form of Eq. (4.2).

4.2 Projection onto the Column and Row Domains

The inverse of a nonsingular matrix is defined so that the product is the identity matrix. However,

the product of the pseudoinverse and the original matrix is note necessarily the identity. In fact,

noting that {ui} and {vi}, i = 1, ..., r, are orthonormal systems, we obtain from Eqs. (3.4) and

(4.1), we obtain the relationships of Eq. (4.3) and (4.4) (↪→ Eq. (3.8)), where we have noted that

when the Kronecker delta δij appears in summations
∑

over i or j (or both), only terms for which i

= j survive. From Eq. (4.3) and (4.4), we find that the products AA− and A−A are the projection

matrices onto the column domain U and the row domain V, respectively (↪→ Problem 4.2).

Since the columns and rows of a nonsingular matrix are linearly independent, the columns and

the rows both span the entire space, and the projection matrix onto the entire space is the identity

matrix (↪→ Eq. (1.11)). Hence, the pseudoinverse is a natural extension of the inverse.

1Pseudoinverses that are not of Moore-Penrose type can also be defined, but in this book we only consider
pseudoinverses of Moore-Penrose type. Some authors write A− for a “general” pseudoinverse and specifically write
A+ for that of the Moore-Penrose type to make a distinction (↪→ Footnote 2.

13
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Since P Ux = x for any x ∈ U , the matrix P U plays the role of the identity in the column

domain U . Hence, the first equation of Eq. (4.5) states that A− defines the inverse transformation

of A in the column domain U . Similarly, since P Vx = x for any x ∈ V, the matrix P U plays the

role of the identity in the row domain V. Hence, the second equation of Eq. (4.5) means that A−

defines the inverse transformation of A in the row domain V.

For the projection matrices P U and P V , the equalities P Uui = ui and P Vvi = vi hold by

definition. Hence, we obtain the identities of Eq. (4.6) for the pseudoinverse A− in the same way

as Eq. (3.9). From this observation, we obtain the fundamental identities of Eqs. (4.7) and (4.8)

for the pseudoinvers2. Equation (4.7) is obtained by combining Eq. (4.4) and the first equation of

Eq. (4.6). Alternatively, we may combine Eq. (4.3) and the second equation of Eq. (4.6). Equation

(4.8) is, on the other hand, obtained by combining Eq. (4.3) and the first equation of Eq. (3.9).

Alternatively, we may combine Eq. (4.4) and the second equation of Eq. (4.9). Equations (4.7) and

(4.8) can also be obtained from the matrix representation of Eq. (4.2) (↪→ Problem 4.3).

4.3 Pseudoinverse of Vectors

An n-dimensional vector a is an n×1 matrix, so it has its pseudoinverse. if a ̸= 0, its singular value

decomposition is given by Eq. (4.9). The column domain is the one-dimensional space spanned by

the unit vector u = a/∥a|, and the row domain is R1 (= the set of real numbers) whose basis is 1.

The singular value is ∥a∥. Hence, the pseudoinverse a− is given by Eq. (4.10), i.e., the transposed

row vector divided by its square length ∥a∥2.

From Eqs. (3.4), (3.5), and (4.1), we see that (A⊤)− = (A−)⊤, which we simply write A−⊤.

Hence, the pseudoinverse of a row vector a⊤ regarded as a 1× 3 matrix is given by Eq. (4.11).

If we write the unit direction vector along vector a as u = a/∥a|, the product of the pseudoin-

verse a− and the vector a is given by Eq. (4.12), which is the projection matrix onto the direction

of the vector u. On the other hand, we see that Eq.(4.13) holds. Note that 1 (＝ the 1× 1 identity

matrix) is the projection matrix onto R1.

2The matrix A− that satisfies Eq. (4.8) is the most general “pseudoinverse” of A. By adding various conditions
to this, we can define various (not necessarily of the Moor-Penrose type) pseudoinverse. If Eq. (4.7) is satisfied, it
is said to be a “reflexive pseudoinverse”. If AA− and A−A are both symmetric matrices, it is of the Moor-Penrose
type./
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4.4 Rank-constrained Pseudinverse

In Chapters 2 and 3, we pointed out that various software tools are available for vomputing eigenval-

ues, eigenvectors, and the singular value decomposition. However, this is not so for pseudoinverses.

Basically, there is no software tool to automatically compute the pseudoinverse; if such a tool is

offered, we should not use it. This is because all the computations that arise in physics and en-

gineering are based of observation data obtained by measurement devices and sensors. Hence, all

data contain noise to some extent. As a result, if we compute the singular value decomposition

by Eq. (3.4), all the singular values σi are genrally positive. If some of σi are ideally 0 but are

computed to be nonzero due to the noise, we may obtain unrealistic values using Eq. (4.1) due to

1/σi.

Of course, this is not limited to pseudoinverses; it also applies to the computation of the usual

inverses, e.g., when we use Eq. (2.11) to a matrix which is not really a nonsingular matrix. However,

there is an important distinction: while the inverse is defined only for nonsingular matrices, the

pseudoinverse is defined for all nonzero matrices. However, we need to know the rank for computing

the pseudoinverse,using Eq. (4.1).

A simple way to judge the rank r of an m× n matrix A obtained from measurement data is to

compute the singular value decomposition of Eq. (4.14) by letting l = min(m,n), and to find a value

r such that Eq. (4.15) holds for the trailing singular values. Then, we regard them as noise and

retain the singular values up to σr, i.e., we replace A by Eq. (4.16), truncating the trailing singular

values, and compute its pseudoinverse (A)−r , which we calle the rank-constrained pseudoinverse (or

generalized inverse). But how should we truncate the small singular values?

For a mathematical computation where the data are exact real numbers, possible errors are

due to the rounding of finite length computation in the computer. Hence, we can use the smallest

number that can be digitally represented in a computer, which is called the machine epsilon, as

the threshold; some software tools are so designed. For computations of physics and engineering

involving observation data, however, it is generally difficult to estimate the error magnitude; the

estimation must done differently for different problems.

However, most application problems of physics and engineering are derived from some funda-

mental principles or laws. Hence, it is usually possible to do theoretical analysis based on such

principles or laws to predict the rank r in an ideal case where the measurement devices or sensors
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are assumed to be noiseless. Then, we can use the theoretical rank r regardless of the magnitude of

the singular values to be truncated and compute the rank-constrained pseudoinverse of Eq. (4.16).

We are then interested in estimating the difference between the rank-constrained matrix ob-

tained by truncating the trailing singular values and the original matrix. This is measured by the

matrix norm.

4.5 Evaluation by Matrix Norm

Thematrix norm of anm×nmatrixA =
(
Aij

)
is defined by Eq. (4.17). This is called the Frobenius

norm or the Euclid norm, for which Eq. (4.18) holds, where tr denotes the matrix trace. In face,

the three terms of Eq. (4.18) are all equal to
∑m

i=1

∑n
j=1A

2
ij from the definition (↪→ Problems 4.4

and 4.5).

Using Eq. (4.18), we can evaluate the difference between the matrix A of Eq. (4.14) and the

matrix (A)r of Eq. (4.16), measured in the square matrix norm, as shown in Eq. (4..19), where we

note that tr(viv
⊤
i ) = ∥vi∥2 = 1 from Eq. (1.20). Thus, we conclude that the difference between

the matrix A and the matrix (A)r obtained by truncating singular values is equal to the square

sum of the truncated singular values3. Namely, Eq. (4.20) holds. This can be also derived using

the matrix representation (↪→ Problem 4.6).

Problems of Chapter 4

4.1. Show that if A is nonsingular, i.e., m = n and its eigenvalues are all nonzero, or r = n,

Eq. (4.1) defines the inverse A−1 of A.

4.2. Using Eqs. (3.10) and (4.2), show that Eq. (4.5) holds.

4.3. Using Eqs. (3.10) and (4.2), show that Eq. (4.7) holds.

4.4. Show that Eq. (4.21) holds for the matrix trace, where the sizes of the matrices are such that

the products can be defined.

4.5. Show that Eq. (4.22) holds for orthogonal matrices U and V having sizes such that the

products can be defined.

3It can be shown that for a given matrix A, the matrix A′ of the same size that minimizes ∥A−A′∥ subject to
the constraint rank(A′) = r is given by A′ = (A)r [3]. The proof is rather complicated.



Problems of Chapter 4 17

4.6. Show that if matrix A has a singular value decomposition in the form of Eq. (3.10), its norm

is given by Eq. (4.23) so that Eq. (4.20) is obtained.



Chapter 5

Least-squares Solution of Linear
Equations

5.1 Linear Equations and Least Squares

Consider m simultaneous linear equations of n variables x1, ..., xn in the form of Eq. (5.1). Using

vectors and matrices, We can write them in the vector and matrix form of Eq. (5.2), where we the

m×n matrix A，n-dimensional vectorx, and the m-dimensional vector b are defined by Eq. (5.3).

In the following, we assume that A ̸= O.

As is well known, Eq. (5.2) has a unique solution if and only when n = m and when the

determinant of A is nonzero, i.e., wheh A is nonsingular. In that case, the best known procedure for

manually computing the solution is the Gaussian elimination, and the mathematically equivalent

programm package called the LU-decomposition is available. In many physic and engineering

applications that involve observation data, however, problems with n ̸= m frequently occur.

Each equation of Eq. (5.1) is interpreted to be a measurement process for estimating the n

parameters x1, ..., xn. Theoretically, we only need n measurements for determining n parameters.

However, we often repeat the measurement m (> n) times, considering that the observations may

contain noise. In some cases, there are some constraints which allows measurement only m (< n)

times. In such cases for which n ̸= m, a practical method for estimating x1, ..., xn is to compute

their values that satisfy all the equations of Eq. (5.1) sufficiently well “as a whole”. A typical

strategy for this is to minimize the sum of the squares of the differences between the right and left

sides the individual equations. Namely, we compute x1, ..., xn that minimize Eq. (5.4). This is

called the least-squares method . The value J of Eq. (5.4) is called the residual sum of squares or,

18
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for short, the residual . If we write Eq. (5.1) in the form of Eq. (5.2) using vectors and matrices,

the residual J of Eq. (5.4) is written as Eq. (5.5).

However, the value of x that minimize J may not be determined uniquely if we cannot repeat the

observation a sufficient number of times. In that case, we choose from among multiple possibilities

the value x that minimizes ∥x∥2. This reflects the fact that in many physics and engineering

problems the value ∥x∥2 represents some physical quantity that, like heat generation or required

energy, should desirably be as small as possible. In view of this, we call the value x for which (i)

the residual J is minimized and (ii) |x∥2 is minimum the least-squares solution.

The least-squares method was introduced by the German mathematician Karl Gauss (1777–

1855) for computing the motion of planets from telescope observation data. He also introduced

various numerical techniques for computing simultaneous linear equations and integrations accu-

rately and efficiently, which are now the foundations of today’s numerical analysis. In order to

justify his least-squares method, he established a mathematical model of numerical noise contained

in observation data. Asserting that such a noise distribution is the most “normal”, he called it the

model the normal distribution (see Sec. 6.2 of the next chapter). It plays the fundamental role in

today’s statistical analysis. On the other hand, physicists and engineers often call it the Gaussian

distribution in honor of Gauss. He also made many contribution in pure mathematics, including

the fundamental theorem of algebra (the Gauss theorem). At the same time, he also established

many differential and integral formulas of electromagnetics and fluid dynamics, which are the basis

of today’s physics.

5.2 Computing the Least-squares Solution

In general, the solution that minimizes Eq. (5.5) is obtained by differentiating J by x, letting the

result be 0, and solving the resulting equation ∇xJ = 0, which is called the normal equation.

However, the solution has different forms, depending on whether m > n or m < n and whether r

= n, r = m, or otherwise (Problems 5.1– 5.4). Here, we show that the most general form of the

least-square solution that encompasses all the cases is obtained, using the projection matrix and

the pseudoinverse, without involving differentiation or solving the normal equation.

Let U be the column domain of A of Eq. (5.3), i.e., the space spanned by the columns of A.

This is a subspace of Rm. From Eq. (1.12), we can express the square norm of a vector as the
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sum of the square norm onto subspace U and the square norm of the rejection from it, i.e., the

projection onto the orthogonal complement U⊥. Hence, the residual J of Eq. (5.5) can be written

as Eq. (5.6). Here, we note that P UAx = Ax and P U⊥Ax = 0 hold because Ax is a linear

combination of the columns of A and is included in the column domain U . Since the last term of

Eq. (5.6) does not contain x, the least-squares solution satisfied Eq. (5.7).

This is interpreted as follows. Since Ax ∈ U , Eq. (5.2) evidently has no solution unless b ∈ U .

Hence, we replace the vector b by its projection P Ub onto U . Since the part of b that is outside the

column domain U is P U⊥b, the residual equals ∥P U⊥b∥2 (Fig. 5.1).

We are assuming that A ̸= O, so A has the singular value decomposition of the form of

Eq. (3.4). The left side of the first equation of Eq. (5.7) is rewritten in the form of Eq. (5.8). From

the expression of P of Eq. (3.8), the right side is rewritten in the form of Eq. (5.9). Since Eqs. (5.8)

and (5.8) are expansions in terms of the orthonormal system {ui} (↪→ Appendix A.7), we have

σi⟨vi,x⟩ = ⟨ui, b⟩ and hence Eq. (5.10). If we extend the n-dimensional vectors v1, ..., vr to make

an orthonormal basis {v1, ..., vr, vr+1, ..., vn} of Rn, we can expand x with respect to this basis

in the form of Eq. (5.11) (↪→ Appendix Eq. (A.35)). However, ⟨vr+1,x⟩, ..., ⟨vn,x⟩ are unknown.

Following the principle that we choose the solution that minimizes Eq. (5.11), we adopt the

solution for which ⟨vr+1,x⟩ = · · · = ⟨vn,x⟩ = 0 (↪→ Appendix Eq. (A.36)). As a result, x is

expressed as Eq. (5.13). Namely, the least-squares solution x is given by Eq. (5.14).

Note that, as pointed out in the preceding chapter, we need to know the rank r of A for

computing A−. It should be estimated from the fundamental principles or the fundamental laws

behind the problem in question by inferring what the rank will be if the observation data are ideal.

If no theoretical relationships or constraints among the n variables and m equations o Eq. (5.1),

we can let r = min(n,m). Otherwise, we compute the rank-constrained pseudoinvers, using the

estimated rank r.

5.3 Multiple Equations of One Variable

Consider, as an example, the simultaneous linear equaions of Eq. (5.15) for n = 1, where we assume

that a1, ..., am are not all 0. In vector form, it is written as Eq. (5.16). Since the pseudoinverse

a− of vector a is given by Eq. (4.10), the least-squares solution is given by Eq. (5.17). Formally, it

is rewritten in the form of Eq. (5.18), where terms for x = bi/ai are ignored. This is interpreted to
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be the weighted average of the individual solutions x = bi/ai of Eq. (5.15) with weights a2i . It can

be easily shown that this is the solution that minimizes the residual J of Eq. (5.19) (↪→ Problem

5.5).

5.4 Single Multivariate Equation

For another example, consider a single linear equation of Eq. (5.20), where we assume that a1, ...,

an are not all 0. In vector form, it is written as Eq. (5.21). Since this is rewritten as a⊤x = b, the

least-squares solution if given by (a⊤)−x. A row vector a⊤ has its pseudoinverse a−⊤ (= (a⊤)−

= (a−)⊤) in the form of Eq. (4.11). Hence, the least-squares solution is given by Eq. (5.22). It is

easy to see that ⟨a,x⟩ = b holds. Since the ith component of Eq. (5.22) is xi = bai/∥a∥2, we can

write the ith term on the left side of Eq. (5.20) is given by Eq. (5.23). This means that the n terms

on the left side of Eq. (5.20) are portions of b on the right side distributed in proportion to the

ratioa2i : · · · : a2n. It is easy to confirm that Eq. (5.22) is the solution that minimizes ∥x∥2 subject

to the condition that x satisfies Eq. (5.20) (↪→ Problem 5.6).

Problems of Chapter 5

5.1. Show that if m > n and if the columns of A are linearly independent, i.e., r = n, then

(1) the least-squares solution x is given by Eq. (5.24) and

(2) the residual J is written in the form of Eq. (5.25).

5.2. Show that if m > n = r, Eq. (5.26) holds.

5.3. Show that if n > m and if the rows of A are linearly independent, i.e., r = m, then the

residual J is 0 and the least-squares solution x is given by Eq. (5.27).

5.4. Show that if n > m = r, Eq. (5.28) holds.

5.5. Show that the solution x given by Eq. (5.17) minimizes the sum of square of Eq. (5.19).

5.6. Show that Eq. (5.22) minimizes ∥x∥2 over all x that satisfy Eq. (5.20).
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Probability Distribution of Vectors

6.1 Covariance Matrices of Errors

A vector x is said to be a random variable if its value is not deterministic but is specified by

some (or assumed) probability distribution. In physics and engineering, we often regard the values

obtained by measurement devices and sensors as random variables. Usually, an observed value x is

interpreted to be the sum of its true value x̄ (a definitive value) and some noise term ∆x (a random

variable) in the form of Eq. (6.1). We usually assume that the noise term ∆x has expectation, or

average, 0; if it has an expectation not equal to 0, we can model its probability distribution after

subtracting it. Namely we assume that Eq. (6.1) holds, where E[ · ] denotes expectation with

respect to the probability distribution of the noise. We define the covariance matrix of the noise by

Eq. (6.2) (↪→ Problem 6.1). From this definition, we see that Σ is a positive semidefinite matrix,

i.e., its eigenvalues are positive or zero (↪→ Problem 6.2). From Eq. (6.3), the mean square of the

noise term ∆x is given by Eq. (6.3), i.e., the trace of the covariance matrix Σ (↪→ Problem 6.3).

Let σ2
1, ..., σ

2
n be the nonnegative eigenvalues of the covariance matrix Σ, and σ2

1, ..., σ
2
n the

orthonormal system of the corresponding unit eigenvectors. Then, Σ has the spectral decomposition

in the form of Eq. (6.5). We call the directions of the vectors u1, ..., un the principal axes of the noise

distribution. The values σ2
1, ..., σ

2
n indicate the variance of the noise in the respective directions,

i.e., σ1, ..., σn are their standard deviations. In fact, the magnitude of the noise term ∆x along ui,

i.e., the projected length in the direction of ui is given by ⟨∆x,ui⟩, as shown in Eq. (1.16), and its

mean square is given by Eq. (6.6). If all the eigenvalues are equal, i.e., if σ2
1 = · · · = σ2

n (= σ2),

the noise is said to be isotropic, in which case the noise occurence is equally likely in any direction

and the covariance matrix Σ of Eq. (6.3) ahs the form of Eq. (6.7). ↪→ Eq. (2.4)).

22
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Otherwise, the noise is said to be anisotropic, in which case the likelihood of the occurence of

x depends on the direction. In particular, the the eigenvector umax for the maximum eigenvalue

σ2
max indicate the direction along which the noise is most likely to occur, and σ2

max is the variance

in that direction. This is because the projected length of the noise term ∆x onto the direction of

a unit vector u is given by ⟨∆x,u⟩ (↪→ Sec. 1.4), and its square means is, as shown in Eq. (6.6),

E[⟨∆x,u⟩2] = ⟨u,Σu⟩, which is a quadratic form of the symmetric matrix Σ. Hence, the unit

vector u that maximize it is given by the unit eigenvector umax for the maximum eigenvalue σmax

(↪→ Appendix A.10).

If there exists an eigenvector ui for which the eigenvalue is 0, we infer that no noise occurs

in that direction. In practice, this means that the variation of x in that direction is physically

prohibited.

6.2 Normal Distribution of Vectors

A typical probability distribution is the normal distribution. In the n-dimensional space Rn, it is

specified by the expectation x̄ and the covariance matrix Σ alone. Its distribution density has the

form of Eq. (6.8), where C is a normalization constant set so that the integration over the entire

space Rn equals 1 (to be precise, it is 1/
√

(2π)nσ2
1 · · ·σ2

n). The distribution extends to infinity, and

the covariance matrix Σ is assumed to be positive definite (i.e., all the eigenvalues are positive). It

satisfies the identities of Eq. (6.9), where
∫
Rn(· · · )dx denotes integration over the entire Rn.

If a surface on which the probability density p(x) is constant has the form of Eq. (6.10), it is

called the error ellipsoid (Fig. 6.1). This is an ellipsoid centered on x̄; it is also called the error

ellipse for two variables and the confidence interval for a single variable. Each of the eigenvectors

of the covariance matrix Σ is the axis symmetry, and the radius in that direction is the standard

deviation σi in that direction (↪→ Problems 6.4 and 6.5). Thus, the error ellipse visualizes directional

dependence of the likelihood of error occurrence.

In some engineering applications, including computer graphics and computer vision, we often

consider covariance matrices which are not positive definite. The fact that the covariance matrix has

eigenvalue 0 means that the disturbance in the corresponding eigenvector is prohibited. Suppose,

for example, we want to evaluate the uncertainty of the position of a particular point on the display

surface or in the image. Then, the noise disturbance occurs only within a two-dimensional plane,
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and the perpendicular displacement is prohibited. It seems then that it is sufficient to define a two-

dimensional coordinate system in that plane and consider a normal distribution of two variables.

However, it is often more appropriate to regard that plane as a surface in the three-dimensional

space. This is because for such analysis, we define a particular point, called the viewpoint , in the

three-dimensional scene, which corresponds to the position of the human eye or the camera lens

center, and analyze the geometric properties of the figures on the display surface or in the image,

which is identified with the camera image plane, by regarding them as a perspective view of the

three-dimensional scene (Fig. 6.2).

Considering such applications, let r be the rank of the n×n covariance matrix Σ, and u1, ..., ur

the orthonormal system of its unit eigenvectors for positive eigenvalues σ2
1, ..., σ

2
r (> 0). We denote

the r-dimensional subspace they span by U . In other words, we are assuming that all stochastic

deviations occur within U and that no displacements are allowed in the direction of U⊥. In this

case, the probability density of the normal distribution with expectation x̄ and covariance matrix

Σ has the form of Eq. (6.11), where Σ− is the pseudoinvers of the covariance matrix Σ, and C is

a normalization constant determined so that the integration over U , not over the entire Rn, equals

1 (to be precise, it is 1/
√

(2π)rσ2
1 · · ·σ2

r ). Then, the relations of Eq. (6.12) hold, where
∫
U (· · · )dx

denotes integration over U .

The covariance matrix Σ and its pseudoinverse Σ− have the spectral decomposition in the form

of Eq. (6.13). Hence, the projection matirx P U (=
∑r

i=1 uiu
⊤
i ) onto the subspace U satisfies the

relations of Eq. (6.14), and hence Eq. (6.15) holds (↪→ Appendix Eq. (A.27)). In other words, the

use of the pseudoinverse Σ− means that we are considering the normal distribution not of x−x̄ but

of its projection P U (x− x̄) onto U . Within U , the distribution is regarded as a normal distribution

with variance σ2
i (> 0) in each principal axis direction, defining a covariance matrix that is positive

definite within U .

Example. Normal distribution over the image plane

The normal distribution over the image plane is represented as follows. Let (x̄, ȳ) be the true

position of an observed point (x, y), and write (x, y) = (x̄ + ∆x, ȳ + ∆y). We assume that the

noise terms ∆x and ∆y are subject to a normal distribution with expectation is 0 having the

variance/covariance given by Eq. (6.16). We regard the image plane, or the display surface, as

the plane z = 1 in the three-dimensional space (Fig. 6.3). If we represent points (x, y) and (x̄, ȳ)
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by three-dimensional vectors of Eq. (6.17)1, the probability density of x is written in the form of

Eq. (6.18), where the covariance matrix Σ has the form of Eq. (6.19).

6.3 Probability Distribution over a Sphere

Applications which involve non-positive definite covariance matrices, other than distributions over

planes, include distributions over a “sphere”. In some problems of physics and engineering, sensor

data are directional, i.e., only orientations can be measured. If we normalize the direction vector

to unit norm, an observed datum can be regarded as a point over a unit sphere.

A typical example is observation using images alone. A camera can identify the direction of

incoming ray of light, but the depth, i.e., the distance to the object, is unknown. This is the case

however many cameras are used. In fact, if we move the camera over a short distance relative to a

small object nearby or over a long distance relative to a large object in the distance, the observed

image is the same. Today, various computer vision techniques are established for reconstructing

the shape of three-dimensional scenes and objects using camera images, the absolute scale of the

reconstructed shape is indeterminate. This scale indeterminacy is not limited to the reconstructed

shape. Many types of matrix that characterize the structure of the scene can be computed from

images, but they are often determined up to scale2. Usually, such matrices are normalized so that

the sum of the squares of the elements is 1. If we view an n × n matrix as an n2-dimensional

vector consisting of the n2 matrix elements, it can be regarded as a point on a unit sphere in the

n2-dimensional space after normalization.

Considering these, we assume that the measured value x is an n-dimensional unit vector. It

is identified with a point on the (n − 1)-dimensional unit sphere Sn−1 in the n-dimensional space

Rn, and a probability distribution is defined around its true position x̄. However, mathematical

analysis is generally very difficult. First of all, the normal distribution, which is the most common

distribution, cannot be defined, because the sphere Sn−1 is of finite size while the normal distri-

bution extends infinitely over the entire space Rn. In practical problems, however, today’s sensors

including cameras are highly accurate so that the noise component ∆x of x is usually very small3.

1This is equivalent to representing a point in the plane by its “homogeneous coordinates” as done in projective
geometry.

2Typical examples include matrices called the “fundamental matrix” and the “homography matrix”.
3For example, the accuracy in locating a particular point in an image using an image processing algorithm is

usually around 1∼3 pixels.
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Consequently, the distribution of x is thought to be limited to a small region surrounding x̄ on the

sphere Sn−1. Hence, we can view this as a distribution over the tangent plane to Sn−1 at x̄ (Fig.

6.4). We can then define the expectation and the covariance matrix of x and hence the normal

distribution of x.

The tangent plane to Sn−1 at x̄ is an (n − 1)-dimensional (hyper-) plane, whose unit surface

normal is x̄ itself. Hence, from Eq. (1.17) the projection matrix onto the tangent plane is given

by Eq. (6.20). Consider, as a practical application, the reliability evaluation of the measurement

x. Suppose we repeat the measurement and observe x1, ..., xN as the result. Or suppose you

want to evaluate the performance of a computational procedure for computing x. You artificially

add random noise to the original observations and compute x from the noisy data. Let x1, ..., xN

the results for different noise. In either case, you want to evaluate how x1, ..., xN differ from the

theoretical value x̄.

Let xα ∈ Sn−1 be the αth measurement. Its projection onto the tangent plane is given by

Eq. (6.21) (Fig. 6.5). The sample mean m and the sample covariance matrix S are computed

by Eq. (6.22), where the expression“sample · · · ” means replacing the integration in expectation

computations, such as Eqs. (6.9) and (6.12), with respect to the true probability distribution by

the arithmetic average over all “realizations”, for which many different terms are used including

observations, measurements, samples, and data.

The sample mean m indicates the averatge deviation from the true positio x̄ on the tangent

plane. Its magnitude ∥m∥, which is ideally 0, is called the bias4. The diagonal element Sii of the

sample covariance matrix S is the samle variance of the ith component x̂iα of x̂α, and the non-

diagonal element Sij , i ̸= j is the sample covariance of x̂iα and x̂jα (↪→ Problem 6.6)). The square

root of the trace of the sample covariance matrix S, given by Eq. (6.23) is called the root-mean-

square error, or the RMS error for short, which is a typical indicator of the observation accuracy

or computational performance.

From the definition of P x̄ of Eq. (6.21), the sample covariance matrix S satisfies Eq. (6.24)

and has rank n − 1. If the distribution of x is regarded as a normal distribution, its empirical

probability density is given by Eq. (6.25), where C is the normalization constant determined so

that integratio over the tangent plane is 1. The expression “empirical · · · ” means replacing the

4For a random variable, this term usually means the deviation of its expectation from the true value. If it is 0,
the random variable is said to be “unbiased”. For realizations, the bias means the deviation of the samle mean from
its true value. Here, we are using this term in the realization sense.
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parameters included in the theoretical expression by values estimated from realizations like the

sample mean and the sample covariance matrix.

Problems of Chapter 6

6.1. Show that If we let x =
(
xi

)
, the diagonal element Σii of the covariance matrix Σ of Eq. (6.3)

gives the variance of xi and the non-diagonal element Σij , i ̸= j gives the covariance of xi

and xj .

6.2. Show that the matrix X = xx⊤ defined from a vector x is a positive semidefinite symmetric

matrix, i.e., a symmetric matrix whose eigenvalues are positive or 0. Also show that this is

the case for the matrix X =
∑N

α=1 xαx
⊤
α defined by multiple vectors x1, ..., xN , too.

6.3. Show that tr(xx⊤) = ∥x∥2 holds for any vector x. Also show that tr(
∑N

α=1 xαx
⊤
α ) =∑N

α=1 ∥xα∥2 holds for any multiple vectors x1, ..., xN .

6.4. Write down explicitly the surface of Eq. (6.10) in three dimensions when Σ is a diagonal

matrix.

6.5. Show that the ellipsoid given by Eq. (6.10) has its center at the expectation x̄ with the

eigenvectors ui of the covariance matrix Σ as its axes of symmetry and that the radius in

each directions is the standard deviation σi of the error in that direction.

6.6. Write x̂α =
(
x̂iα

)
, and show that the diagonal element Sii of the sample covariance matrix

S of Eq. (6.22) is the variance of x̂iα and its non-diagonal element Sij , i ̸= j is the sample

covariance of xiα and xjα.



Chapter 7

Fitting Spaces

7.1 Fitting Subspaces

Given N points x1, ..., xN in the n-dimensional space Rn, we consider the problem of finding an

r-dimensional subspace that is the closest to them, where we assume that N ≥ r. If n = 3 and

r = 1, for example, this is the problem of line fitting: we want to find a line passing through the

origin that is as close to the given N points as possible. For n = 3 and r = 2, this is plane fitting:

we compute a plane passing through the origin that is close o the given N points (Fig. 7.1). Here,

the “closeness” is measured by the sum of square distances.

Finding a subspace is equivalent to finding a basis that spans the subpace. Let u1, ..., ur be

an orthonormal basis of the r-dimensional subspace U to be fitted, and let {u1, ..., un} be its

extension to an orthonormal basis of the entire Rn. If follows that, put another way, the problem

is to find an orthonormal basis {ui} of Rn such that the subspace U spanned by its first r vectors

u1, ..., ur is as close to the given N points as possible.

The distance of each point xα to the subspace U equals the length of the rejection P U⊥xα

from U からの反 (Fig. 7.2), where P U =
∑n

i=r+1 uiu
⊤
i is the projection matrix onto the orthogonal

complement U⊥ of U (↪→ Eq. (1.11)). Hence, the sum of square distances of the N points x1, ...,

xN from the subspace U is given by Eq. (7.1). From Eq. (1.12), this is rewritten as Eq. (7.2).

Hence, minimizing the sum of squares of Eq. (7.1) is equivalent to minimizing the sum of square

projected lengths onto the subspace U given by Eq. (7.3).

28
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7.2 Hierarchical Fitting

First, we consider the problem of fitting a one-dimensional subspace. Let v (a unit vector) be its

basis. The projected length of each point xα onto that direction is ⟨xα,v⟩ (↪→ Eq. (1.16), Fig. 7.3).

Hence, the sum of their squares over all points is given by Eq. (7.4), where we define the n × n

matrix Σ by Eq. (7.5). This matrix is called by many different names 1, including the “moment

matrix” and the “scatter matrix”. In the following, we call it the covariance matrix , borrowing

from statistics, at the risk of possible confusion but for convenience’ sake. In statistics terms, this

equals the sample covariance matrix of the N sample data xα around the origin, i.e., by regarding

the origin as the mean, multiplied by N (↪→ Eq. (6.22)).

Equation (7.4) is a quadratic form of a symmetric matrix Σ in unit vector v. Hence, the vector

v that maximizes this is the unit eigenvector of the matrix Σ for the maximum eigenvalue, and the

resulting value of K equals that maximum eigenvalue of S (↪→ Appendix A.10). By construction,

Σ is a positive semidefinite symmetric matrix, and its eigenvalues are all nonnegative (↪→ Problem

6.2). Let σ2
1 ≥ · · · ≥ σ2

n ≥ 0 be its eigenvalues. Then, Σ has the spectral decomposition of Eq. (7.6)

(↪→ Eq. (2.3)). From this observation, we conclude that the basis of the one-dimensional subspace

U1 that best fits to the point set {xα}, α = 1, ..., N , is given by v = u1 and that the resulting sum

of the square projected lengths equals σ2
1.

The obtained direction u1 indicates the orientation in which the N points {xα} spread to the

largest extent (Fig. 7.4). If the set {xα} approximately spreads linearly, its distribution is well

described by a line in the direction of u1. However, if the points spread in other directions, too,

this approximation is not sufficient. So, we want to find a direction v that is orthogonal to u1

along which the sum of the square projected lengths is maximized. The square projected length

onto the direction of v is again given by Eq. (7.4). The unit vector v that minimizes it subject

to the condition ⟨v,u1⟩ = 0 is given by u2 of the spectral decomposition Eq. (7.6) of Σ, and the

corresponding value of K equals σ2
2 (↪→ Appendix A.10). The vector u2 indicates the direction in

which the spread of the N points {xα} is the second largest.

From this observation, we conclude that the basis of the two-dimensional subspace U2 that best

fits to {xα} is given by u1 and u2. Since u1 and u2 are mutually orthogonal, the sum of the square

projected lengths K onto U is the sum of the corresponding values for u1 and u2, namely K =

1The terms “moment matrix” and “scatter matrix” are both borrowed from physics.
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σ2
1 + σ2

2.

By the same argument, we see that the direction in which the spread is the third largest is

given by u3 in Eq. (7,6); u1, u2, and u3 span the subspace U3 that best fits to {xα}, and the sum

of the projected lengths is K = σ2
1 + σ2

2 + σ2
3. Repeating this argment, we see that the basis of

the r-dimensional subspace Ur that best fits to {xα} is u1, ..., ur and that the sum of the square

projected lenghts is K = σ2
1 + · · ·+ σ2

r .

From Eqs. (7.2) and (7,3), we obtain J =
∑N

α=1 ∥xα∥2−K. From Eq. (7.5), we see that trΣ =∑N
α=1 ∥xα∥2 (↪→ Problem 6.3), but since Eq. (7.7) holds from Eq. (7.6) (↪→ Problem 7.1). Hence,

the sum of square distance to Ur is given by Eq. (7.8), which we call the residual sum of squares

or the residual for short. Since σ2
1 ≥ · · · ≥ σ2

n, we obtain a smaller residual J as we increase the

dimension r of the fitting.

7.3 Fitting by Singular Value Decomposition

The argument of the preceding section shows that an r-dimensional subspace Ur that best fits to

N points {xα}, α = 1, ..., N , is obtained by first computing the covariance matrix Ur of Eq. (7.5)

and then computing the spectral decomposition of Eq.(7.6).

On the other hand, consider the n×N matrix X of Eq. (7.9) consisting of vectors xα, α = 1,

..., N , as its columns. Then, the covariance matrix Σ of Eq. (7.5) is given by Eq. (7.10). Since we

are assuming that N ≥ n, the singular value decomposition of X is given by Eq. (7.11), because

the eigenvalues of Σ = XX⊤ equals the square eigenvalues of X (↪→ Eq. (3.2)). Moreover, the

singular vectors ui and vi are, respectively, the eigenvectors of XX⊤ and X⊤X. It follows that

for fitting an r-dimensional subspace Ur to N points {xα}, α = 1, ..., N , we may alternatively

compute the singular value decomposition of the matrix X of Eq. (7.9) defined by the N points in

the form of Eq. (7.11). Then, the left singular vectors u1, ..., ur provide the basis of Ur, and the

residual is given by J =
∑n

i=r+1 σ
2
i .

Thus, the use of the spectral decomposition and the use of the singular value decomposition

both give the same result. In actual applications, however, we should use the singular value de-

composition. This is for the sake of computational efficiency. Computations involving matrices and

vectors consist of computations of “sums of products”. Computing the sum of n products requires

n multiplications and n− 1 additions/subtractions. Hence, disregarding the term −1, we can view
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the number of multiplications and the number of additions/subtractions as approximately equal.

For complexity analysis, therefore, it is sufficient to evaluate the number of multiplications. For

spectral decomposition, we first compute the covariance matrix Σ by Eq. (7.10), which requires

n2N multiplication (this is the same if Eq. (7.5) is used). The complexity of the spectral decompo-

sition, i.e. the computation of eigenvalues and eigenvectors, of an n× n may differ from algorithm

to algorithm but is approximately n3. Hence, the total complexity of computing Σ and its spectral

decomposition is approximately n2(N+n). On the other hand, the complexity of the singular value

decomposition of an n×N matrix is approximately n2N for n ≤ N and approximately nN2 for N

≤ n. Hence, the singular value decomposition runs overwhelmingly efficient when N ≪ n. Even if

for n ≤ N , we can save nearly equivalent time for eigenvalue and eigenvector computation of the

covariance matrix.

This time saving is often underestimated. Pattern information processing involves a large

amount of data, and usually iterations are required for accuracy improvement. It is not uncommon,

for instance, that the number of point data extracted from multiple images is as large as hundreds

of thousands. In such a case, several hours of computation can sometimes be reduced to several

seconds by simply replacing spectral decomposition computation by singular value computation.

7.4 Fitting Affine Spaces

Subspace fitting is a generalization of fitting to a point sequence a line passing through the origin

and a plane passing through the origin. In practice, however, we often need to fit a line that

does not pass through the origin and a plane that does not pass through the origin. This type of

fitting is generalized to “afine space fitting”. An affine space is a translation of a subspace. An

r-dimensional affine space Ar is specified by a point g in the n-dimensional space Rn and r linearly

independent vectors u1, ..., ur starting from it, and is the set of all points that are written as

Eq. (7.12) for arbitrary c1, ..., cr (Fig. 7.5). Without losing generality, we can let the basis {ui},

i = 1, ..., r, be an orthonormal system. Alternatively, we can define an r-dimensional affine space

by specifying r + 1 points in the n-dimensional space Rn through which it passes, in such a way

that whichever point of it is regarded as the origin O, the remaining r points span an r-dimensional

subspace. Such r + 1 points are said be in general position (↪→ Problem 7.2).

Given N points {xα}, α = 1, ..., N , in Rn, we consider the problem of finding an r-dimensional
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afine space Ar that approximates them, where we assume that N ≥ r + 1. The affine space Ar is

specified by a point g it passes through and an orthonormal basis {ui} starting from it.

First, we need to specify the point g. This can be regarded as a problem of fitting an 0-

dimensional affine space (= one point) to the N points {xα}. So, we choose g to be a point that

minimizes the sum of square distances
∑N

α=1 ∥xα − g∥2. Such a point is given by the centroid of

the N points {xα} given by Eq. (7.13) (↪→ Problem 7.3).

If g is determined, all we need to do is, according to the argument in the preceding sections,

fit an r-dimensional subspace to vectors {xα − g}, regarding g as the origin. Namely, we compute

the covariance matrix Σ of Eq. (7.14) around g (↪→ Problem 7.4). If its spectral decomposition

is written in the form of Eq. (7.6), the eigenvectors u1, ..., ur span the affine space Ar around

g. The residual, i.e., the sum of square distances of individual points xα to Ar, is given by K=

σ2
r+1 + · · ·+ σ2

n.

However, as pointed out in the preceding section, it is more efficient to compute the singular

value decomposition of the matrix of Eq. (7.15) consisting of data points, without computing the

covariance matrix , and then obtaining the basis vectors u1, ..., ur.

Example. Line fitting in the plane

We want to fit a line to N points (x1, y1), ..., (xN , yN ) given in the plane, First, we compute

the centroid (gx, gy) =
∑N

α=1(xα, yα)/N and difine the matrix X of Eq. (7.16). Its singular value

decomposition has the form of Eq. (7.17). This indicates that the line to be fitted passes through

(gx, gy) and extends in the direction of (u11, u21)
⊤ (Fig. 7.6). The equation of the fitted line is

given by Eq. (7.18).

Example. Plane fitting in the space

We want to fit a plane to N points (x1, y1, z1), ..., (xN , yN , zN ) given in the space. First, we

compute the centroid (gx, gy, gz) =
∑N

α=1(xα, yα, zα)/N and define the matrix X of Eq. (7.19). Its

singular decomposition has the form of Eq. (7.20). This indicates that the plane to be fitted passes

through (gx, gy, gz) and extends in the directions of (u11, u21, u31)
⊤ and (u12, u22, u32)

⊤ (Fig. 7.7).

The vector (u13, u23, u33)
⊤, which is orthogonal to both of them, is the unit surface normal, and

the equation of the plane is given by Eq. (7.21).

The technique of computing the spectral decomposition of the covariance matrix of Eq. (7.14)
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and hierarchically fitting r-dimensional affine spaces Ar, which is mathematically equivalent to

subpace fitting, is used in various problems of engineering and is called by many different names.

For signal and pattern recognition applications, it is called the Karhunen-Loéve expansion, or

the KL-expansion for short.. By this, we can represent signals and patterns with respect to as

small a number of basis vectors as possible as long as the residual J can be tolerable and make the

transmission and display of the data efficient. This is called data compression or image compression.

In statistics, it is called the principal component analysis: we can grasp the characteristics of

multidimensional statistical data, extract a small number of statistics that can describe them well,

and do predictions and tests. In computer vision applications, we describe the camera images and

the three-dimensional structures reconstructed from them in terms of lines and planes optimally

fitted to them. We can also reduce many video analysis problems to fitting of subspaces and affine

spaces in a high-dimensional data space.

Problems of Chapter 7

7.1. Let λ1, ..., λn be the eigenvalues of an n × n symmetric matrix A. Show that Eq. (7.22)

holds.

7.2. Show that the condition for n + 1 points x0, x1, ..., xn in Rn to be in general position is

given by Eq. (7.23), where the left side is the determinant of an (n+ 1)× (n+ 1) matrix.

7.3. Show that the point g that minimizes the square sum
∑N

α=1 ∥xα − g∥2 for N points {xα}, α

= 1, ..., N , is given by the centroind g given by Eq. (7.13).

7.4. Show that the covariance matrix Σ of Eq. (7.14) is also written in the form of Eq. (7.24).
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Matrix Factorization

8.1 Matrix Factorization

Suppose we want to express an m× n matrix A as the product of two matrices A1 and A2 in the

form of Eq. (8.1), where A1 and A2 are m × r and r × n matrices, respectively. We assume r ≤

m, n. We call this problem matrix factorization. When such a problem appears in engineering

applications, usually some properties that A1 and A2 are required to satisfy are imposed.

The decomposition of the form of Eq. (8.1) is not unique. In fact, if such matrices A1 and A2

are obtained, the matrices in the form of Eq. (8.2) for an arbitrary r × r nonsingular matrix C

satisfies A1A2 = A′
1A

′
2. In a real application, we first tentatively compute some matrices A1 and

A2 that satisfy Eq. (8.1) and then find the nonsingular matrix C in such a way that the required

properties imposed on the matrices A′
1 and A′

2 of Eq. (8.2) are satisfied.

If no special dependencies exist among columns and rows of a matrix, its rank generally coincides

with the smaller of the numbers of columns and rows. Assume that matrices A′
1 and A′

2 both have

rank r. It is known that the rank of the product of two matrices does not exceed the rank of either

one. Namely, Eq. (8.3) holds for any matrices A and B for which their product can be defined.

This is shown as follows. Let A and B be l ×m and m × n matrices, respectively. An l ×m

matrix A defines a linear mapping from Rm to Rl. We write A(Rm) for the image of Rm by

A, i.e., the subspace spanned by the vectors obtained by mapping the basis of Rm by A. The

dimension of A(Rm) (= the number of independent columns of A) is rank(A). Similarly, an m×n

matrix B defines a linear mapping from Rn to Rm, and the dimension of B(Rn) is rank(B). On

the other hand, since (AB)(Rn) is obtained by first mapping Rn by B and then mapping it by

A, it is a subset of A(Rm). Hence, the dimension of (AB)(Rn) (= rank(AB)) does not exceed

34
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the dimension of A(Rm) (= rank(A)). Thus, we obtain rank(AB) ≤ rank(A). Using the same

argument, we obtain rank(B⊤A⊤) ≤ rank(B⊤). However, the number of linearly independent

columns of a matrix equals the number of its linearly independent rows. Hence, rank(B⊤) =

rank(B) and rank(B⊤A⊤) = rank(AB). Consequently, we also obtain rank(AB) ≤ rank(B).

From this observation, we find that for computing the factorization of Eq. (8.1), the m × n

matrix A must have rank r or less. However, if A involves measurement data, its rank is generally

equal to either m or n (the smaller one). Hence, if r < m, n, the decomposition of Eq. (8.1) is

not possible. In such a case, we compute such A1 and A2 that the decomposition of Eq. (8.1)

approximately holds (↪→ Problem 8.1). This is done by minimally modify A so that it has rank r.

To be specific, we constrain the rank as discussed in Sec. 4.4 and replace A by (A)r (↪→ Footnote

3 of Chapter 4).

Then, we can determine A1 and A2 that satisfy (A)r = A1A2. This decomposition is not

unique. A simple way to obtain a candidate solution is to first compute the singular value de-

composition of (A)r in the form of Eq.(8.4), as in Eq. (3.10), and then decompose the diagonal

matrix Σ in the form Σ =Σ1Σ2. Finally, we obtain A1 and A2 in the form of Eq. (8.5) Typical

decompositions of Σ are given by (i), (ii), and (iii) of Eq. (8.6). The diagonal matrix Σ1 = Σ2 in

(ii) is also written as
√
Σ. From this, we also see that the condition for an m×n matrix A to have

rank r or less (r ≤ m,n) is that it can be written as A = A1A2 for some m × r matrix A1 and

some r × n matrix A2.

8.2 Factorization for Motion Image Analysis

Suppose we take images of N points (Xα, Yα, Zα), α = 1, ..., N , in the three-dimensional space,

using M cameras (or equivalently moving one camera). Suppose the αth point is projected to

(xακ, yακ) in the image plane of the κth camera (Fig. 8.2).

We define an XY Z coordinate system in the scene whose origin O coincides with the centroid of

the N points, so that Eq. (8.7) holds. We assume that all the points are seen by all the cameras and

define an image coordinate system in each image whose origin (0, 0) coincides with the centroid of

the N image positions, so that Eq (8.8) holds. Then, it is known that (Xα, Yα, Zα) and (xακ, yακ)

approximately satisfy the relationship of Eq. (8.9), where Πκ is a 2× 3 matrix, called the camera

matrix , determined by the position and orientation of the κth camera and its internal parameters.
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Strictly speaking, the camera imaging geometry is described by a nonlinear relationship, called

perspective projection. If we ignore the perspective effect, which causes objects in the distance to

look small, we obtain the linear approximation of Eq. (8.9). It is known that this approximation

holds well when the objects we are viewing are relatively in the distance, e.g., persons standing

several meters away, and zoomed in within a relatively small region of the image. Hypothetical

cameras for which Eq. (8.9) hold are said to be affine.

Arrange all observed points (xακ, yακ) κ = 1, ..., M , α = 1, ..., N , in all images in an 2M ×N

matrix in the form of Eq. (8.10), which we call the observation matrix . Arrange all camera matrices

Πκ, κ = 1, ..., M , and all three-dimensional coordinates (Xα, Yα, Zα), α = 1, ..., N , in the matrix

form of Eq. (8.11). We call the 2M × 3 matrix M the motion matrix and the 3×N matrix N the

shape matrix .

From the definition of the matrix W of Eq. (8.10) and the definition of the matrices M and N

of Eq. (8.11), the relationship of Eq. (8.12) holds (↪→ Problem 8.2). It follows that if the matrix W

obtained from the coordinates of the points observed in images is decomposed into the product of

the matrices M and S by the method described in the preceding section, all the camera matrices

and all the three-dimensional point positions are obtained. This technique of reconstructing the

three-dimensional shape from images is called the factorization method .

However, the solution is not unique, as pointed out in the preceding section. If M̄ and S̄ are

the true motion matrix and the shape matrix, respectively, the matrices M̄ and S̄ obtained by the

factorization method are related to M̄ and S̄ by Eq. (8.13) for some 3× 3 nonsingular matrix C.

The second equation of Eq. (8.13) states that each column (Xα, Yα, Zα)
⊤ of S equals multiplication

of each column (X̄α, Ȳα, Z̄α)
⊤ of S̄ by some nonsingular matrix C. It follows that the computed

three-dimensional shape is a linear transformation of the true shape. Since the absolute position is

indeterminate1, it is an affine transformation of the true shape.

Affine transformations preserve collinearity and coplanarity (Fig. 8.3), i.e., collinear points are

mapped to collinear points, and coplanar points are mapped to coplanar points. As a result,

parallel lines and planes are mapped to parallel lines planes. However, scales and angles may

change. For example, a cube is mapped to a parallelepiped. Three-dimensional reconstruction up

to indeterminacy of affine transformations is called an affine reconstruction.

1The origin of the coordinate system in the scene is defined by Eq. (8.7) for the sake of computational convenience,
the absolute position in the scene is indeterminate.
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In order to remove this indeterminacy to obtain a shape with correct angles, which we call a

Euclidean reconstruction2, we need to specify the indeterminate matrix C, using some knowledge or

constraint, which we call the metric condition. One possibility is the use of the knowledge about the

three-dimensional scene. For example, we require a particular edge to be orthogonal to a particular

edge and determine the matrix C so that the second equation of Eq. (8.13) is satisfied. Another

possibility is the use of the knowledge about the camera. For this, we model the camera imaging

geometry in a parametric form and express each Πκ in terms of unknown parameters. Then, we

determine the matrix C so that the first equation of Eq. (8.13) is satisfied. To be specific, the

first equation of Eq. (8.13) leads to multiple equalities, from which we can determine the unknown

paramers of each camera matrix Πκ and the unknown matrix C. To this end, various parametric

affine camera models are proposed3.

Problems of Chapter 8

8.1. Show that an m× n matrix A has rank r or less (r ≤ m,n) if and only if it is written as A

= A1A2 for some m× r matrix A1 and some r × n matrix A2.

8.2. (1) The αth column of Eq. (8.10) lists the x- and y-coordinates of the αth point over the M

images, which can be seen as the “trajectory” of the αth point. Namely, the trajectory

of each point is a point in a 2M -dimensional space. Show that Eq. (8.12) implies that

the N points that represent the trajectories in the 2M -dimensional space are all included

in a three-dimensional subspace.

(2) Show how to compute an orthonormal basis of that three-dimensional subspace, by tak-

ing into consideration that the decomposition of Eq. (8.12) is for hypothetical cameras,

i.e., affine cameras, and that Eq. (8.12) does not exactly hold for the observation matrix

W obtained from real cameras.

2Since the absolute scale is indeterminate from images alone (↪→ Sec. 6.3), we should call it a “similar” recon-
struction to be strict, but this term is widely used.

3Typical affine camera models include “orthographic projection”, “weak perspective projection”, and “paraper-
spective projection”.



Appendix A

Fundamentals of Linear Algebra

A.1 Linear Mappings and Matrices

A mapping f( · ) from the n-dimensional space Rn to the m-dimensional space Rm is a linear

mapping if Eq. (A.1) holds for arbitrary u, v ∈ Rn and an arbitrary real number c, i.e., if a sum

corresponds to a sum and a constant multiple corresponds to a constant multiple.

Suppose a linear mapping f( · ) maps a vector u ∈ Rn to a vector u′ ∈ Rm. If u is a column

vector whose ith component is ui, which we abbreviate to u =
(
ui

)
, we can write it as Eq. (A.2),

where ej is the n-dimensional vector whose jth component is 1 and whose other components are

all 0. We call the set {e1, ..., en} the natural basis of Rn. Similarly, we can write the vector u′ =(
u′i

)
∈ Rm in the form of Eq. (A.3), using the natural basis {e′1, ..., e′m} of Rm.

The mapping of u ∈ Rn to u′ ∈ Rm by f( · ) is given by Eq. (A.4). Since f(ej) is a vector of

Rm, it is expressed as a linear combination of the natural basis {e′1, ..., e′m} of Rm in the form of

Eq. (A.5). Using this, we obtain Eq. (A.6). Comparing this with Eq. (A.3), we see that Eq. (A.7)

holds. This means that the vector u′ =
(
u′i

)
is obtained by multiplying the vector u =

(
ui

)
by

a matrix whose (i, j) element is aij , which we abbreviate to
(
aij

)
, i.e., Eq. (A.8) holds. Thus, we

conclude that a linear mapping from Rn to Rm is represented by multiplication of an m×n matrix

A =
(
aij

)
.

A.2 Inner Product and Norm

The inner product ⟨a, b⟩ of vectors a =
(
ai

)
and b =

(
bi

)
is defined by Eq. (A.9). It has the

properties of (i), (ii), and (iii), i.e., symmetry , linearity , and positivity , respectively.

The norm ∥a∥ of vector a =
(
ai

)
is defined by Eq. (A.10). A vector with unit norm is said to

38
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be a unit vector . The norm has the properties of (i), (ii), and (iii), i.e. (i) positivity with equality

holding only for a = 0, (ii) the Schwarz inequality , and (iii) the triangle inequality , respectively.

Vector a and b are said to be orthogonal if ⟨a, b⟩ = 0. The triangle inequality is obtained

by applying the Schwartz inequality (see [7] for the derivation) to Eq. (A.11) and noting that

Eq. (A.11) is larger than or equal to ∥a∥2 − 2∥a∥ · ∥b∥+ ∥b∥2 = (∥a∥ − ∥b∥)2 and smaller than or

equal to ∥a∥2 + 2∥a∥ · ∥b∥+ ∥b∥2 = (∥a∥+ ∥b∥)2. From this, we also see that if ⟨a, b⟩ = 0, i.e., if

a and b are orthogonal, the Pythagorean theorem of Eq. (A.12) is obtained.

A.3 Linear Forms

For a constant vector a =
(
ai

)
and a variable vector x =

(
xi

)
, Eq. (A.13) is called a linear form

in x. Differentiating this with respect to xi, we obtain Eq. (A.14). In vector form, it is written as

Eq. (A.15), where we define the vector ∇x( · · · ) by Eq. (A.16). We call this the gradient of · · · and

call the symbol ∇ nabla.

A.4 Quadratic Forms

For a constant symmetric matrix A =
(
aij

)
and a variable vector x =

(
xi

)
, we call Eq. (A.17) a

quadratic form in x. The reason for restricting A to be a symmetric matrix is as follows. A general

square matrix Ais decomposed into the sum of its symmetric part A(s) and anti-symmetric part

A(a) as shown in Eq. (A.18). By definition, A(s) and A(a) are, respectively, a symmetric matrix

and an anti-symmetric matrix. If the matrix A in Eq. (A.17) is not symmetric, we substitute

Eq. (A.18) and obtain Eq. (A.20). Hence, only the symmetric part of A has a meaning. The

reason for ⟨x,A(a)x⟩ =
∑n

i,j=1 a
(a)
ij xixj being 0 is that for each pair (i, j) the term a

(a)
ij xixj and the

term a
(a)
ji xjxi (= −a

(a)
ij xixj) cancel each other. Note that a

(a)
ii = 0 for an anti-symmetric matrix

by definition.

This observation implies that for an arbitrary x, the equality ⟨x,Ax⟩ = 0 does not mean A =

O. It only means that A(s) (Eq. (A.21)). Similarly, the equality ⟨x,Ax⟩ = ⟨x,Bx⟩ for an arbitrary

x does not mean A = B. It only means that A(s) = B(s) (Eq. (A.22)).

From this consideration, we assume that the matrix A of a quadratic form is symmetric from

the beginning. If A is symmetric, then aij= aji, and hence the terms of Eq. (A.17) that include x1

are those in Eq. (A.23). Differentiating this with respect to x1, we obtain 2a11x1+2(a12x2+a13x3+
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· · · + a1nxn) = 2
∑n

j=1 a1jxj . Since similar results hold for x2, ...., xn, too, we obtain Eq. (A.24).

Using ∇, we rewrite this in vector form as Eq. (A.25). We see that Eqs. (A.15) and (A.25) are,

respectively, extensions of the formulas d(ax)/dx = a and d(Ax2)/dx = 2Ax for one variable to n

variables.

A.5 Bilinear Forms

For a constant matrix A =
(
aij

)
and variable vectors x =

(
xi

)
and y =

(
yi

)
, we call Eq. (A.26)

a bilinear form in x and y, for which we observe the fundamental equality of Eq. (A.27). In fact,

both sides are equal to
∑N

i,j=1 aijxiyj from the rule of the product of a matrix and a vector. In

contrast to the case of quadratic forms, we see that if ⟨x,Ay⟩ = 0 for any x and y, then A =

O (Eq. (A.28)) and that if ⟨x,Ay⟩ = ⟨x,By⟩ for any x and y, then A = B (Eq. (A.29)). From

Eqs. (A.15) and (A.27), the identities of Eq.(A.30) are obtained.

A.6 Basis and Expansion

A set of vectors u1, ..., ur is said to be an orthonormal system if they are all unit vectors and

orthogonal to each other, i.e., if Eq. (A.31) holds, where δij is the Kronecker delta (the symbol that

take 1 for i = j and 0 for i ̸= j)..

If an arbitrary vector x can be uniquely expressed as a linear combination of some n vectors

u1, ..., un, they are called the basis of that space and n is called the dimension of that space. An

orthonormal system of n vectors {u1, ..., un} constitute a basis of the n-dimensional space Rn,

called an orthonormal basis.

Expressing a given vector x as a linear combination of an orthonormal basis {ui}, i = 1, ..., n,

in the form of Eq. (A.32) is called expansion of x in terms of {ui}. The square norm of Eq. (A.32)

is written as Eq. (A.33), where we write ⟨
∑n

i=1 ciui,
∑n

j=1 cjuj⟩ instead of ⟨
∑n

i=1 ciui,
∑n

i=1 ciui⟩

for avoiding the confusion of running indices in the summation. Note that if the Kronecker delta

δij appears in a summation
∑

with respect to i or j or both, only terms for which i = j survive.

Computing the inner product of ui and Eq. (A.32) and noting that {ui} is an orthonormal

system, we obatin Eq. (A.34). Hence, the expansion of Eq. (A.32) is written in the form of

Eq. (A.35). Since {ui} is a basis, the expansion expression is unique. From Eq. (A.33), its square

norm is written as Eq. (A.36).
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A.7 Least-squares Approximation

For an orthonormal system {ui}, i = 1, ..., r, of r (≤ n) vectors, vector x is not necessarily

expanded in the form of Eq. (A.32). However, we can determine the expansion coefficients ci, i =

1, ..., r, in such a way that Eq. (A.37) is minimized. Expansion using such coefficients is called

the least-squares approximation. Equation (A.37) is rewritten as Eq. (A.38). Differentiating this

with respect to ck, we obtain Eq. (A.39). Equating this to 0, we obtain ck = ⟨uk,x⟩. Hence, the

least-squares expansion has the form of Eq. (A.40). This correspond to truncating the expansion

of Eq. (A.33) up to the rth term.

The set U of all vectors that can be expressed as linear combinations of u1, ..., ur is called the

subspace spanned by u1, ..., ur. If u1, ..., ur are an orthonormal system, they form the basis of

the subspace U , and its dimension is r. The right side of Eq. (A.40) equals the projection P Ux of

x onto the subspace U by the projection matrix P U = u1u
⊤
1 + · · ·+ uru

⊤
r (↪→ Sec. 1.5). Namely,

least-square approximation equals projection onto a subspace. From this observation, we see that

if the vector x is in the subspace U , Eq. (A.40) holds with equality, i.e., Eq. (A.41) holds. The

vectors {ui}, i = 1, ..., r, are now an orthonormal basis of U , and hence this expansion expression

is unique. Its square norm is given by Eq. (A.42).

A.8 Lagrange’s Method of Indeterminate Multipliers

The maximum and minimum of a function f(x) of variable x is computed by solving Eq. (A.43)

if there is no constraint on x. If x is constrained to satisfy Eq. (A.44), we introduce a Lagrange

muliplier λ and consider Eq. (A.45). Differentiating this with respect to x and letting the result

be 0, we obtain Eq. (A.46). We can determine x and λ by solving this together with Eq. (A.44).

This is called Lagrange’s method of indeterminate multipliers (see [8] for the derivation).

We should note that what we obtain by this method is in general extreme values. Hence, we

need some criteria to judge if the solution is a maximum, a minimum, or other types of extremum

including an inflection points. However, if it is known from the properties of the problem that it

has a unique maximum or a unique minimum, this is a very convenient and practical method.

If multiple constraints of the form of Eq. (A.47) exist, we introduce Lagrange multipliers λ1, ...,

λm corresponding to individual constraints and consider Eq. (A.48) for computing the maximum

or minimum (an extremum in general) of f(x), where we write the m Lagrange multipliers and m
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constraints of Eq. (A.47) in the vector form of Eq. (A.49). Differentiating Eq. (A.47) with respect

to x and letting it be 0, we obtain Eq. (A.50). Solving this together with Eq. (A.47), we can

determine x and λ1, ..., λm.

A.9 Eigenvalues and Eigenvectors

For an n× n symmetric matrix A, we call the value λ that satisfies Eq.(A.51) an eigenvalue of A.

The vector u (̸= 0) is called the corresponding eigenvector . Equation (A.51) is rewritten in the

form of Eq. (A.52). This is a set of linear equations in u. As is well known, this has a solution u

̸= 0 if and only if the determinant of the coefficient matrix is 0, i.e., when Eq. (A.53) holds. This

is called the characteristic equation, where | · | denote the determinant and ϕ(λ) is an nth degree

polynomial in λ, called the characteristic polynomial . Since Eq. (A.53) is an nth degree polynomial

equation with real coefficients, it has in general n solutions in the complex number domain. Hence,

matrix A has n eigenvalues and n corresponding eigenvectors. However, for a symmetric matrix,

all eigenvalues are real and the corresponding eigenvectors consist of real components. This can be

shown as follows.

Let λ be an eigenvalue (possibly a complex number) of A, and λ the corresponding eigenvector

(possibly having complex components). Their definition and its complex conjugate on both sides

are written as Eq. (A.54). The inner product of the first equation and ū on both sides and the

inner product of the second equation and u on both sides are given by Eq. (A.55). If we write u

=
(
ui

)
(̸= 0), we obtain Eq. (A.56), where | · | denotes the absolute value of a complex number.

Since A is symmetric, we obtain Eq. (A.57) (↪→ Eq. (A.27)). Hence, λ = λ̄, and λ is a real number.

A set of simultaneous linear equations Au = λu in unknown u for a matrix A of real elements and

a real number λ can be solved using arithmetic operations and substitutions, the resulting solution

u also has real components.

Furthermore, we can show that eigenvectors for different eigenvalues are mutually orthogonal as

follows. If we let u and u′ be the eigenvectors of A for eigenvalues λ and λ′ (λ ̸= λ′), respectively,

Eq. (A.58) holds. The inner product of the first equation and u′ on both sides and the inner product

of the second equation with u on both sides are written as Eq. (A.59). Since A is symmetric,

Eq. (A.60) holds (↪→ Eq. (A.27)). Hence, from Eq. (A.59), we obtain Eq. (A.61), which means

(λ − λ′)⟨u′,u⟩ = 0. Since λ ̸= λ′, this implies ⟨u′,u⟩ = 0, i.e.e, u and u′ are orthogonal to each
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other.

If there is multiplicity among the n eigenvalues, the eigenvectors for multiple eigenvalue are not

unique. However, their arbitrary linear combination are also eigenvalues for the same eigenvalue.

Hence, we can choose them, using, e.g., the Schmidt orthogonalization (↪→ Sec. 1.5), to be mutually

orthogonal vectors (see [7] for the procedure). As can be seen from Eq. (A.51), if u is an eigenvector,

its arbitrary constant multiple cu (c ̸= 0) is also an eigenvector for the same eigenvalue. As a result

the eigenvectors {ui}, i = 1, ..., n, of a symmetric matrix can be chosen to be an orthonormal

system of vectors.

A.10 Maximum and Minimum of a Quadratic Form

Consider a quadratic form ⟨v,Av⟩ of an n× n symmetric matrix A in unit vector v. Let λ1 ≥ · · ·

≥ λn be the n eigenvalues of A, and {ui}, i = 1, ..., n, the corresponding orthonormal sytem of

the corresponding eigenvectors. Since an arbitrary unit vector v can be expanded in the form v =∑n
i=1 ciui,

∑n
i=1 c

2
i = 1 (↪→ A.6), we can rewrite the quadratic form as Eq. (A.62). The equality

holds when c1 = 1 and c2 = · · · = cn = 0, i.e., when v = u1. Similarly, Eq. (A.63) obtained

by reversing the inequality of Eq. (A.62) also holds. Thus, we conclude that the maximum and

minimum of a quadratic form ⟨v,Av⟩ of a symmetric matrix A in unit vector v equal the maximum

eigenvalue λ1 and the minimum eigenvalue λn of A, respectively, v being equal to the corresponding

unit eigenvectors u1 and un, respectively .

Next, consider a unit vector v orthogonal to u1. An arbitrary unit vector v orthogonal to u1

can be expanded in the form v =
∑n

i=2 ciui,
∑n

i=2 c
2
i = 1 (↪→ A.6). Hence, the quadratic form

⟨v,Av⟩ can be written as Eq. (A.64). The equality holds when c2 = 1 and c3 = · · · = cn = 0,

i.e., when v = u2. Hence, ⟨v,Av⟩ for a unit vector v orthogonal to u1 takes its maximum when v

equals the unit eigenvector u2 for the second largest eigenvalue λ2, the maximum value being λ2.

By the same argument, we conclude that ⟨v,Av⟩ for a unit vector v orthogonal to u1, ..., um−1

takes its maximum when v equals the unit eigenvector um for the mth largest eigenvalue λm, the

maximum being λm. The same holds for the minimum: ⟨v,Av⟩ for a unit vector v orthogonal to

un−m, ..., un takes its minimum when v equals the unit eigenvector un−m+1 for the mth smallest

eigenvalue λn−m+1, the maximum being λn−m+.



問題の解答

第1章
1.1. (1) 行列の積の定義より明らかである． a1

...
am

(
b1 · · · bn

)
=

 a1b1 · · · a1bn
...

. . .
...

amb1 · · · ambn


(2) 上記の行列のトレースは

∑n
i=1 aibi = ⟨a, b⟩である．

1.2. U の正規直交基底を {ui}, i = 1, ..., rとし，−−→
OQ ∈ U を −−→

OQ =
∑r

i=1 ciui と表すと，

∥
−−→
PQ∥2 = ∥

−−→
OQ−

−−→
OP∥2 = ∥

r∑
i=1

ciui −
−−→
OP∥2 = ⟨

r∑
i=1

ciui −
−−→
OP,

r∑
j=1

cjuj −
−−→
OP ⟩

と書ける．これを ci で微分すると

∂∥
−−→
PQ∥2

∂ci
= 2⟨ui,

r∑
j=1

cjuj −
−−→
OP ⟩ = 2⟨ui,

−−→
PQ⟩

となる．最短点ではこれが 0となるから，−−→
PQは U の基底 {ui}, i = 1, ..., rに直交する．ゆえに−−→

OQは
−−→
OP の射影である．

1.3. 次のように示せる．

P⊤
U =

( r∑
i=1

uiu
⊤
i

)⊤
=

r∑
i=1

uiu
⊤
i = P U

P 2
U =

( r∑
i=1

uiu
⊤
i

)( r∑
j=1

uju
⊤
j

)
=

r∑
i,j=1

uiu
⊤
i uju

⊤
j =

r∑
i,j=1

ui⟨ui,uj⟩u⊤
j

=

r∑
i,j=1

δijuiu
⊤
j =

r∑
i=1

uiu
⊤
i = P U

1.4. n × n行列 P が対称行列であれば，よく知られているように，n個の実数の固有値 λ1, ..., λn を持ち，
対応する固有ベクトル u1, ..., unを正規直交系にとることができる．Pui = λiuiの両辺に左から P を
掛けると，

P 2ui = λiPui = λ2
iui

44
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である．しかし，P がべき等なら，左辺は Pui = λiui である．ゆえに，λi = λ2
i，すなわち，λi = 0,

1である．λ1 = · · · = λr = 1, λr+1 = · · · = λn = 0とすると，

Pui = ui, i = 1, ..., r, Pui = 0, i = r + 1, ..., n

である．これは，式 (1.7)より，P が u1, ..., ur の張る部分空間への射影行列であることを意味する．

第2章
2.1. u1, ..., um, ui ̸= 0, i = 1, ..., mのある線形結合が 0であるとする．

c1u1 + · · ·+ cmum = 0

両辺と uk との内積をとると，{ui}, i = 1, ..., mは互いに直交するから，

ck⟨uk,uk⟩ = ck∥uk∥2 = 0

であり，ck = 0である．これは k = 1, ..., mに対して成り立つから，u1, ..., umの線形結合が 0となる
のは，係数がすべて 0のときに限る．ゆえに，u1, ..., um は線形独立である．

2.2. ai, biの第 j 成分をそれぞれ aji, bjiと書くと，行列 aib
⊤
i の (k, l)要素は akibliである（↪→式 (1.22)）．

ゆえに，式 (2.19)の左辺の行列の (k, l)要素は
∑n

i=1 akibli である．A =
(
a1 · · · an

)
=

(
aij

)
, B

=
(
b1 · · · bn

)
=

(
bij

)
であるから，

∑n
i=1 akibli はAB⊤ の (k, l)要素に等しい．

2.3. 行列 U の定義より，

U⊤U =

u⊤
1
...

u⊤
n

(
u1 · · · un

)
=

 ⟨u1,u1⟩ · · · ⟨u1,un⟩
...

. . .
...

⟨un,u1⟩ · · · ⟨un,un⟩


である．これが I に等しい必要十分条件は ⟨ui,uj⟩ = δij，すなわち，U の列が正規直交系をなすこと
である．

2.4. 式 (1.11)は，U⊤ が U の逆行列であること，すなわち U⊤ = U−1 を意味している．ゆえに

(U⊤)⊤(U⊤) = UU⊤ = UU−1 = I

であり，U⊤ も直交行列である．したがって，U の行も正規直交系をなしている．
2.5. 次のように示せる．

A−1A =
( n∑
i=1

uiu
⊤
i

λi

)( n∑
j=1

λjuju
⊤
j

)
=

n∑
i,j=1

λj

λi
uiu

⊤
i uju

⊤
j =

n∑
i,j=1

λj

λi
ui⟨ui,uj⟩u⊤

j

=

n∑
i,j=1

λj

λi
δijuiu

⊤
j =

n∑
i=1

uiu
⊤
i = I

2.6. 式 (2.17)から，次のように示せる．

(
√
A)2 =

( n∑
i=1

√
λiu

⊤
i

)( n∑
j=1

√
λju

⊤
j

)
=

n∑
i,j=1

√
λiλjuiu

⊤
i uju

⊤
j =

n∑
i,j=1

√
λiλjui⟨ui,uj⟩u⊤

j

=

n∑
i,j=1

√
λiλjδijuiu

⊤
j =

n∑
i=1

λiuiu
⊤
i = A
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また，式 (2.18)の第 1式と式 (2.9)からも，次のように示せる．

(
√
A)2 = U


√
λ1

. . . √
λn

U⊤U


√
λ1

. . . √
λn

U⊤

= U


√
λ1

. . . √
λn




√
λ1

. . . √
λn

U⊤

= U

λ1

. . .

λn

U⊤ = A

2.7. 次式が成り立つ．
(A−1)NAN = A−1 · · ·A−1A · · ·A = I

これは (A−1)N がAN の逆行列であること，すなわち (A−1)N = (AN )−1 を示している．

第3章
3.1. 明らかに AA⊤ も A⊤Aも対称行列である．AA⊤ が固有値 λ，固有ベクトル u (̸= 0)を持つとして，

AA⊤u = λuの両辺と uの内積をとると，

⟨u,AA⊤u⟩ = λ⟨u,u⟩ = λ∥u∥2

であるが,
⟨u,AA⊤u⟩ = ⟨A⊤u,A⊤u⟩ = ∥A⊤u∥2 ≥ 0

であるから （↪→付録，式 (A.27)），λ ≥ 0である．同様に，A⊤Aが固有値 λ′，固有ベクトル v ( ̸= 0)
を持つとして，A⊤Av = λ′vの両辺と vの内積をとると，

⟨v,A⊤Av⟩ = λ′⟨v,v⟩ = λ′∥v∥2,

⟨v,A⊤Av⟩ = ⟨Av,Av⟩ = ∥Av∥2 ≥ 0

より，λ′ ≥ 0である．
3.2. 前問よりAA⊤ の固有値は正または零である．A ̸= O と仮定しているから，ひとつは正の固有値があ

る．それを σ2と書き，その固有ベクトルを uとする．AA⊤u = σ2uの両辺にA⊤を左から掛けると，

A⊤AA⊤u = σ2A⊤u

である．v = A⊤u/σと置くと，上式はA⊤A(σv) = σ3v，すなわち

A⊤Av = σ2v

である．これはA⊤Aが固有値 σ2，固有ベクトル vを持つことを意味する．逆に，A⊤Aが正の固有値
σ2，固有ベクトル vを持つとして，A⊤Av = σ2vの両辺に左からAを掛けると，

AA⊤Av = σ2Av

である．u = Av/σと置くと，AA⊤(σu) = σ3u，すなわち

AA⊤u = σ2u
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である．これは AA⊤ が固有値 σ2，固有ベクトル uを持つことを意味する．このように A⊤A, A⊤A
の一方に正の固有値 σ2があれば，それは他方の固有値でもあり，それぞれの固有ベクトルを v, uとす
ると，

v =
A⊤u

σ
, u =

Av

σ

が成り立つ．すなわち，式 (3.1)が成り立つ．
3.3. 次のように示せる．

(1) AA⊤u = 0であれば，両辺と uとの内積をとると，

⟨u,AA⊤u⟩ = ⟨A⊤u,A⊤u⟩ = ∥A⊤u∥2 = 0

となる（↪→式 (A.27)）．ゆえにA⊤u = 0である．
(2) A⊤u = 0であれば，両辺と vとの内積をとると

⟨v,A⊤Av⟩ = ⟨Av,Av⟩ = ∥Av∥2 = 0

となる（↪→式 (A.27)）．ゆえにAv = 0である．

3.4. {ui}, i = 1, ..., rが正規直交系であるから，行列の積の約束から，次のように計算される．

U⊤U =

u⊤
1
...

u⊤
r

(
u1 · · · ur

)
=

 ⟨u1,u1⟩ · · · ⟨u1,ur⟩
...

. . .
...

⟨ur,u1⟩ · · · ⟨ur,ur⟩

 = I

同様に，{vi}, i = 1, ..., rが正規直交系であるから，次のように計算される．

V ⊤V =

v⊤
1
...

v⊤
r

(
v1 · · · vr

)
=

 ⟨v1,v1⟩ · · · ⟨v1,vr⟩
...

. . .
...

⟨vr,v1⟩ · · · ⟨vr,vr⟩

 = I

3.5. 式 (2.19)より，次のように書ける．

UU⊤ =
(
u1 · · · ur

)u⊤
1
...

u⊤
r

 =

r∑
i=1

uiu
⊤
i = P U

同様に，次のように書ける．

V V ⊤ =
(
u1 · · · ur

)v⊤
1
...

v⊤
r

 =

r∑
i=1

viv
⊤
i = P V

第4章
4.1. 次のように示される．

A−A =
( n∑
i=1

viu
⊤
i

σi

)( n∑
j=1

σjujv
⊤
j

)
=

n∑
i,j=1

σi

σj
viu

⊤
i ujv

⊤
j =

n∑
i,j=1

σi

σj
vi⟨ui,uj⟩v⊤

j

=

n∑
i,j=1

σi

σj
δijviv

⊤
j =

n∑
i=1

viv
⊤
j = I

積が単位行列であるから，A− はAの逆行列である．



問題の解答 48

4.2. 次の関係が成り立つ．

AA− = U

σ1

. . .

σr

V ⊤V

 1/σ1

. . .

1/σr

U⊤

= U

σ1

. . .

σr


 1/σ1

. . .

1/σr

U⊤ = UU⊤ = P U

ただし，式 (3.12), (3.13)を用いた．同様に，次の関係が成り立つ．

A−A = V

 1/σ1

. . .

1/σr

U⊤U

σ1

. . .

σr

V ⊤

= V

 1/σ1

. . .

1/σr


σ1

. . .

σr

V ⊤ = V V ⊤ = P V

4.3. 次のように示される．

A−AA− = V

 1/σ1

. . .

1/σr

U⊤U

σ1

. . .

σr

V ⊤V

 1/σ1

. . .

1/σr

U⊤

= V

 1/σ1

. . .

1/σr


σ1

. . .

σr


 1/σ1

. . .

1/σr

U⊤

= V

 1/σ1

. . .

1/σr

U⊤ = A−

ただし，式 (3.12)を用いた．同様にして次式も得られる．

AA−A = U

σ1

. . .

σr

V ⊤V

 1/σ1

. . .

1/σr

U⊤U

σ1

. . .

σr

V ⊤V

= U

σ1

. . .

σr


 1/σ1

. . .

1/σr


σ1

. . .

σr

V ⊤

= U

σ1

. . .

σr

V ⊤ = A

4.4. A =
(
Aij

)
, B =

(
Bij

)
に対して，AB, BAの (i, j)要素は，それぞれ

∑
k AikBkj ,

∑
k BikAkj であ

る．それらのトレースは
∑

j,k AjkBkj ,
∑

j,k BjkAkj であり，等しい．
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4.5. 次のように示される．

∥AU∥2 = tr(AU(AU)⊤) = tr(AUU⊤A⊤) = tr(AA⊤) = ∥A∥2

∥V A∥2 = tr((V A)⊤V A) = tr(A⊤V V A) = tr(A⊤A) = ∥A∥2

∥V AU∥2 = tr(V AU(V AU)⊤) = tr(V AUU⊤A⊤V ⊤) = tr(V AA⊤V ⊤)

= tr(V ⊤V AA⊤) = tr(AA⊤) = ∥A∥2

ただし，式 (4.21)，および U , V が直交行列であり，U⊤U = UU⊤ = I, V ⊤V = V V ⊤ = I である
ことを用いた．

4.6. 式 (3.10)から，次式が成り立つ．

∥A∥2 = tr(AA⊤) = tr(U

σ1

. . .

σr

V ⊤V

σ1

. . .

σr

U⊤)

= tr(U

σ1

. . .

σr


σ1

. . .

σr

U⊤) = tr(U

σ2
1

. . .

σ2
r

U⊤)

= tr(U⊤U

σ2
1

. . .

σ2
r

) = tr(

σ2
1

. . .

σ2
r

) = σ2
1 + · · ·+ σ2

r

ただし，U , V は必ずしも直交行列ではないが（正方行列とは限らない），式 (3.12)が成り立つことを
用いた．この結果を用いると，式 (4.14)と (4.16)から

A− (A)r = U



0
. . .

0
σr+1

. . .

σl


V ⊤

であるから，式 (4.20)が得られる．

第5章
5.1. (1) 式 (5.5)は次のように書ける．

J = ⟨Ax− b,Ax− b⟩ = ⟨Ax,Ax⟩ − 2⟨Ax, b⟩+ ⟨b, b⟩ = ⟨x,A⊤Ax⟩ − 2⟨x,A⊤b⟩+ ∥b∥2

これを xで微分して 0と置くと（↪→付録，式 (A.15), (A.25) ），次式を得る．

2A⊤Ax− 2A⊤b = 0

m > nであり，r = nであれば，A⊤Aは n× n正則行列である．ゆえに，解 xが式 (5.24)で与
えられる．

(2) 上記の J の式中のA⊤AxをA⊤bで置き換えると，J は次のように書ける．

J = ⟨x,A⊤b⟩ − 2⟨x,A⊤b⟩+ ∥b∥2 = ∥b∥2 − ⟨x,A⊤b⟩
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5.2. Aが式 (3.4)のように特異値分解されているとき，次式が成り立つ．

A⊤A =
( r∑
i=1

σiviu
⊤
i

)( r∑
j=1

σjujv
⊤
j

)
=

r∑
i,j=1

σiσjviu
⊤
i ujv

⊤
j =

r∑
i,j=1

σiσjvi⟨ui,uj⟩v⊤
j

=

r∑
i,j=1

δijσiσjviv
⊤
j =

r∑
i=1

σ2
i viv

⊤
i

(A⊤A)−1A⊤ =
( r∑
i=1

viv
⊤
i

σ2
i

)( r∑
j=1

σjvju
⊤
j

)
=

r∑
i,j=1

σj

σ2
i

viv
⊤
i vju

⊤
j =

r∑
i,j=1

σj

σ2
i

vi⟨vi,vj⟩u⊤
j

=

r∑
i,j=1

σj

σ2
i

δijviu
⊤
j =

r∑
i=1

viu
⊤
i

σi
= A−

5.3. ∥x∥2/2を条件Ax = bのもとで最小化する（1/2は形式的なもので，特に意味はない）．ラグランジュ
乗数 λ（↪→付録，式 (A.48)）を導入して，

1

2
∥x∥2 − ⟨λ,Ax− b⟩ = 1

2
⟨x,x⟩ − ⟨A⊤λ,x⟩+ ⟨λ, b⟩

を xで微分して 0と置くと（↪→付録，式 (A.15), (A.25) ），次式を得る．

x−A⊤λ = 0

したがって，Ax = bは次のように書ける．

AA⊤λ = b

m < nであり，r = mであれば，AA⊤はm×m正則行列である．ゆえに，λが次のように与えられる．

λ = (AA⊤)−1b

したがって，xが次のように表せる．

x = A⊤λ = A(AA⊤)−1b

Ax = bが満たされているから，J = ∥Ax− b∥2 = 0である．

5.4. Aが式 (3.4)のように特異値分解されているとき，次式が成り立つ．

AA⊤ =
( r∑
i=1

σiuiv
⊤
i

)( r∑
j=1

σjvju
⊤
j

)
=

r∑
i,j=1

σiσjuiv
⊤
i vju

⊤
j =

r∑
i,j=1

σiσjui⟨vi,vj⟩u⊤
j

=

r∑
i,j=1

δijσiσjuiu
⊤
j =

r∑
i=1

σ2
iuiu

⊤
i

A⊤(AA⊤)−1 =
( r∑
i=1

σiviu
⊤
i

)( r∑
j=1

uju
⊤
j

σ2
j

)
=

r∑
i,j=1

σi

σ2
j

viu
⊤
i uju

⊤
j =

r∑
i,j=1

σi

σ2
j

vi⟨ui,uj⟩u⊤
j

=

r∑
i,j=1

σi

σ2
j

δijviu
⊤
j =

r∑
i=1

viu
⊤
i

σi
= A−
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5.5. 式 (5.19)を xで微分すると，次のようになる．

dJ

dx
= 2(a1x− b1)a1 + · · ·+ 2(amx− bm)am = 2(a11 + · · ·+ a2m)x− 2(a1b1 + · · ·+ ambm)

これを 0と置くと，式 (5.17)が得られる．
5.6. ∥x∥2/2を式 (5.20)の制約のもとで最小化する（1/2は形式的なもので，特に意味はない）．ラグランジュ

乗数 λ（↪→付録，式 (A.46)）を導入して，

1

2
∥x∥2 − λ(⟨a,x⟩ − b)

を xで微分して 0と置くと（↪→付録，式 (A.15), (A.25) ），次式を得る．

x− λa = 0

すなわち，x = λaである．これを ⟨a,x⟩ = bに代入すると，

λ∥a∥2 = b

となり，λ = b/∥a∥2 である．したがって，

x =
ba

∥a∥2

が得られる．

第6章
6.1. 定義より，Σの (i, i)要素E[∆x2

i ] = E[(xi − x̄i)
2]は xiの分散である（xiの期待値を x̄i = 0と仮定して

いることに注意）．そして，非対角要素 E[∆xi∆xj ] = E[(xi − x̄i)(xj − x̄j)]は xi, xj の共分散である．

6.2. 明らかにX は対称行列である：X⊤ = xx⊤ = (x⊤)⊤x⊤ = X．その固有値を σ，固有ベクトルを uと
し，Xu = σuの両辺と uとの内積をとると，

⟨u,Xu⟩ = σ⟨u,u⟩ = σ∥u∥2

であるが，
⟨u,Xu⟩ = ⟨u,xx⊤u⟩ = ⟨u,x⟩⟨x,u⟩ = ⟨u,x⟩2 ≥ 0

であるから，σ ≥ 0である．複数のベクトルに対しても，

⟨u,Xu⟩ = ⟨u,
N∑

α=1

xαx
⊤
αu⟩ =

N∑
α=1

⟨u,xαx
⊤
αu⟩ =

N∑
α=1

⟨u,xα⟩⟨xα,u⟩ =
N∑

α=1

⟨u,xα⟩2 ≥ 0

であるから，σ ≥ 0である．
6.3. 式 (1.23)より，tr(xx⊤) = ⟨x,x⟩ = ∥x∥2 である．ゆえに tr(

∑N
α=1 xαx

⊤
α ) =

∑N
α=1 ∥xα∥2 である．

6.4. 3次元空間においてΣ = diag(σ2
1 , σ

2
2 , σ

2
3), σ

2
1 , σ

2
2 , σ

2
3 > 0とすると（diag( · · · )は · · · をその順に対角要

素とする対角行列を表す），その逆行列はΣ−1 = diag(1/σ2
1 , 1/σ

2
2 , 1/σ

2
3)である．ゆえに，式 (6.10)は

次のように書ける．
(x− x̄)2

σ2
1

+
(y − ȳ)2

σ2
2

+
(z − z̄)2

σ2
3

= 1

これは (x̄, ȳ, z̄)を中心として，各座標軸を対称軸とし，x, y, z軸方向の半径がそれぞれ σ1, σ2, σ3の楕
円体である．
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6.5. 共分散行列Σが正値のとき，これはΣ =
∑n

i=1 σ
2
iuiu

⊤
i , σ

2
i > 0, i = 1, ..., nとスペクトル分解できる．

座標系を x̄が原点 Oになるよう平行移動し，その周りに，座標軸がΣの固有ベクトル u1, ..., un の方
向に一致するように回転する．この新しい座標系では共分散行列は Σ = diag(σ2

1 , ..., σ
2
n)となり，その

逆行列はΣ−1 = diag(1/σ2
1 , ..., 1/σ

2
n)である．ゆえに，式 (6.10)は

x2
1

σ2
1

+ · · ·+ x2
n

σ2
n

= 1

と書ける．これは原点を中心とし，各座標軸が対称軸で，各軸方向の半径が σiの楕円体を表す．もとの
座標系では，これは期待値 x̄を中心とし，Σの各固有ベクトル uiが対称軸で，各軸方向の半径が σiの
楕円体である．

6.6. 定義より，S の (i, i)要素

Sii =
1

N

N∑
α=1

(x̂iα −mi)
2

は xiα のサンプル分散である．ただし，

mi =
1

N

N∑
α=1

x̂iα

は xiα のサンプル平均である．そして，非対角要素

Sij =
1

N

N∑
α=1

(x̂iα −mi)(x̂jα −mj)

は xiα, xjα の共分散である．

第7章
7.1. Aのスペクトル分解をA =

∑n
i=1 λiuiu

⊤
i とすると，次のようになる．

trA =

n∑
i=1

λitr(uiu
⊤
i ) =

n∑
i=1

λi∥ui∥2 =

n∑
i=1

λi

7.2. x0 を基準にとって，x0 を原点とみなすと，残りの n本のベクトルが線形独立である条件は次のように
書ける． ∣∣ x1 − x0 · · · xn − x0

∣∣ ̸= 0

左辺の n× n行列の行列式は，次の (n+ 1)× (n+ 1)行列の行列式に等しい．∣∣∣∣ x0 x1 − x0 · · · xn − x0

1 0 · · · 0

∣∣∣∣ = ∣∣∣∣ x0 x1 · · · xn

1 1 · · · 1

∣∣∣∣
ただし，第 1列を他の列に加えた（それによって行列式は変化しない）．これは x0を基準にとったもの
であるが，どの xi を基準にとっても同じ表現が得られる．

7.3. J =
∑N

α=1 ∥xα − g∥2 =
∑N

α=1(xα − g,xα − g)を xで微分すると（↪→付録，式 (A.15), (A.25) ），∇J

= 2
∑N

α=1(xα − g) = 2
∑N

α=1 xα − 2Ngである．これを 0と置くと．式 (7.13)が得られる．

7.4.
∑N

α=1 xα = Ngより，次のように示せる．

Σ =

N∑
α=1

(xα − g)(xα − g)⊤ =

N∑
α=1

xαx
⊤
α −

N∑
α=1

xαg
⊤ −

N∑
α=1

gx⊤
α +

N∑
α=1

gg⊤

=

N∑
α=1

xαx
⊤
α −Ngg⊤ −Ngg⊤ +Ngg⊤ =

N∑
α=1

xαx
⊤
α −Ngg⊤



問題の解答 53

第8章
8.1. Aがランク r以下であれば，式 (8.4) – (8.6)のようにして，あるm× r行列A1 とある r × n行列A2

によっ て，A = A1A2と分解できる．逆に，あるm× r行列A1とある r× n行列A2によっってA =
A1A2 と分解できていれば，式 (8.3)よりAはランク r以下である．

8.2. (1) 式 (8.11)の 2M 運動行列M の 3本の列をm1, m2, m3とすると，式 (8.12)は，式 (8.10)の第 α
列が次のように書けることを意味する．

xα1

yα2
· · ·
xαM

yαM

 = Xαm1 + Yαm2 + Zαm3

これは，第 α点の軌跡がm1, m2, m3の張る 3次元部分空間に含まれていることを意味する．し
たがって，どの点の軌跡もこの 3次元部分空間に含まれる．

(2) この 3次元部分空間を求めることは，2M 次元空間のN 点 (xα1, yα2, ..., xαM , yαM ), α = 1, ..., N
に 3次元部分空間を当てはめる問題となる．したがって，7.3節で述べたように，このN 点を列と
して並べた 2M ×N 行列，すなわち，式 (8.10)の観測行列W を

W = σ1u1v1 + σ2u2v2 + σ3u3v3 + · · ·

と特異値分解すれば，{u1, u2, u3}がその 3次元部分空間の正値直交基底である．このとき，仮
想敵なカメラ（アフィンカメラ）では式 (8.12)の分解が成り立って，W ランクが 3であり，σ4 =
σ5 = · · · = 0であるが，実際のカメラから得た観測行列W ではそれらは 0でないので，最初の 3
項を取り出す．これが最適な当てはめである．


