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Chapter 1

Linear Space and Projection

1.1 Expression of Linear Mapping

A linear mapping from the n-dimensional space R™ to the m-dimensional is represented by an
m x n matrix A (— Appendix A.1). One of the basic ways to specify it is to define an orthonormal
basis {u1, ..., up}, i.e., mutually orthogonal unit vectors, in R", which is called the domain, and
to specify the image, ay, ..., a,, i.e., the m-dimensional vectors to which the basis vectors are to be
mapped (Fig. 1.1). Then, the matrix A is written in the form of Eq. (1.1) (< Problem 1.1), where
the symbol T denotes transpose’. In fact, if we multiply Eq. (1.1) by u; from right, we obtain Au;
= a; from the orthonormality of Eq. (1.2), where d;; is the Kronecker delta, which takes the value
1 for j = i and 0 for j # i.

If we use the natural basis {eq, ... e,}, where e; is the n-dimensional vector whose ith component
is 1 and whose other components are all 0, the vetor a; = (ay;, ...,cz,m)—r is expressed in the form
of Eq. (1.3). In other words, the matriz A consists of the images ay, ..., a, as its columns in that

order (Fig. 1.2).

Example. Rotation in two dimensions

Rotation by angle 6 (anti-clockwise) in two dimensions is a linear mapping. The natural basis
vectors e; = (1,0)T and ey = (0,1) are mapped to a; = (cosf,sinf)" and az = (—sinf,cosh) ',
respectively, after a rotation by angle 6 (Fig. 1.3). Hence, rotation by angle 6 is represented by the
matrix R(f) = (COSQ _Sine)

sin 0 cos 0

'Mathematicians often use the letter “t”, the initial of “transpose”, as the left superscript to write by for the

transpose of vector u, while physicists and engineers usually use the symbol T as the right superscript to write it as

u'.



CHAPTER 1. LINEAR SPACE AND PROJECTION 2

1.2 Subspaces, Projection, and Rejection

Let uq, ..., u, be a set of r linearly independent vectors in the n-dimensional space R™. The set
U C R™ of all linear combinations of these vectors is called the r-dimensional subspace spanned by
ui, ..., u,. For instance, the subspace spanned by one vector is a line that extends along it, and
the subspace spanned by two vectors is the plane that passes through them.

Given a point P in R™ and a subpace U C R", the point Q € U defined so that ]@ is orthogonal
to U is called the projection® of P onto U, and Cﬁ) is said to be the rejection of @ from U (Fig. 1.4).
If we move the point @ to another point Q' of U, we obtain from the Pythagorean theorem (—
Appendix Eq. (A.12)), we obtain Eq. (1.4). In other words, the projection @ is the closest point
of Y from point P (— Problem 1.2).

These facts are summarized in the form of Eq. (1.5), where U~ is the set of all vectors orthogonal
to U, called the orthogonal complement of U, which is also a subspace of R™. Thus any vector of
R"™ is expressed as the sum of its projection onto U and the rejection from it. Such an expression

is unique and called the direct sum decomposition of ﬁ’ to U and U+,

1.3 Projection Matrices

Let P;,1 be the projection onto subspace i, and P;,1 the projection onto its orthogonal complement
U+, By definition, Eqgs. (1.6) and (1.7) hold. If we define an orthonormal basis {1, ..., u,} of the
subspace U, it can be extended to an orthonormal basis {u1, ..., U, Ur41, ..., up} of R™. Equation
(1.6) means that Py maps the orthonormal basis vectors {uq, ..., up} of R™ to uq, ..., u,, 0, ...,
0, respectively. Similarly, Eq. (1.7) means that P;,. maps {u1, ..., p} to 0, ...; 0, Uypt1, ..., Up,
respectively. Hence, from Eq. (1.1), the mappings Py, and are expressed as matrices in the form
of Egs. (1.8) and (1.9), respectively, where P;; and P, are called the projection matrices onto
subspaces U and U, respectively.

Since Q? = PuQ? + Pul@ = (Py +PuL)Cﬁ for every point P, Eq. (1.10) holds, where I
is the identity matrix®. Hence, the identity matrix I is decomposed into the sum of the projection

matrix onto the subspace U and the projection matrix onto its orthogonal complement U in the

2Tt is formally called “orthogonal projection”, but we call it simply “projection”, since we do not consider other
types of projection in this book.

3Mathematicians often write it as E, the initial of the German word Einheit (“unit”), or U, the initial of “unit”
and calle it the “unit matrix”. Physicists and engineers usually write I, the initial of “identity”, and call it the
“identity matrix”.



CHAPTER 1. LINEAR SPACE AND PROJECTION 3

form of Eq. (1.11). Note that the identity matrix itself is the projection matrix onto the entire
space R™.

Since the vector @ = PM07 on the right side of Eq. (1.5) and the vector Cﬁ% = PMLO?
are orthogonal to each other, we have ||O—1[>7H2 = HO@H2 + HCWD)HQ Hence, Eq. (1.12) holds for an
arbitrary vector x (Fig. 1.5).

For the projection matrix Py, Egs. (1.13) and (1.14) hold *(— Problem 1.3).

Equation (1.13) states that Py is a symmetric matrix, as is evident from the definition of
Eq. (1.9). Equation (1.14) states that the projected point is unchanged if it is projected again,
which is evident from the meaning of projection. A matrix for which Eq. (1.14) holds is said to
be idempotent. It can be shown that a matrix that is symmetric and idempotent represents the

projection matrix onto some subspace (< Problem 1.4).

1.4 Projection onto Lines and Planes

A line [ starting from the origin O and extending in the direction of unit vector u is a one-
dimensional subspace.. The projection matrix P; onto the line [ is given by Eq. (1.15). Hence, the
projection of O—}>7 onto [ is given by Eq. (1.16), where we write the inner product of vectors a and
b as (a,b) (= a'b) (— Appendix A.2) . The right side of Eq. (1.16) is the vector lying on the line
[ with length (O—}%, u) (Fig. 1.6), signed so that it is positive in the direction of w and negative in
the opposite direction. This signed length is called the projected length. Thus, we conclude that
the inner product with a unit vector is the projected length onto the line in that direction.

A plane II passing through the origin O having a unit vector n as its surface normal is an
(n—1)-dimensional subspace (strictly speaking, it is a “hyperplane”, but we call it simply a “plane”
if confusion does not occure). The line along the surface normal n is the orthogonal complement to
the plane II. Hence, if Py, is the projection matrix onto II, Egs. (1.10) and (1.11) imply Eq. (1.17).
Hence, the projection of OP onto I is given by Eq. (1.18) (Fig. 1.7).

1.5 Schimidt Orthogonalization

A set of mutually orthogonal unit vectors is said to be an orthonormal system. We can convert n

given linear independent vectors aq, ..., a, to an orthonormal system g, ..., u, as follows. First,

“Equation (1.14) is the defintion of the (not necessarily orthogonal) projection. The orthogonal projection is
defined by adding Eq. (1.13) (< Footnote 2).
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let w1 = a;/||a1||. From Eq. (1.17), the projection matrix onto the subspace orthogonal to u1, i.e.,
the orthogonal complement, is I — ulu;r. Hence, the projection of as onto it is given by Eq. (1.19),
which is orthogonal to uy. It follows that its normalization to unit norm wy = af/||aj] is a unit
vector orthogonal to u;.

By the same argument, the projection matrix onto the subspace orthogonal to w; and wus, i.e.,
the orthogonal complement, is I — ululT — ugu;. Hence, the projection of a3 onto it is given by
Eq. (1.20), which is orthogonal to both u; and ug. It follows that its normalization to unit norm wug
= a4 /||a%]|| is a unit vector orthogonal to both u; and us. Repeating the same argument, we see that
if we already have mutually orthogonal unit vectors w1, ..., ui_1, the projection matrix onto the
subspace orthogonal to uy, ..., u;_1, i.e., the orthogonal complement, is I—ululT — -—uk,lug_l.
Hence, the projection of aj onto it is given by Eq. (1.21), which is orthogonal to all of uy, ..., ug_1.
It follows that its normalization to unit norm u, = aj/|la}|| is a unit vector orthogonal to all of

u1, ..., wo. Repeating this for £k = 1, ..., n, we obtain an orthonormal system w1, ..., #,. This

procedure is called the (Gram—)Schimidt orthogonalization.

Problems of Chapter 1

1.1. (1) For an m-dimensional vector a = (ai) and an n-dimensional vector b = (bi), which
denote vectors whose ith components are a; and b;, respectively, show that Eq. (1.19)

holds, where the right side designates the m x n matrix whose (7,j) element is a;b;.

(2) Show that Eq. (1.20) holds, where tr denotes the trace of the matrix.

1.2. Express a point () of subspace U in terms of the basis of U, and differentiate the square norm

from point P to show that the closest point of U from P is its projection Q.
1.3. Show that Eqs. (1.13) and (1.14) hold, using Eq. (1.9).

1.4* Show that a symmetric and idempotent matrix P is the projection matrix onto some subspace.
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Eigenvalues and Spectral
Decomposition

2.1 Eigenvalues and Eigenvectors

For an n x n symmetric matrix, there exist n real numbers A, called the eigenvalues, and n nonzero
vectors u, dalled the eigenvectors, such that Eq. (2.1) holds («— Appendix A.9). The n eigenvalues
A1, ..., Ap, which may include overlaps, are given as the solution of the nth degree equation of
Eq. (2.2), called the characteristic equation, where I is the n x n identity matrix, and | --- |
denotes the determinant. The nth degree polynomial ¢()) is called the characteristic polynomial.
The n eigenvectors {u;}, i = 1, ..., n, can be chosen as an orthonormal system.

However, we need not actually solve the characteristic equation to obtain eigenvalues and eigen-
vectors. Various software tools which allow us to compute them with high accuracy and high speed

using iterations are available, including the Jacobi method and the Householder method.

2.2 Spectral Decomposition

Let A1, ..., A, be the eigenvalues of A, and {u;}, i = 1, ..., n, the corresponding orthonormal system
of its eigenvectors, which defines an orthonormal basis of R. Eq, (2.1) implies that A mapps the
orthonormal basis vectors {u;} of R™ to A\juy, ..., Apuy,, respectively. Hence, From Eq. (1.1) the
matrix A is written in the form of Eq. (2.3). In other words, a symmetric matriz can be expressed
in terms of its eigenvalues and eigenvectors. This is called the spectral decomposition, or sometimes
etgenvalue decompositon.

Since each term uluzT of Eq. (2.3) is the projection matrix onto the direction, called the prin-
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cipal azis, of each eigenvector u;. (— Eq. (1.15)), Eq. (2.3) expresses the matrix A as a linear
combination of the projection matrices onto the principal axes. In other words, the transformation
of the space by a symmetric matrix is interpreted to be projections of each point onto the principal
axes directions, followed by multiplication by the respective eigenvalues, which are then summed
over all the principal axes.

The identity matrix I maps any orthonormal basis {u;}, i = 1, ..., n to itself, i.e., Tu; = u;,

hence all eigenvalues are 1, meaning that it has the spectral decomposition in the form of Eq. (2.4).

2.3 Rank

The number of linearly independent vectors among the n columns of matrix A, or the number of
linearly independent vectors among its n rows, is called the rank of that matrix.

Consider an arbitrary linear combination of the columns aq, ..., a, of A, which has the form of
Eq. (2.5), where we let ¢ = (cz> If r of the n eigenvalues are nonzero, we can let A,y 1 =--- = A\, =
0 in Eq. (2.3) and write it as Eq. (2.6). This means that an arbitrary linear combination of the
columns of A is written as a linear combination of mutually orthogonal, hence linearly independent,
r vectors uq, ..., u, (< Problem 2.1). Hence, the subspace spanned by aq, ..., a,, has dimension
r, meaning that only r of the n columns are linearly independent. Thus, the rank r of matriz A
equals the number of its nonzero eigenvalues. Since A is a symmetric matrix, this also holds for

the rows, i.e., only r of the n rows are linearly independent.

2.4 Diagonalization of Symmetric Matrices

Equation (2.3) is rewritten as Eq. (2.7) (< Problem 2.2), where the matrix U of Eq. (2.8) is an
orthogonal matriz, i.e., a matrix whose columns are an orthonormal system, consisting of columnas
U1, ..., Uy, for which Eq. (2.9) holds (< Problem 2.3). If U is an orthogonal matrix, so is its
transpose U " (— Problem 2.4). Hence, the rows of an orthogonal matrix are also an orthonormal
system. Multiplying Eq. (2.7) by U from left and U from right on both sides, we obtain from
Eq. (2.9) the equality of Eq. (2.10). Namely, a symmetric matriz is transformed, if multiplied
by a matrixz consisting of its eigenvectors as columns from right and its transpose from left, to a
diagonal matriz whose diagonal elements are the eigenvalues. This is called the diagonalization of

a symmetric matrix.
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2.5 Inverse and Powers

1 or whose rank is

If A is a nonsingular matriz, i.e., a matrix whose eigenvalues are all nonzero
n, it has its inverse A~!. Multiplying Eq. (2.1) by A~"! on both sides, we obtain u = NA ™ u, or
A7'u = (1/\)u. Hence, A~! has the same eigenvectors as A with eigenvalues 1/\. Hence A~
has the spectral decomposition of Eq. (2.11) (< Problem 2.5). As in the same way as Eqgs. (2.7)
and (2.10), we obtain the relationships of Eq. (2.12).

From Eq. (2.1), we see that A%u = MAu = \?u, Au = \2Au =)3u, ... , so that ANu = \Nu.
Hence, for an arbitrary natural number N, the matrix A" has the same eigenvectors as A with
eigenvalues A\, Tt follows that it has the spectral decomposition of Eq. (2.13). From this, we obtain,
as in the case of Eq. (2.12), the expressions of Eq. (2.14). It is easy to see that this also applies
to an arbitrary polynomial f(x) so that we obtain Egs. (2.15) and (2.16). These equations can be
extend to an arbitrary function f(x) for which its power series expansion converges. Further more,
for any function f(z) for which f(\;), i =1, ..., n is defined, we can define f(A) via Eq. (2.15). For
example, if all the eigenvalues of A is nonnegative (such a matrix is said to be positive semidefinite;
it is positive definite if al the eigenvalues are positive), its “square root” v/A is defined by Egs. (2.17)
and (2.18) (< Problem 2.6).

We can view Eqs. (2.4) and (2.11) as special cases of Eq. (2.13) with N = 0, —1, where we define
A" = I. For a nonsingular matrix A, we can write A= = (A™HY (= (AN)~1) for a natural
number N (— Problem 2.7). Then, we can see by combining Eqs. (2.11) and (2.13) that Eq. (2.13)
holds for an arbitrary integer V. If A is a positive definite symmetric matrix, N can be extended

to an arbitrary real number.

Problems of Chapter 2

2.1. Show that mutually orthogonal nonzero vectors uy, ..., u,, are linearly independent.

2.2. Show that Eq. (2.19) holds for n-dimensional vectors ai, ..., a, and by, ..., b,,, where A and

B are n X m matrices having columns a1, ..., a,, and columns by, ..., b,,, respectively.

2.3. Show that U is an orthogonal matrix, i.e., its columns form an orthonormal system, if and

only if Eq. (2.9 holds.

'We can alternatively say that a matrix is nonsingular if its determinant (= the product of all the eigenvalues) is
nonzero or if it has its inverse.
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2.4.

2.5.

2.6.

2.7.

Show that if U is an orthogonal matrix, sois U ', i.e., an orthogonal has not only orthonormal

columns but also orthonormal rows.

Show that the matrix A of Eq. (2.3) and the matrix A~! of Eq. (2.11) satisfy A™'A = I by

computing their product.

For the matrix v/A defined by Eq. (2.17) or by the first equation of Eq. (2.18), show that
(VA)? = A holds.

Show that for a nonsingular matrix A, Eq. (2.20) holds for any natural number N.
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Singular Values and Singular
Decomposition

3.1 Singular Values and Singular Vectors

For an m x n matrix A which is not the zero matrix O, i.e., the matrix whose elements are all zero,
we call a positive number o (> 0) the singular value, an m-dimensional vector u u (# 0) the left
singular vector, and an n-dimensional vector v (# 0) the right singular vector such that Eq. (3.1)
hold. The left and right singular vectors are also simply called the singular vectors. There exist
r set of such singular values and singular vectors, where r is the rank of the matrix A, i.e. the
number of linearly independent columns and the number of linearly independent rows (we discuss
this shortly).

Multiplying the second equation of Eq. (3.1) by A from left on both sides, and multiplying the
first equation by A" from left on both sides, we see that Eq. (3.2) holds. Namely, the left singular
vector w is the eigenvector of the m x m symmetric matrix AAT, and the right singular vector v
is the n x n symmetric matrix AT A. The squared singular value o2 is the eigenvalue of both of
them. (= Problem 3.1). It is easy to see that AA" and A" A have a common positive eigenvalue
02 and that their eigenvectors uw and v are related by Eq. (3.1) (< Problem 3.2).

Let o1 > --+ > 0, (> 0) be the singular values of A, where some of them may overlap. Since the
corresponding r left singular vectors wy, ..., u, and r right singular vectors are both eigenvectors
of symmetric matrices, they can be chosen to form orthonormal systems.

For actually computing the singular values and singular vectors, we need not compute the

eigenvalues and eigenvectors of AAT and AT A. Various software tools that can compute them
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with high speed and high accuracy are available. A typical one consists of transformation to
a bidiagonal matriz by means of the Householder method and application of the Golub-Reinsch

method.

3.2 Singular Value Decomposition

An m xn matrix A defines a linear mapping from the n-dimensional space R"™ to the m-dimensional
space R™ (hookrightarrow Appendix A.1). We can extend the orthonormal system wq, ..., u, of
the r left singular vectors to an orthonormal bais {w1, ..., Up, Upy1, ..., Uy} of R™. Similarly, we
can extend the orthonormal system wvq, ..., v, of the r right singular vectors to an orthonormal
basis {v1, ..., Uy, Vps1, ..., Uy} of R™. From Eq. (3.2), these are eigenvectors of AA" and A" A,
and Eq. (3.3) holds: the eigenvalues for w,11, ..., y, and v,41, ..., v, are all 0. Hence, Av; = 0,
i =741, .., n (= Problem 3.3(1)). This and the first equation of Eq. (3.1) means that A maps
the orthonormal basis vectors {vi, ..., v,} of R" to o1uy, ..., oyu,, 0, ..., 0, respectively. Hence,
from Eq. (1.1), we see tht A is expressed in the form of Eq. (3.4).

Similarly, we see that A w; = 0,i=7r+1, ..., m (— Problem 3.3(2)), and this and the second
equation of Eq. (3.1) means that A" maps the orthonormal basis vectors {1, ..., u,} of R™ to
o101, ..., 07U, 0, ..., 0, respectively. Hence, from Eq. (1.1), we see tht AT is expressed in the
form of Eq. (3.5), which is the transpose of Eq. (3.4) on both sides. Thus, an arbitrary matriz
is expressed in terms of its singular values and singular vectors. This is called the singular value

decomposition.

3.3 Column Domain and Row Domain

Let U be the subspace spanned by the n columns of A, and V the subspace spanned by its m rows.
We call the the column domain and the row domain, respectively.

Consider an arbitrary linear combination of the columns aq, ..., a, of A, which has the form
of Eq. (3.6), where we let ¢ = (cz) From Eq. (3.4), this is rewritten as in Eq. (3.7). Namely, an
arbitrary linear combination of the columns of A is a linear combination of mutually orthogonal,
hence linearly independent (< Problem 2.4), vectors ui, ..., u,. Hence, the column domain U
spanned by aq, ..., a, is an r-dimensional subspace, for which w1, ..., u, are an orthonormal basis.

It follows that only r columns are linearly independent.
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The rows of A are the columns of A'. Hence, from Eq. (3.5) an arbitrary linear combination
of rows is expressed as a linear combination of vy, ..., v,. Thus, the row domain V spanned by
rows of A an r-dimensional subspace, for which v, ..., v, are an orthonormal basis. It follows that
only r rows are linearly independent.

From these, we conclude that the rank r of A equals the number of the singular values of A
and that the left singular vectors {u;}, i = 1, ..., r, and the right singular vectors {v;}, i = 1, ...,
r, constitute the orthonormal basis of the columns domain U and the row domain V, respectively.

From Eq. (1.9), the projection matrix of R onto the column domain ¢ and the projection
matrix of R™ onto the row domain V are respectively given as in Eq. (3.8). Since each u;, i = 1,
oy Ty 18 u; € U, we have Pyu; = u,;. Hence, operation of Py to Eq. (3.4) from left does not cause
any change. Similarly, we have Pyv; = v; for the rows. Hence, Py to Eq. (3.4) from right does

not cause any change. It follows that Eq. (3.9) hold.

3.4 Matrix Representation

As Eq. (2.7), Eq. (3.4) can be rewriten in the form of Eq. (3.10), where U and V' are the matrices
defined by Eq. (3.11), which are m x r and n X r matrices consisting of singular vectors uq, ...,
u, and vi, ..., v, as columns, respectively. Rewriting Eq. (3.5) in the same way results in the
transpose of Eq. (3.10) on both sides.

Since the r columns of the matrices U and V' are orthonormal systems, we obtain Eq. (3.12)
(— Problem 3.5), where the right sides are the r x r identity matrix. We also obtain Eq. (3.13)
(= Problem 3.6).

Problems of Chapter 3

3.1. Show that for any matrix A, the matrices AA" and AT A are both positive semidefinite

symmetric matrices, i.e., symmetric matrices whose eigenvalues are all positive or zero.

3.2. Suppose one of the two matrices AA" and AT A has a positive eigenvalue o for A # O.
Show that it is also the eigenvalue of the other matrix and that their eigenvectors u and v

are related by Eq. (3.1).

3.3. Show the following:



Problems of Chapter 3

(1) If AATu = 0, then ATu = 0.

(2) If AT Av = 0, then Av = 0.
3.4. Show that Eq. (3.12) holds.

3.5. Show that Eq. (3.13) holds.

12



Chapter 4

Pseudoinverse

4.1 Pseudoinverse

If an m x n matrix A (# O) has the singular value decomposition in the form of Eq. (3.4), its
pseudoinverse, or generalized inverse, of the Moore-Penrose type is defined to be the n x m matrix
given by Eq. (4.1)!. If A is a nonsingular matrix, this coincides with the inverse A= of A (—
Problem 4.1). In this sense, the pseudoinverse is a generalization of the inverse.

If we define the matrices U and V as in Eq. (4.6), Eq. (4.1) can be written, as Eq. (3.10) in
the matrix form of Eq. (4.2).

4.2 Projection onto the Column and Row Domains

The inverse of a nonsingular matrix is defined so that the product is the identity matrix. However,
the product of the pseudoinverse and the original matrix is note necessarily the identity. In fact,
noting that {w;} and {v;}, i = 1, ..., r, are orthonormal systems, we obtain from Eqs. (3.4) and
(4.1), we obtain the relationships of Eq. (4.3) and (4.4) (— Eq. (3.8)), where we have noted that
when the Kronecker delta ¢;; appears in summations ) | over i or j (or both), only terms for which ¢
= j survive. From Eq. (4.3) and (4.4), we find that the products AA™ and A~ A are the projection
matrices onto the column domain U and the row domain V, respectively (< Problem 4.2).

Since the columns and rows of a nonsingular matrix are linearly independent, the columns and
the rows both span the entire space, and the projection matrix onto the entire space is the identity

matrix (— Eq. (1.11)). Hence, the pseudoinverse is a natural extension of the inverse.

!Pseudoinverses that are not of Moore-Penrose type can also be defined, but in this book we only consider
pseudoinverses of Moore-Penrose type. Some authors write A~ for a “general” pseudoinverse and specifically write
A™ for that of the Moore-Penrose type to make a distinction (— Footnote 2.

13
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Since Pyx = x for any « € U, the matrix Py plays the role of the identity in the column
domain U. Hence, the first equation of Eq. (4.5) states that A~ defines the inverse transformation
of A in the column domain U. Similarly, since Pyx = x for any & € V, the matrix Py plays the
role of the identity in the row domain V. Hence, the second equation of Eq. (4.5) means that A~
defines the inverse transformation of A in the row domain V.

For the projection matrices Py, and Py, the equalities Py u; = u; and Pyv; = v; hold by
definition. Hence, we obtain the identities of Eq. (4.6) for the pseudoinverse A~ in the same way
as Eq. (3.9). From this observation, we obtain the fundamental identities of Eqs. (4.7) and (4.8)
for the pseudoinvers?. Equation (4.7) is obtained by combining Eq. (4.4) and the first equation of
Eq. (4.6). Alternatively, we may combine Eq. (4.3) and the second equation of Eq. (4.6). Equation
(4.8) is, on the other hand, obtained by combining Eq. (4.3) and the first equation of Eq. (3.9).
Alternatively, we may combine Eq. (4.4) and the second equation of Eq. (4.9). Equations (4.7) and
(4.8) can also be obtained from the matrix representation of Eq. (4.2) (< Problem 4.3).

4.3 Pseudoinverse of Vectors

An n-dimensional vector a is an n x 1 matrix, so it has its pseudoinverse. if a # 0, its singular value
decomposition is given by Eq. (4.9). The column domain is the one-dimensional space spanned by
the unit vector u = a/||al, and the row domain is R! (= the set of real numbers) whose basis is 1.
The singular value is ||a||. Hence, the pseudoinverse a~ is given by Eq. (4.10), i.e., the transposed
row vector divided by its square length ||a|?.

From Egs. (3.4), (3.5), and (4.1), we see that (A7)~ = (A~)T, which we simply write A~ .
Hence, the pseudoinverse of a row vector a' regarded as a 1 x 3 matrix is given by Eq. (4.11).

If we write the unit direction vector along vector a as u = a/||a|, the product of the pseudoin-
verse a~ and the vector a is given by Eq. (4.12), which is the projection matrix onto the direction
of the vector u. On the other hand, we see that Eq.(4.13) holds. Note that 1 (= the 1 x 1 identity

matrix) is the projection matrix onto R!.

2The matrix A~ that satisfies Eq. (4.8) is the most general “pseudoinverse” of A. By adding various conditions
to this, we can define various (not necessarily of the Moor-Penrose type) pseudoinverse. If Eq. (4.7) is satisfied, it
is said to be a “reflexive pseudoinverse”. If AA™ and A~ A are both symmetric matrices, it is of the Moor-Penrose

type./
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4.4 Rank-constrained Pseudinverse

In Chapters 2 and 3, we pointed out that various software tools are available for vomputing eigenval-
ues, eigenvectors, and the singular value decomposition. However, this is not so for pseudoinverses.
Basically, there is no software tool to automatically compute the pseudoinverse; if such a tool is
offered, we should not use it. This is because all the computations that arise in physics and en-
gineering are based of observation data obtained by measurement devices and sensors. Hence, all
data contain noise to some extent. As a result, if we compute the singular value decomposition
by Eq. (3.4), all the singular values o; are genrally positive. If some of o; are ideally 0 but are
computed to be nonzero due to the noise, we may obtain unrealistic values using Eq. (4.1) due to
1/0;.

Of course, this is not limited to pseudoinverses; it also applies to the computation of the usual
inverses, e.g., when we use Eq. (2.11) to a matrix which is not really a nonsingular matrix. However,
there is an important distinction: while the inverse is defined only for nonsingular matrices, the
pseudoinverse is defined for all nonzero matrices. However, we need to know the rank for computing
the pseudoinverse,using Eq. (4.1).

A simple way to judge the rank r of an m x n matrix A obtained from measurement data is to
compute the singular value decomposition of Eq. (4.14) by letting [ = min(m, n), and to find a value
r such that Eq. (4.15) holds for the trailing singular values. Then, we regard them as noise and
retain the singular values up to oy, i.e., we replace A by Eq. (4.16), truncating the trailing singular
values, and compute its pseudoinverse (A),", which we calle the rank-constrained pseudoinverse (or
generalized inverse). But how should we truncate the small singular values?

For a mathematical computation where the data are exact real numbers, possible errors are
due to the rounding of finite length computation in the computer. Hence, we can use the smallest
number that can be digitally represented in a computer, which is called the machine epsilon, as
the threshold; some software tools are so designed. For computations of physics and engineering
involving observation data, however, it is generally difficult to estimate the error magnitude; the
estimation must done differently for different problems.

However, most application problems of physics and engineering are derived from some funda-
mental principles or laws. Hence, it is usually possible to do theoretical analysis based on such

principles or laws to predict the rank r in an ideal case where the measurement devices or sensors
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are assumed to be noiseless. Then, we can use the theoretical rank r regardless of the magnitude of
the singular values to be truncated and compute the rank-constrained pseudoinverse of Eq. (4.16).

We are then interested in estimating the difference between the rank-constrained matrix ob-
tained by truncating the trailing singular values and the original matrix. This is measured by the

matrix norm.

4.5 FEvaluation by Matrix Norm

The matriz norm of an mxn matrix A = <Aij> is defined by Eq. (4.17). This is called the Frobenius
norm or the Fuclid norm, for which Eq. (4.18) holds, where tr denotes the matrix trace. In face,
the three terms of Eq. (4.18) are all equal to > ", > 7%, A?j from the definition (< Problems 4.4
and 4.5).

Using Eq. (4.18), we can evaluate the difference between the matrix A of Eq. (4.14) and the
matrix (A), of Eq. (4.16), measured in the square matrix norm, as shown in Eq. (4..19), where we
note that tr(v;v,) = ||v;]|?> = 1 from Eq. (1.20). Thus, we conclude that the difference between
the matrix A and the matrix (A), obtained by truncating singular values is equal to the square
sum of the truncated singular values®. Namely, Eq. (4.20) holds. This can be also derived using

the matrix representation (< Problem 4.6).

Problems of Chapter 4

4.1. Show that if A is nonsingular, i.e., m = n and its eigenvalues are all nonzero, or r = n,

Eq. (4.1) defines the inverse A~! of A.
4.2. Using Eqgs. (3.10) and (4.2), show that Eq. (4.5) holds.
4.3. Using Egs. (3.10) and (4.2), show that Eq. (4.7) holds.

4.4. Show that Eq. (4.21) holds for the matrix trace, where the sizes of the matrices are such that

the products can be defined.

4.5. Show that Eq. (4.22) holds for orthogonal matrices U and V having sizes such that the

products can be defined.

3Tt can be shown that for a given matrix A, the matrix A’ of the same size that minimizes ||A — A’|| subject to
the constraint rank(A’) = r is given by A’ = (A), [3]. The proof is rather complicated.
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4.6. Show that if matrix A has a singular value decomposition in the form of Eq. (3.10), its norm

is given by Eq. (4.23) so that Eq. (4.20) is obtained.



Chapter 5

Least-squares Solution of Linear
Equations

5.1 Linear Equations and Least Squares

Consider m simultaneous linear equations of n variables 1, ..., z,, in the form of Eq. (5.1). Using
vectors and matrices, We can write them in the vector and matrix form of Eq. (5.2), where we the
m x n matrix A, n-dimensional vectorz, and the m-dimensional vector b are defined by Eq. (5.3).
In the following, we assume that A # O.

As is well known, Eq. (5.2) has a unique solution if and only when n = m and when the
determinant of A is nonzero, i.e., wheh A is nonsingular. In that case, the best known procedure for
manually computing the solution is the Gaussian elimination, and the mathematically equivalent
programm package called the LU-decomposition is available. In many physic and engineering
applications that involve observation data, however, problems with n # m frequently occur.

Each equation of Eq. (5.1) is interpreted to be a measurement process for estimating the n
parameters 1, ..., ,. Theoretically, we only need n measurements for determining n parameters.
However, we often repeat the measurement m (> n) times, considering that the observations may
contain noise. In some cases, there are some constraints which allows measurement only m (< n)
times. In such cases for which n # m, a practical method for estimating x1, ..., z, is to compute
their values that satisfy all the equations of Eq. (5.1) sufficiently well “as a whole”. A typical
strategy for this is to minimize the sum of the squares of the differences between the right and left
sides the individual equations. Namely, we compute 1, ..., x, that minimize Eq. (5.4). This is

called the least-squares method. The value J of Eq. (5.4) is called the residual sum of squares or,

18
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for short, the residual. If we write Eq. (5.1) in the form of Eq. (5.2) using vectors and matrices,
the residual J of Eq. (5.4) is written as Eq. (5.5).

However, the value of & that minimize J may not be determined uniquely if we cannot repeat the
observation a sufficient number of times. In that case, we choose from among multiple possibilities
the value x that minimizes ||x|2. This reflects the fact that in many physics and engineering
problems the value ||x||? represents some physical quantity that, like heat generation or required
energy, should desirably be as small as possible. In view of this, we call the value x for which (i)
the residual J is minimized and (ii) |||? is minimum the least-squares solution.

The least-squares method was introduced by the German mathematician Karl Gauss (1777
1855) for computing the motion of planets from telescope observation data. He also introduced
various numerical techniques for computing simultaneous linear equations and integrations accu-
rately and efficiently, which are now the foundations of today’s numerical analysis. In order to
justify his least-squares method, he established a mathematical model of numerical noise contained
in observation data. Asserting that such a noise distribution is the most “normal”, he called it the
model the normal distribution (see Sec. 6.2 of the next chapter). It plays the fundamental role in
today’s statistical analysis. On the other hand, physicists and engineers often call it the Gaussian
distribution in honor of Gauss. He also made many contribution in pure mathematics, including
the fundamental theorem of algebra (the Gauss theorem). At the same time, he also established
many differential and integral formulas of electromagnetics and fluid dynamics, which are the basis

of today’s physics.

5.2 Computing the Least-squares Solution

In general, the solution that minimizes Eq. (5.5) is obtained by differentiating J by @, letting the
result be 0, and solving the resulting equation V,J = 0, which is called the normal equation.
However, the solution has different forms, depending on whether m > n or m < n and whether r
= n, r = m, or otherwise (Problems 5.1- 5.4). Here, we show that the most general form of the
least-square solution that encompasses all the cases is obtained, using the projection matrix and
the pseudoinverse, without involving differentiation or solving the normal equation.

Let U be the column domain of A of Eq. (5.3), i.e., the space spanned by the columns of A.

This is a subspace of R™. From Eq. (1.12), we can express the square norm of a vector as the
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sum of the square norm onto subspace U and the square norm of the rejection from it, i.e., the
projection onto the orthogonal complement /. Hence, the residual J of Eq. (5.5) can be written
as Eq. (5.6). Here, we note that PyAx = Ax and Py, Az = 0 hold because Az is a linear
combination of the columns of A and is included in the column domain U. Since the last term of
Eq. (5.6) does not contain x, the least-squares solution satisfied Eq. (5.7).

This is interpreted as follows. Since Ax € U, Eq. (5.2) evidently has no solution unless b € U.
Hence, we replace the vector b by its projection Pyb onto U. Since the part of b that is outside the
column domain U is Py,.b, the residual equals || P,,.b|? (Fig. 5.1).

We are assuming that A # O, so A has the singular value decomposition of the form of
Eq. (3.4). The left side of the first equation of Eq. (5.7) is rewritten in the form of Eq. (5.8). From
the expression of P of Eq. (3.8), the right side is rewritten in the form of Eq. (5.9). Since Egs. (5.8)
and (5.8) are expansions in terms of the orthonormal system {u;} (— Appendix A.7), we have
o;(v;, ) = (u;, b) and hence Eq. (5.10). If we extend the n-dimensional vectors vy, ..., v, to make
an orthonormal basis {v1, ..., Uy, Uy41, ..., Uy} of R™, we can expand x with respect to this basis
in the form of Eq. (5.11) (<= Appendix Eq. (A.35)). However, (v,4+1, ), ..., (Un, ) are unknown.

Following the principle that we choose the solution that minimizes Eq. (5.11), we adopt the
solution for which (v,41,2) = -+ = (v,, &) = 0 (— Appendix Eq. (A.36)). As a result, = is
expressed as Eq. (5.13). Namely, the least-squares solution x is given by Eq. (5.14).

Note that, as pointed out in the preceding chapter, we need to know the rank r of A for
computing A~. It should be estimated from the fundamental principles or the fundamental laws
behind the problem in question by inferring what the rank will be if the observation data are ideal.
If no theoretical relationships or constraints among the n variables and m equations o Eq. (5.1),
we can let r = min(n,m). Otherwise, we compute the rank-constrained pseudoinvers, using the

estimated rank r.

5.3 Multiple Equations of One Variable

Consider, as an example, the simultaneous linear equaions of Eq. (5.15) for n = 1, where we assume
that ay, ..., am, are not all 0. In vector form, it is written as Eq. (5.16). Since the pseudoinverse
a~ of vector a is given by Eq. (4.10), the least-squares solution is given by Eq. (5.17). Formally, it

is rewritten in the form of Eq. (5.18), where terms for x = b;/a; are ignored. This is interpreted to
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be the weighted average of the individual solutions @ = b;/a; of Eq. (5.15) with weights a?. It can
be easily shown that this is the solution that minimizes the residual J of Eq. (5.19) (< Problem
5.5).

5.4 Single Multivariate Equation

For another example, consider a single linear equation of Eq. (5.20), where we assume that a4, ...,
a, are not all 0. In vector form, it is written as Eq. (5.21). Since this is rewritten as a'a = b, the
least-squares solution if given by (a')~x. A row vector a' has its pseudoinverse a~' (= (a')~
= (a™)") in the form of Eq. (4.11). Hence, the least-squares solution is given by Eq. (5.22). It is
easy to see that (a,x) = b holds. Since the ith component of Eq. (5.22) is x; = ba;/||a||?, we can
write the ith term on the left side of Eq. (5.20) is given by Eq. (5.23). This means that the n terms
on the left side of Eq. (5.20) are portions of b on the right side distributed in proportion to the
ratioa? : --- : a2. It is easy to confirm that Eq. (5.22) is the solution that minimizes ||z||* subject

to the condition that @ satisfies Eq. (5.20) (< Problem 5.6).

Problems of Chapter 5

5.1. Show that if m > n and if the columns of A are linearly independent, i.e., r = n, then

(1) the least-squares solution x is given by Eq. (5.24) and

(2) the residual J is written in the form of Eq. (5.25).
5.2. Show that if m > n = r, Eq. (5.26) holds.

5.3. Show that if n > m and if the rows of A are linearly independent, i.e., r = m, then the

residual J is 0 and the least-squares solution « is given by Eq. (5.27).
5.4. Show that if n > m = r, Eq. (5.28) holds.
5.5. Show that the solution x given by Eq. (5.17) minimizes the sum of square of Eq. (5.19).

5.6. Show that Eq. (5.22) minimizes ||||? over all & that satisfy Eq. (5.20).



Chapter 6

Probability Distribution of Vectors

6.1 Covariance Matrices of Errors

A vector x is said to be a random wariable if its value is not deterministic but is specified by
some (or assumed) probability distribution. In physics and engineering, we often regard the values
obtained by measurement devices and sensors as random variables. Usually, an observed value x is
interpreted to be the sum of its true value & (a definitive value) and some noise term Az (a random
variable) in the form of Eq. (6.1). We usually assume that the noise term Ax has expectation, or
average, 0; if it has an expectation not equal to 0, we can model its probability distribution after
subtracting it. Namely we assume that Eq. (6.1) holds, where E[-]| denotes expectation with
respect to the probability distribution of the noise. We define the covariance matriz of the noise by
Eq. (6.2) (< Problem 6.1). From this definition, we see that X is a positive semidefinite matrix,
i.e., its eigenvalues are positive or zero (— Problem 6.2). From Eq. (6.3), the mean square of the
noise term Az is given by Eq. (6.3), i.e., the trace of the covariance matrix ¥ (< Problem 6.3).
Let 02, ..., 02 be the nonnegative eigenvalues of the covariance matrix X, and o?, ..., 02 the

orthonormal system of the corresponding unit eigenvectors. Then, 3 has the spectral decomposition

in the form of Eq. (6.5). We call the directions of the vectors uy, ..., u,, the principal azes of the noise
distribution. The values o7, ..., 02 indicate the variance of the noise in the respective directions,

ie., o1, ..., oy are their standard deviations. In fact, the magnitude of the noise term Ax along wu;,
i.e., the projected length in the direction of w; is given by (Ax,u;), as shown in Eq. (1.16), and its
mean square is given by Eq. (6.6). If all the eigenvalues are equal, i.e., if 07 = -+ = 02 (= o?),
the noise is said to be isotropic, in which case the noise occurence is equally likely in any direction

and the covariance matrix 3 of Eq. (6.3) ahs the form of Eq. (6.7). — Eq. (2.4)).

22
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Otherwise, the noise is said to be anisotropic, in which case the likelihood of the occurence of

x depends on the direction. In particular, the the eigenvector wmyax for the maximum eigenvalue

2

S ax 1S the variance

o2, indicate the direction along which the noise is most likely to occur, and o
in that direction. This is because the projected length of the noise term Ax onto the direction of
a unit vector w is given by (Az,u) (— Sec. 1.4), and its square means is, as shown in Eq. (6.6),
E[{(Az,u)?] = (u,Xu), which is a quadratic form of the symmetric matrix X. Hence, the unit
vector u that maximize it is given by the unit eigenvector umax for the maximum eigenvalue opyax
(— Appendix A.10).

If there exists an eigenvector w; for which the eigenvalue is 0, we infer that no noise occurs

in that direction. In practice, this means that the variation of x in that direction is physically

prohibited.

6.2 Normal Distribution of Vectors

A typical probability distribution is the normal distribution. In the n-dimensional space R", it is
specified by the expectation & and the covariance matrix 3 alone. Its distribution density has the
form of Eq. (6.8), where C' is a normalization constant set so that the integration over the entire
space R™ equals 1 (to be precise, it is 1/1/(27)"0? - - - 62). The distribution extends to infinity, and
the covariance matrix X is assumed to be positive definite (i.e., all the eigenvalues are positive). It
satisfies the identities of Eq. (6.9), where [, (---)dx denotes integration over the entire R".

If a surface on which the probability density p(x) is constant has the form of Eq. (6.10), it is
called the error ellipsoid (Fig. 6.1). This is an ellipsoid centered on Z; it is also called the error
ellipse for two variables and the confidence interval for a single variable. Each of the eigenvectors
of the covariance matrix ¥ is the axis symmetry, and the radius in that direction is the standard
deviation o; in that direction (< Problems 6.4 and 6.5). Thus, the error ellipse visualizes directional
dependence of the likelihood of error occurrence.

In some engineering applications, including computer graphics and computer vision, we often
consider covariance matrices which are not positive definite. The fact that the covariance matrix has
eigenvalue 0 means that the disturbance in the corresponding eigenvector is prohibited. Suppose,
for example, we want to evaluate the uncertainty of the position of a particular point on the display

surface or in the image. Then, the noise disturbance occurs only within a two-dimensional plane,
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and the perpendicular displacement is prohibited. It seems then that it is sufficient to define a two-
dimensional coordinate system in that plane and consider a normal distribution of two variables.
However, it is often more appropriate to regard that plane as a surface in the three-dimensional
space. This is because for such analysis, we define a particular point, called the viewpoint, in the
three-dimensional scene, which corresponds to the position of the human eye or the camera lens
center, and analyze the geometric properties of the figures on the display surface or in the image,
which is identified with the camera image plane, by regarding them as a perspective view of the
three-dimensional scene (Fig. 6.2).

Considering such applications, let r be the rank of the n x n covariance matrix 3, and w1, ..., u,
the orthonormal system of its unit eigenvectors for positive eigenvalues o, ..., o2 (> 0). We denote
the r-dimensional subspace they span by U. In other words, we are assuming that all stochastic
deviations occur within ¢/ and that no displacements are allowed in the direction of &{*. In this
case, the probability density of the normal distribution with expectation & and covariance matrix
¥ has the form of Eq. (6.11), where 37 is the pseudoinvers of the covariance matrix 3, and C' is
a normalization constant determined so that the integration over U, not over the entire R", equals
1 (to be precise, it is 1/1/(27)707 - - - 02). Then, the relations of Eq. (6.12) hold, where J, (- dee
denotes integration over U.

The covariance matrix X and its pseudoinverse 3~ have the spectral decomposition in the form
of Eq. (6.13). Hence, the projection matirx Py (= >.i_, w;u; ) onto the subspace U satisfies the
relations of Eq. (6.14), and hence Eq. (6.15) holds (< Appendix Eq. (A.27)). In other words, the
use of the pseudoinverse 3~ means that we are considering the normal distribution not of  — & but
of its projection Py(x — &) onto Y. Within U, the distribution is regarded as a normal distribution
with variance o2 (> 0) in each principal axis direction, defining a covariance matrix that is positive

definite within U.

Example. Normal distribution over the image plane

The normal distribution over the image plane is represented as follows. Let (Z,y) be the true
position of an observed point (z,y), and write (z,y) = (Zz + Az,y + Ay). We assume that the
noise terms Az and Ay are subject to a normal distribution with expectation is 0 having the
variance/covariance given by Eq. (6.16). We regard the image plane, or the display surface, as

the plane z = 1 in the three-dimensional space (Fig. 6.3). If we represent points (z,y) and (z,y)



CHAPTER 6. PROBABILITY DISTRIBUTION OF VECTORS 25

by three-dimensional vectors of Eq. (6.17)!, the probability density of x is written in the form of
Eq. (6.18), where the covariance matrix 3 has the form of Eq. (6.19).

6.3 Probability Distribution over a Sphere

Applications which involve non-positive definite covariance matrices, other than distributions over
planes, include distributions over a “sphere”. In some problems of physics and engineering, sensor
data are directional, i.e., only orientations can be measured. If we normalize the direction vector
to unit norm, an observed datum can be regarded as a point over a unit sphere.

A typical example is observation using images alone. A camera can identify the direction of
incoming ray of light, but the depth, i.e., the distance to the object, is unknown. This is the case
however many cameras are used. In fact, if we move the camera over a short distance relative to a
small object nearby or over a long distance relative to a large object in the distance, the observed
image is the same. Today, various computer vision techniques are established for reconstructing
the shape of three-dimensional scenes and objects using camera images, the absolute scale of the
reconstructed shape is indeterminate. This scale indeterminacy is not limited to the reconstructed
shape. Many types of matrix that characterize the structure of the scene can be computed from
images, but they are often determined up to scale?. Usually, such matrices are normalized so that
the sum of the squares of the elements is 1. If we view an m X n matrix as an n?-dimensional
vector consisting of the n? matrix elements, it can be regarded as a point on a unit sphere in the
n?-dimensional space after normalization.

Considering these, we assume that the measured value x is an n-dimensional unit vector. It
is identified with a point on the (n — 1)-dimensional unit sphere S"~! in the n-dimensional space
R™, and a probability distribution is defined around its true position . However, mathematical
analysis is generally very difficult. First of all, the normal distribution, which is the most common
distribution, cannot be defined, because the sphere S™~! is of finite size while the normal distri-
bution extends infinitely over the entire space R™. In practical problems, however, today’s sensors

including cameras are highly accurate so that the noise component Az of x is usually very small®.

!This is equivalent to representing a point in the plane by its “homogeneous coordinates” as done in projective
geometry.

2Typical examples include matrices called the “fundamental matrix” and the “homography matrix”.

3For example, the accuracy in locating a particular point in an image using an image processing algorithm is
usually around 1~3 pixels.
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Consequently, the distribution of « is thought to be limited to a small region surrounding & on the
sphere S"~!. Hence, we can view this as a distribution over the tangent plane to S"~! at & (Fig.
6.4). We can then define the expectation and the covariance matrix of  and hence the normal
distribution of «.

The tangent plane to S"~! at & is an (n — 1)-dimensional (hyper-) plane, whose unit surface
normal is & itself. Hence, from Eq. (1.17) the projection matrix onto the tangent plane is given
by Eq. (6.20). Consider, as a practical application, the reliability evaluation of the measurement
x. Suppose we repeat the measurement and observe xq, ..., xy as the result. Or suppose you
want to evaluate the performance of a computational procedure for computing . You artificially
add random noise to the original observations and compute & from the noisy data. Let x1, ..., xn
the results for different noise. In either case, you want to evaluate how x1, ..., xy differ from the
theoretical value .

Let x, € S ! be the ath measurement. Its projection onto the tangent plane is given by
Eq. (6.21) (Fig. 6.5). The sample mean m and the sample covariance matriz S are computed

” means replacing the integration in expectation

by Eq. (6.22), where the expression“sample - - -
computations, such as Egs. (6.9) and (6.12), with respect to the true probability distribution by
the arithmetic average over all “realizations”, for which many different terms are used including
observations, measurements, samples, and data.

The sample mean m indicates the averatge deviation from the true positio & on the tangent
plane. Its magnitude |m/||, which is ideally 0, is called the bias*. The diagonal element S;; of the
sample covariance matrix S is the samle variance of the ¢th component z;, of &, and the non-
diagonal element S;;, i # j is the sample covariance of &;, and Zj, (< Problem 6.6)). The square
root of the trace of the sample covariance matrix S, given by Eq. (6.23) is called the root-mean-
square error, or the RMS error for short, which is a typical indicator of the observation accuracy
or computational performance.

From the definition of Pz of Eq. (6.21), the sample covariance matrix S satisfies Eq. (6.24)
and has rank n — 1. If the distribution of x is regarded as a normal distribution, its empirical
probability density is given by Eq. (6.25), where C' is the normalization constant determined so

”

that integratio over the tangent plane is 1. The expression “empirical ---” means replacing the

4For a random variable, this term usually means the deviation of its expectation from the true value. If it is 0,
the random variable is said to be “unbiased”. For realizations, the bias means the deviation of the samle mean from
its true value. Here, we are using this term in the realization sense.
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parameters included in the theoretical expression by values estimated from realizations like the

sample mean and the sample covariance matrix.

6.1.

6.2.

6.3.

6.4.

6.5.

6.6.

Problems of Chapter 6

Show that If we let = (xl), the diagonal element Y;; of the covariance matrix ¥ of Eq. (6.3)
gives the variance of x; and the non-diagonal element 3;;, 7 # j gives the covariance of x;

and ;.

Show that the matrix X = xax " defined from a vector « is a positive semidefinite symmetric

matrix, i.e., a symmetric matrix whose eigenvalues are positive or 0. Also show that this is

the case for the matrix X = zgzl mawg defined by multiple vectors «1, ..., Ty, too.
Show that tr(zaz') = ||«|? holds for any vector =. Also show that tr(>2_ x,x)) =
SN |4 holds for any multiple vectors @1, ..., .

Write down explicitly the surface of Eq. (6.10) in three dimensions when ¥ is a diagonal

matrix.

Show that the ellipsoid given by Eq. (6.10) has its center at the expectation & with the
eigenvectors u; of the covariance matrix 3 as its axes of symmetry and that the radius in

each directions is the standard deviation o; of the error in that direction.

Write 2, = (@-a>, and show that the diagonal element S;; of the sample covariance matrix
S of Eq. (6.22) is the variance of #;, and its non-diagonal element S;;, @ # j is the sample

covariance of ;o and x ;4.
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Fitting Spaces

7.1 Fitting Subspaces

Given N points x1, ..., £y in the n-dimensional space R", we consider the problem of finding an
r-dimensional subspace that is the closest to them, where we assume that N > r. If n = 3 and
r = 1, for example, this is the problem of line fitting: we want to find a line passing through the
origin that is as close to the given IV points as possible. For n = 3 and r = 2, this is plane fitting:
we compute a plane passing through the origin that is close o the given N points (Fig. 7.1). Here,
the “closeness” is measured by the sum of square distances.

Finding a subspace is equivalent to finding a basis that spans the subpace. Let uq, ..., u, be
an orthonormal basis of the r-dimensional subspace U to be fitted, and let {u1, ..., u,} be its
extension to an orthonormal basis of the entire R™. If follows that, put another way, the problem
is to find an orthonormal basis {u;} of R™ such that the subspace U spanned by its first r vectors
Uy, ..., W, is as close to the given N points as possible.

The distance of each point x, to the subspace U equals the length of the rejection P x,
from U 7> 6 DX (Fig. 7.2), where Py = D1 w;u, is the projection matrix onto the orthogonal
complement U+ of U (— Eq. (1.11)). Hence, the sum of square distances of the N points x1, ...,
xy from the subspace U is given by Eq. (7.1). From Eq. (1.12), this is rewritten as Eq. (7.2).
Hence, minimizing the sum of squares of Eq. (7.1) is equivalent to minimizing the sum of square

projected lengths onto the subspace U given by Eq. (7.3).

28
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7.2 Hierarchical Fitting

First, we consider the problem of fitting a one-dimensional subspace. Let v (a unit vector) be its
basis. The projected length of each point x,, onto that direction is (x4, v) (— Eq. (1.16), Fig. 7.3).
Hence, the sum of their squares over all points is given by Eq. (7.4), where we define the n x n

1 including the “moment

matrix ¥ by Eq. (7.5). This matrix is called by many different names
matrix” and the “scatter matrix”. In the following, we call it the covariance matriz, borrowing
from statistics, at the risk of possible confusion but for convenience’ sake. In statistics terms, this
equals the sample covariance matrix of the N sample data x, around the origin, i.e., by regarding
the origin as the mean, multiplied by N (— Eq. (6.22)).

Equation (7.4) is a quadratic form of a symmetric matrix 3 in unit vector v. Hence, the vector
v that maximizes this is the unit eigenvector of the matrix 3 for the maximum eigenvalue, and the
resulting value of K equals that maximum eigenvalue of S (< Appendix A.10). By construction,
3 is a positive semidefinite symmetric matrix, and its eigenvalues are all nonnegative (< Problem
6.2). Let 0? > ... > g2 > 0 be its eigenvalues. Then, X has the spectral decomposition of Eq. (7.6)
(= Eq. (2.3)). From this observation, we conclude that the basis of the one-dimensional subspace
U; that best fits to the point set {x,}, a =1, ..., N, is given by v = wu; and that the resulting sum
of the square projected lengths equals o2.

The obtained direction w; indicates the orientation in which the N points {x,} spread to the
largest extent (Fig. 7.4). If the set {x,} approximately spreads linearly, its distribution is well
described by a line in the direction of w;. However, if the points spread in other directions, too,
this approximation is not sufficient. So, we want to find a direction v that is orthogonal to u;
along which the sum of the square projected lengths is maximized. The square projected length
onto the direction of v is again given by Eq. (7.4). The unit vector v that minimizes it subject
to the condition (v,u1) = 0 is given by uy of the spectral decomposition Eq. (7.6) of X, and the
corresponding value of K equals U% (— Appendix A.10). The vector uy indicates the direction in
which the spread of the N points {x,} is the second largest.

From this observation, we conclude that the basis of the two-dimensional subspace Uy that best
fits to {x,} is given by u; and ug. Since u; and uy are mutually orthogonal, the sum of the square

projected lengths K onto U is the sum of the corresponding values for u; and wg, namely K =

!The terms “moment matrix” and “scatter matrix” are both borrowed from physics.
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O’% + O’%.

By the same argument, we see that the direction in which the spread is the third largest is
given by us in Eq. (7,6); w1, u2, and us span the subspace Us that best fits to {@,}, and the sum
of the projected lengths is K = o} + 05 + 03. Repeating this argment, we see that the basis of
the r-dimensional subspace U, that best fits to {4} is w1, ..., u, and that the sum of the square
projected lenghts is K = o3 +--- + o2.

From Egs. (7.2) and (7,3), we obtain J = YN ||lz4||> — K. From Eq. (7.5), we see that tr% =
fovzl |Zo|/? (= Problem 6.3), but since Eq. (7.7) holds from Eq. (7.6) (< Problem 7.1). Hence,
the sum of square distance to U, is given by Eq. (7.8), which we call the residual sum of squares
or the residual for short. Since 0% > > O’TQL, we obtain a smaller residual J as we increase the

dimension r of the fitting.

7.3 Fitting by Singular Value Decomposition

The argument of the preceding section shows that an r-dimensional subspace U, that best fits to
N points {x,}, @« = 1, ..., N, is obtained by first computing the covariance matrix U, of Eq. (7.5)
and then computing the spectral decomposition of Eq.(7.6).

On the other hand, consider the n x N matrix X of Eq. (7.9) consisting of vectors &, a = 1,
..., N, as its columns. Then, the covariance matrix X of Eq. (7.5) is given by Eq. (7.10). Since we
are assuming that N > n, the singular value decomposition of X is given by Eq. (7.11), because
the eigenvalues of ¥ = XX ' equals the square eigenvalues of X (— Eq. (3.2)). Moreover, the
singular vectors u; and v; are, respectively, the eigenvectors of X X T and X " X. It follows that
for fitting an r-dimensional subspace U, to N points {x,}, @ = 1, ..., N, we may alternatively
compute the singular value decomposition of the matrix X of Eq. (7.9) defined by the N points in
the form of Eq. (7.11). Then, the left singular vectors u;, ..., u, provide the basis of U,., and the
residual is given by J = Y"1 | 07

Thus, the use of the spectral decomposition and the use of the singular value decomposition
both give the same result. In actual applications, however, we should use the singular value de-
composition. This is for the sake of computational efficiency. Computations involving matrices and
vectors consist of computations of “sums of products”. Computing the sum of n products requires

n multiplications and n — 1 additions/subtractions. Hence, disregarding the term —1, we can view
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the number of multiplications and the number of additions/subtractions as approximately equal.
For complexity analysis, therefore, it is sufficient to evaluate the number of multiplications. For
spectral decomposition, we first compute the covariance matrix ¥ by Eq. (7.10), which requires
n? N multiplication (this is the same if Eq. (7.5) is used). The complexity of the spectral decompo-
sition, i.e. the computation of eigenvalues and eigenvectors, of an n x n may differ from algorithm
to algorithm but is approximately n3. Hence, the total complexity of computing ¥ and its spectral
decomposition is approximately n?(N +n). On the other hand, the complexity of the singular value
decomposition of an n x N matrix is approximately n?N for n < N and approximately nN? for N
< n. Hence, the singular value decomposition runs overwhelmingly efficient when N < n. Even if
for n < N, we can save nearly equivalent time for eigenvalue and eigenvector computation of the
covariance matrix.

This time saving is often underestimated. Pattern information processing involves a large
amount of data, and usually iterations are required for accuracy improvement. It is not uncommon,
for instance, that the number of point data extracted from multiple images is as large as hundreds
of thousands. In such a case, several hours of computation can sometimes be reduced to several

seconds by simply replacing spectral decomposition computation by singular value computation.

7.4 Fitting Affine Spaces

Subspace fitting is a generalization of fitting to a point sequence a line passing through the origin
and a plane passing through the origin. In practice, however, we often need to fit a line that
does not pass through the origin and a plane that does not pass through the origin. This type of
fitting is generalized to “afine space fitting”. An affine space is a translation of a subspace. An
r-dimensional affine space A, is specified by a point g in the n-dimensional space R™ and r linearly
independent vectors w1, ..., u, starting from it, and is the set of all points that are written as
Eq. (7.12) for arbitrary ci, ..., ¢, (Fig. 7.5). Without losing generality, we can let the basis {u;},
1 =1, ..., 7, be an orthonormal system. Alternatively, we can define an r-dimensional affine space
by specifying r + 1 points in the n-dimensional space R" through which it passes, in such a way
that whichever point of it is regarded as the origin O, the remaining r points span an r-dimensional
subspace. Such r + 1 points are said be in general position (— Problem 7.2).

Given N points {x,}, a =1, ..., N, in R", we consider the problem of finding an r-dimensional
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afine space A, that approximates them, where we assume that N > r 4+ 1. The affine space A, is
specified by a point g it passes through and an orthonormal basis {u;} starting from it.
First, we need to specify the point g. This can be regarded as a problem of fitting an 0-

dimensional affine space (= one point) to the N points {x,}. So, we choose g to be a point that

N
a=1

the N points {@x,} given by Eq. (7.13) (< Problem 7.3).

minimizes the sum of square distances Y ._; [|€o — g||?>. Such a point is given by the centroid of

If g is determined, all we need to do is, according to the argument in the preceding sections,
fit an r-dimensional subspace to vectors {x, — g}, regarding g as the origin. Namely, we compute
the covariance matrix ¥ of Eq. (7.14) around g (< Problem 7.4). If its spectral decomposition
is written in the form of Eq. (7.6), the eigenvectors wi, ..., u, span the affine space A, around
g. The residual, i.e., the sum of square distances of individual points x, to A,, is given by K=
o2+ +o2

However, as pointed out in the preceding section, it is more efficient to compute the singular
value decomposition of the matrix of Eq. (7.15) consisting of data points, without computing the

covariance matrix, and then obtaining the basis vectors w1y, ..., u,.

Example. Line fitting in the plane

We want to fit a line to N points (x1,y1), ..., (zn,yn) given in the plane, First, we compute
the centroid (g, gy) = Zgzl(xa,ya)/]\f and difine the matrix X of Eq. (7.16). Its singular value
decomposition has the form of Eq. (7.17). This indicates that the line to be fitted passes through
(92, 9y) and extends in the direction of (u11,u21)’ (Fig. 7.6). The equation of the fitted line is
given by Eq. (7.18).

Example. Plane fitting in the space
We want to fit a plane to N points (z1,¥1,21), ..., (TN,YnN,2n) given in the space. First, we

compute the centroid (gz, gy, 9z) = >~ (Tas Ya, 2a)/N and define the matrix X of Eq. (7.19). Tts

a=1
singular decomposition has the form of Eq. (7.20). This indicates that the plane to be fitted passes
through (¢., gy, g-) and extends in the directions of (w11, u21,u31) | and (uy2,u09,us32) " (Fig. 7.7).
The vector (uis, ’LL23,U33>T, which is orthogonal to both of them, is the unit surface normal, and

the equation of the plane is given by Eq. (7.21).

The technique of computing the spectral decomposition of the covariance matrix of Eq. (7.14)
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and hierarchically fitting r-dimensional affine spaces A,, which is mathematically equivalent to
subpace fitting, is used in various problems of engineering and is called by many different names.
For signal and pattern recognition applications, it is called the Karhunen-Loéve expansion, or
the KL-expansion for short.. By this, we can represent signals and patterns with respect to as
small a number of basis vectors as possible as long as the residual J can be tolerable and make the
transmission and display of the data efficient. This is called data compression or image compression.

In statistics, it is called the principal component analysis: we can grasp the characteristics of
multidimensional statistical data, extract a small number of statistics that can describe them well,
and do predictions and tests. In computer vision applications, we describe the camera images and
the three-dimensional structures reconstructed from them in terms of lines and planes optimally
fitted to them. We can also reduce many video analysis problems to fitting of subspaces and affine

spaces in a high-dimensional data space.

Problems of Chapter 7

7.1. Let A1, ..., A, be the eigenvalues of an n x n symmetric matrix A. Show that Eq. (7.22)
holds.

7.2. Show that the condition for n + 1 points xg, x1, ..., , in R™ to be in general position is

given by Eq. (7.23), where the left side is the determinant of an (n 4+ 1) x (n + 1) matrix.

7.3. Show that the point g that minimizes the square sum Zg:1 |za — gl||? for N points {x,},
=1, ..., N, is given by the centroind g given by Eq. (7.13).

7.4. Show that the covariance matrix 3 of Eq. (7.14) is also written in the form of Eq. (7.24).
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Matrix Factorization

8.1 Matrix Factorization

Suppose we want to express an m X n matrix A as the product of two matrices A; and A, in the
form of Eq. (8.1), where A; and As are m x r and r x n matrices, respectively. We assume r <
m, n. We call this problem matrix factorization. When such a problem appears in engineering
applications, usually some properties that A; and A are required to satisfy are imposed.

The decomposition of the form of Eq. (8.1) is not unique. In fact, if such matrices A; and As
are obtained, the matrices in the form of Eq. (8.2) for an arbitrary r x r nonsingular matrix C
satisfies A1 Ay = A} A). In a real application, we first tentatively compute some matrices A; and
As that satisfy Eq. (8.1) and then find the nonsingular matrix C' in such a way that the required
properties imposed on the matrices A} and A}, of Eq. (8.2) are satisfied.

If no special dependencies exist among columns and rows of a matrix, its rank generally coincides
with the smaller of the numbers of columns and rows. Assume that matrices A} and A% both have
rank 7. It is known that the rank of the product of two matrices does not exceed the rank of either
one. Namely, Eq. (8.3) holds for any matrices A and B for which their product can be defined.

This is shown as follows. Let A and B be [ x m and m X n matrices, respectively. An [ x m
matrix A defines a linear mapping from R™ to R!. We write A(R™) for the image of R™ by
A, i.e., the subspace spanned by the vectors obtained by mapping the basis of R™ by A. The
dimension of A(R™) (= the number of independent columns of A) is rank(A). Similarly, an m xn
matrix B defines a linear mapping from R" to R™, and the dimension of B(R") is rank(B). On
the other hand, since (AB)(R") is obtained by first mapping R™ by B and then mapping it by
A, it is a subset of A(R™). Hence, the dimension of (AB)(R") (= rank(AB)) does not exceed

34
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the dimension of A(R™) (= rank(A)). Thus, we obtain rank(AB) < rank(A). Using the same
argument, we obtain rank(BTAT) < rank(BT). However, the number of linearly independent
columns of a matrix equals the number of its linearly independent rows. Hence, rank(BT) =
rank(B) and rank(B' A") = rank(AB). Consequently, we also obtain rank(AB) < rank(B).

From this observation, we find that for computing the factorization of Eq. (8.1), the m x n
matrix A must have rank r or less. However, if A involves measurement data, its rank is generally
equal to either m or n (the smaller one). Hence, if » < m,n, the decomposition of Eq. (8.1) is
not possible. In such a case, we compute such A; and Ay that the decomposition of Eq. (8.1)
approximately holds (< Problem 8.1). This is done by minimally modify A so that it has rank r.
To be specific, we constrain the rank as discussed in Sec. 4.4 and replace A by (A), (< Footnote
3 of Chapter 4).

Then, we can determine A; and Aj that satisfy (A), = A;Ay. This decomposition is not
unique. A simple way to obtain a candidate solution is to first compute the singular value de-
composition of (A), in the form of Eq.(8.4), as in Eq. (3.10), and then decompose the diagonal
matrix ¥ in the form 3 =3;3,. Finally, we obtain A; and Ay in the form of Eq. (8.5) Typical
decompositions of 3 are given by (i), (ii), and (iii) of Eq. (8.6). The diagonal matrix ¥; = 39 in
(i) is also written as v/3. From this, we also see that the condition for an m x n matrix A to have
rank 7 or less (r < m,n) is that it can be written as A = A1 Ay for some m x r matrix A; and

some r X n matrix As.

8.2 Factorization for Motion Image Analysis

Suppose we take images of N points (Xq,Ya, Zs), @ = 1, ..., N, in the three-dimensional space,
using M cameras (or equivalently moving one camera). Suppose the ath point is projected to
(Tar, Yax) in the image plane of the xth camera (Fig. 8.2).

We define an XY Z coordinate system in the scene whose origin O coincides with the centroid of
the N points, so that Eq. (8.7) holds. We assume that all the points are seen by all the cameras and
define an image coordinate system in each image whose origin (0,0) coincides with the centroid of
the NV image positions, so that Eq (8.8) holds. Then, it is known that (X4, Ys, Zs) and (zak, Yax)
approximately satisfy the relationship of Eq. (8.9), where Il is a 2 x 3 matrix, called the camera

matriz, determined by the position and orientation of the xth camera and its internal parameters.
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Strictly speaking, the camera imaging geometry is described by a nonlinear relationship, called
perspective projection. If we ignore the perspective effect, which causes objects in the distance to
look small, we obtain the linear approximation of Eq. (8.9). It is known that this approximation
holds well when the objects we are viewing are relatively in the distance, e.g., persons standing
several meters away, and zoomed in within a relatively small region of the image. Hypothetical
cameras for which Eq. (8.9) hold are said to be affine.

Arrange all observed points (Zax, Yar) & = 1, ..., M, a =1, ..., N, in all images in an 2M x N
matrix in the form of Eq. (8.10), which we call the observation matriz. Arrange all camera matrices
II., xk =1, ..., M, and all three-dimensional coordinates (X, Yy, Zo), @« = 1, ..., N, in the matrix
form of Eq. (8.11). We call the 2M x 3 matrix M the motion matriz and the 3 x N matrix N the
shape matriz.

From the definition of the matrix W of Eq. (8.10) and the definition of the matrices M and N
of Eq. (8.11), the relationship of Eq. (8.12) holds (< Problem 8.2). It follows that if the matrix W
obtained from the coordinates of the points observed in images is decomposed into the product of
the matrices M and S by the method described in the preceding section, all the camera matrices
and all the three-dimensional point positions are obtained. This technique of reconstructing the
three-dimensional shape from images is called the factorization method.

However, the solution is not unique, as pointed out in the preceding section. If M and S are
the true motion matrix and the shape matrix, respectively, the matrices M and S obtained by the
factorization method are related to M and S by Eq. (8.13) for some 3 x 3 nonsingular matrix C.
The second equation of Eq. (8.13) states that each column (X, Y, Zo) " of S equals multiplication
of each column (X,,Ys, Zo)' of § by some nonsingular matrix C. It follows that the computed
three-dimensional shape is a linear transformation of the true shape. Since the absolute position is
indeterminate’, it is an affine transformation of the true shape.

Affine transformations preserve collinearity and coplanarity (Fig. 8.3), i.e., collinear points are
mapped to collinear points, and coplanar points are mapped to coplanar points. As a result,
parallel lines and planes are mapped to parallel lines planes. However, scales and angles may
change. For example, a cube is mapped to a parallelepiped. Three-dimensional reconstruction up

to indeterminacy of affine transformations is called an affine reconstruction.

'The origin of the coordinate system in the scene is defined by Eq. (8.7) for the sake of computational convenience,
the absolute position in the scene is indeterminate.
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In order to remove this indeterminacy to obtain a shape with correct angles, which we call a
Euclidean reconstruction?, we need to specify the indeterminate matrix C, using some knowledge or
constraint, which we call the metric condition. One possibility is the use of the knowledge about the
three-dimensional scene. For example, we require a particular edge to be orthogonal to a particular
edge and determine the matrix C so that the second equation of Eq. (8.13) is satisfied. Another
possibility is the use of the knowledge about the camera. For this, we model the camera imaging
geometry in a parametric form and express each Il in terms of unknown parameters. Then, we
determine the matrix C' so that the first equation of Eq. (8.13) is satisfied. To be specific, the
first equation of Eq. (8.13) leads to multiple equalities, from which we can determine the unknown
paramers of each camera matrix Il,; and the unknown matrix C. To this end, various parametric

affine camera models are proposed®.

Problems of Chapter 8

8.1. Show that an m x n matrix A has rank r or less (r < m,n) if and only if it is written as A

= A A, for some m X r matrix A; and some 7 X n matrix As.

8.2. (1) The ath column of Eq. (8.10) lists the z- and y-coordinates of the ath point over the M
images, which can be seen as the “trajectory” of the ath point. Namely, the trajectory
of each point is a point in a 2M-dimensional space. Show that Eq. (8.12) implies that
the N points that represent the trajectories in the 2/ -dimensional space are all included

in a three-dimensional subspace.

(2) Show how to compute an orthonormal basis of that three-dimensional subspace, by tak-
ing into consideration that the decomposition of Eq. (8.12) is for hypothetical cameras,
i.e., affine cameras, and that Eq. (8.12) does not exactly hold for the observation matrix

W obtained from real cameras.

2Since the absolute scale is indeterminate from images alone (< Sec. 6.3), we should call it a “similar” recon-
struction to be strict, but this term is widely used.

3Typical affine camera models include “orthographic projection”, “weak perspective projection”, and “paraper-
spective projection”.



Appendix A

Fundamentals of Linear Algebra

A.1 Linear Mappings and Matrices

A mapping f(-) from the n-dimensional space R™ to the m-dimensional space R™ is a linear
mapping if Eq. (A.1) holds for arbitrary u, v € R"™ and an arbitrary real number c, i.e., if a sum
corresponds to a sum and a constant multiple corresponds to a constant multiple.

Suppose a linear mapping f(-) maps a vector u € R" to a vector v’ € R™. If u is a column
vector whose ith component is u;, which we abbreviate to u = (uz>, we can write it as Eq. (A.2),
where e; is the n-dimensional vector whose jth component is 1 and whose other components are
all 0. We call the set {eq, ..., ,} the natural basis of R™. Similarly, we can write the vector v’ =
(ué) € R™ in the form of Eq. (A.3), using the natural basis {e], ..., e} of R™.

The mapping of u € R" to u’ € R™ by f(-) is given by Eq. (A.4). Since f(e;) is a vector of
R™, it is expressed as a linear combination of the natural basis {€}, ..., e/,} of R™ in the form of
Eq. (A.5). Using this, we obtain Eq. (A.6). Comparing this with Eq. (A.3), we see that Eq. (A.7)
holds. This means that the vector u’ = (u;) is obtained by multiplying the vector u = (uz) by

a matrix whose (4, j) element is a;;, which we abbreviate to (aij>, i.e., Eq. (A.8) holds. Thus, we

conclude that a linear mapping from R™ to R™ is represented by multiplication of an m X n matrix
A= (aij>.
A.2 Inner Product and Norm

The inner product {a,b) of vectors a = (ai) and b = (b1> is defined by Eq. (A.9). It has the
properties of (i), (ii), and (iii), i.e., symmetry, linearity, and positivity, respectively.

The norm ||al| of vector a = (ai) is defined by Eq. (A.10). A vector with unit norm is said to
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be a unit vector. The norm has the properties of (i), (ii), and (iii), i.e. (i) positivity with equality
holding only for a = 0, (ii) the Schwarz inequality, and (iii) the triangle inequality, respectively.

Vector a and b are said to be orthogonal if (a,b) = 0. The triangle inequality is obtained
by applying the Schwartz inequality (see [7] for the derivation) to Eq. (A.11) and noting that
Eq. (A.11) is larger than or equal to |al/®> — 2||a| - ||b]| + ||b]|*> = (|a| — ||b||)? and smaller than or
equal to ||a|? + 2[la| - ||b]| + [|B]|* = (||a]| + [|b]|)?. From this, we also see that if (a,b) = 0, i.e., if
a and b are orthogonal, the Pythagorean theorem of Eq. (A.12) is obtained.

A.3 Linear Forms

For a constant vector a = (ai) and a variable vector & = <w1>, Eq. (A.13) is called a linear form
in x. Differentiating this with respect to z;, we obtain Eq. (A.14). In vector form, it is written as
Eq. (A.15), where we define the vector V. (---) by Eq. (A.16). We call this the gradient of - - - and
call the symbol V nabla.

A.4 Quadratic Forms

For a constant symmetric matrix A = (aij) and a variable vector x = (xz), we call Eq. (A.17) a
quadratic form in x. The reason for restricting A to be a symmetric matrix is as follows. A general
square matrix Ais decomposed into the sum of its symmetric part A®) and anti-symmetric part
A as shown in Eq. (A.18). By definition, A®) and A@ are, respectively, a symmetric matrix
and an anti-symmetric matrix. If the matrix A in Eq. (A.17) is not symmetric, we substitute

Eq. (A.18) and obtain Eq. (A.20). Hence, only the symmetric part of A has a meaning. The

reason for (z, A@Wg) = doiie1 aﬁ?)xix]’ being 0 is that for each pair (7, j) the term al(-?)xixj and the
term agj)azjxi (= —al(;)xixj) cancel each other. Note that ag-l ) = 0 for an anti-symmetric matrix

by definition.

This observation implies that for an arbitrary @, the equality (x, Ax) = 0 does not mean A =
O. It only means that A®) (Eq. (A.21)). Similarly, the equality (2, Az) = (@, Bz) for an arbitrary
« does not mean A = B. It only means that A®) = B (Eq. (A.22)).

From this consideration, we assume that the matrix A of a quadratic form is symmetric from
the beginning. If A is symmetric, then a;j= a;;, and hence the terms of Eq. (A.17) that include z

are those in Eq. (A.23). Differentiating this with respect to z1, we obtain 2a;121+2(a1222+a13x3+



APPENDIX A. FUNDAMENTALS OF LINEAR ALGEBRA 40

oot apan) = 2377 a1jx;. Since similar results hold for z, ..., @y, too, we obtain Eq. (A.24).
Using V, we rewrite this in vector form as Eq. (A.25). We see that Eqgs. (A.15) and (A.25) are,
respectively, extensions of the formulas d(ax)/dx = a and d(Ax?)/dz = 2Ax for one variable to n

variables.

A.5 Bilinear Forms

For a constant matrix A = (aij) and variable vectors © = (l’l) and y = (yz), we call Eq. (A.26)
a bilinear form in x and y, for which we observe the fundamental equality of Eq. (A.27). In fact,

both sides are equal to 2%:1

a;jx;y; from the rule of the product of a matrix and a vector. In
contrast to the case of quadratic forms, we see that if (x, Ay) = 0 for any  and y, then A =
O (Eq. (A.28)) and that if (x, Ay) = (x, By) for any  and y, then A = B (Eq. (A.29)). From

Egs. (A.15) and (A.27), the identities of Eq.(A.30) are obtained.

A.6 Basis and Expansion

A set of vectors uq, ..., u, is said to be an orthonormal system if they are all unit vectors and
orthogonal to each other, i.e., if Eq. (A.31) holds, where d;; is the Kronecker delta (the symbol that
take 1 for ¢ = j and 0 for i # j)..

If an arbitrary vector & can be uniquely expressed as a linear combination of some n vectors
Uy, ..., Wy, they are called the basis of that space and n is called the dimension of that space. An
orthonormal system of n vectors {uj, ..., u,} constitute a basis of the n-dimensional space R",
called an orthonormal basis.

Expressing a given vector « as a linear combination of an orthonormal basis {u;}, i =1, ..., n,
in the form of Eq. (A.32) is called ezpansion of x in terms of {u;}. The square norm of Eq. (A.32)
is written as Eq. (A.33), where we write (3_0; ciu;, )7 cjuy) instead of (3000 ciug, D o0y ciuy)
for avoiding the confusion of running indices in the summation. Note that if the Kronecker delta
di; appears in a summation ) with respect to i or j or both, only terms for which i = j survive.

Computing the inner product of u; and Eq. (A.32) and noting that {u;} is an orthonormal
system, we obatin Eq. (A.34). Hence, the expansion of Eq. (A.32) is written in the form of
Eq. (A.35). Since {u;} is a basis, the expansion expression is unique. From Eq. (A.33), its square

norm is written as Eq. (A.36).
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A.7 Least-squares Approximation

For an orthonormal system {w;}, i = 1, ..., 7, of r (< n) vectors, vector x is not necessarily
expanded in the form of Eq. (A.32). However, we can determine the expansion coefficients ¢;, i =
1, ..., 7, in such a way that Eq. (A.37) is minimized. Expansion using such coefficients is called
the least-squares approrimation. Equation (A.37) is rewritten as Eq. (A.38). Differentiating this
with respect to ¢, we obtain Eq. (A.39). Equating this to 0, we obtain ¢, = (ug,x). Hence, the
least-squares expansion has the form of Eq. (A.40). This correspond to truncating the expansion
of Eq. (A.83) up to the rth term.

The set U of all vectors that can be expressed as linear combinations of uy, ..., u, is called the
subspace spanned by wi, ..., w,. If w1, ..., u, are an orthonormal system, they form the basis of
the subspace U, and its dimension is r. The right side of Eq. (A.40) equals the projection Pyax of
x onto the subspace U by the projection matrix Py = ululT + -+ u,u, (= Sec. 1.5). Namely,
least-square approximation equals projection onto a subspace. From this observation, we see that
if the vector x is in the subspace U, Eq. (A.40) holds with equality, i.e., Eq. (A.41) holds. The
vectors {u;}, i = 1, ..., r, are now an orthonormal basis of U, and hence this expansion expression

is unique. Its square norm is given by Eq. (A.42).

A.8 Lagrange’s Method of Indeterminate Multipliers

The maximum and minimum of a function f(x) of variable x is computed by solving Eq. (A.43)
if there is no constraint on @. If x is constrained to satisfy Eq. (A.44), we introduce a Lagrange
muliplier \ and consider Eq. (A.45). Differentiating this with respect to x and letting the result
be 0, we obtain Eq. (A.46). We can determine  and A by solving this together with Eq. (A.44).
This is called Lagrange’s method of indeterminate multipliers (see [8] for the derivation).

We should note that what we obtain by this method is in general extreme values. Hence, we
need some criteria to judge if the solution is a maximum, a minimum, or other types of extremum
including an inflection points. However, if it is known from the properties of the problem that it
has a unique maximum or a unique minimum, this is a very convenient and practical method.

If multiple constraints of the form of Eq. (A.47) exist, we introduce Lagrange multipliers Ay, ...,
Am corresponding to individual constraints and consider Eq. (A.48) for computing the maximum

or minimum (an extremum in general) of f(x), where we write the m Lagrange multipliers and m
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constraints of Eq. (A.47) in the vector form of Eq. (A.49). Differentiating Eq. (A.47) with respect
to « and letting it be 0, we obtain Eq. (A.50). Solving this together with Eq. (A.47), we can

determine x and Aq, ..., Ap,.

A.9 Eigenvalues and Eigenvectors

For an n x n symmetric matrix A, we call the value \ that satisfies Eq.(A.51) an eigenvalue of A.
The vector u (# 0) is called the corresponding eigenvector. Equation (A.51) is rewritten in the
form of Eq. (A.52). This is a set of linear equations in u. As is well known, this has a solution u
# 0 if and only if the determinant of the coefficient matrix is 0, i.e., when Eq. (A.53) holds. This
is called the characteristic equation, where | - | denote the determinant and ¢(\) is an nth degree
polynomial in A, called the characteristic polynomial. Since Eq. (A.53) is an nth degree polynomial
equation with real coefficients, it has in general n solutions in the complex number domain. Hence,
matrix A has n eigenvalues and n corresponding eigenvectors. However, for a symmetric matrix,
all eigenvalues are real and the corresponding eigenvectors consist of real components. This can be
shown as follows.

Let A be an eigenvalue (possibly a complex number) of A, and A the corresponding eigenvector
(possibly having complex components). Their definition and its complex conjugate on both sides
are written as Eq. (A.54). The inner product of the first equation and w on both sides and the
inner product of the second equation and w on both sides are given by Eq. (A.55). If we write u
= (ul> (# 0), we obtain Eq. (A.56), where | - | denotes the absolute value of a complex number.
Since A is symmetric, we obtain Eq. (A.57) (— Eq. (A.27)). Hence, A = A, and ) is a real number.
A set of simultaneous linear equations Au = Au in unknown wu for a matrix A of real elements and
a real number A can be solved using arithmetic operations and substitutions, the resulting solution
u also has real components.

Furthermore, we can show that eigenvectors for different eigenvalues are mutually orthogonal as
follows. If we let w and u’ be the eigenvectors of A for eigenvalues A\ and A\ (A # )'), respectively,
Eq. (A.58) holds. The inner product of the first equation and ' on both sides and the inner product
of the second equation with w on both sides are written as Eq. (A.59). Since A is symmetric,
Eq. (A.60) holds (< Eq. (A.27)). Hence, from Eq. (A.59), we obtain Eq. (A.61), which means

(A= XN)(/,u) = 0. Since A # X, this implies (u/,u) = 0, i.e.e, uw and u’ are orthogonal to each
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other.

If there is multiplicity among the n eigenvalues, the eigenvectors for multiple eigenvalue are not
unique. However, their arbitrary linear combination are also eigenvalues for the same eigenvalue.
Hence, we can choose them, using, e.g., the Schmidt orthogonalization (< Sec. 1.5), to be mutually
orthogonal vectors (see [7] for the procedure). As can be seen from Eq. (A.51), if u is an eigenvector,
its arbitrary constant multiple cu (¢ # 0) is also an eigenvector for the same eigenvalue. As a result
the eigenvectors {u;}, i = 1, ..., n, of a symmetric matrix can be chosen to be an orthonormal

system of vectors.

A.10 Maximum and Minimum of a Quadratic Form

Consider a quadratic form (v, Av) of an n X n symmetric matrix A in unit vector v. Let A\; > - --
> A, be the n eigenvalues of A, and {u;}, i = 1, ..., n, the corresponding orthonormal sytem of
the corresponding eigenvectors. Since an arbitrary unit vector v can be expanded in the form v =
S e, Yo c? =1 (= A.6), we can rewrite the quadratic form as Eq. (A.62). The equality
holds when ¢; = 1 and ¢ = -+ = ¢, = 0, i.e., when v = w;. Similarly, Eq. (A.63) obtained
by reversing the inequality of Eq. (A.62) also holds. Thus, we conclude that the maximum and
minimum of a quadratic form (v, Av) of a symmetric matriz A in unit vector v equal the mazimum
eigenvalue \1 and the minimum eigenvalue A\, of A, respectively, v being equal to the corresponding
unit eigenvectors w1 and u,, respectively.

Next, consider a unit vector v orthogonal to w;. An arbitrary unit vector v orthogonal to uq
can be expanded in the form v = >0, ciu;, Yo oc? = 1 (— A.6). Hence, the quadratic form
(v, Av) can be written as Eq. (A.64). The equality holds when ¢o = 1 and ¢3 = -+ = ¢, = 0,
i.e., when v = uy. Hence, (v, Av) for a unit vector v orthogonal to wy takes its maximum when v
equals the unit eigenvector wg for the second largest eigenvalue Aa, the mazimum value being As.

By the same argument, we conclude that (v, Av) for a unit vector v orthogonal to wy, ..., Upm—1
takes its maximum when v equals the unit eigenvector w,, for the mth largest eigenvalue A, the
mazimum being Ap,. The same holds for the minimum: (v, Av) for a unit vector v orthogonal to
Up—m, .-, Wy takes its minimum when v equals the unit eigenvector wp—m+1 for the mth smallest

eigenvalue Ap—m+1, the mazimum being Ap—m+.
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M3 2% k) IKhiEd 2. ZOH L WERERTIEIESEITIIE © = diag(o?,...,02) &% D, ZD

WTHNE 27 = diag(1/0?,...,1/02) TH 5. WZIZ, X (6.10) I

2 2
xy x
72_1_...4_772‘:1
g7 On

EETS. SRz RLE L, SRS, SR ORED o OREMME 2T, b D

JERSRTIE, ZHIfHE z 2D e L, Z OKEANT L w; DSWTREET, ST OB

MR TH 5.
6.6. EELD, SD (i) HEHFE

X 2 DYV I NDHTH S, 2721,

& 20 DYV TV TH B, 2 LT, EXNAEE

N
1 . .
Si =y D (Fia = mi)(#ja —my)

a=1

X Tia, Tjo DILTHTH 5.
BTE
71 ADRARZ P VORE A=30" Nuu, £95E, RDXIITKHD,

trA = Z)\ tr(u;u Z)\ l|lwi]|? = i)\i

i=1

7.2. mo%ﬁ@ EoT, my ZIFEREARTE, RO DnARKDOXRT DIV TH 5 5:F 3R D &

HT 5.
|:1:1—a;0 :cn—a:0|7é0
IEAD n x n ATFNOFTFIRIE, KD (n+ 1) x (n+ 1) fTFIDOFTFIIE L W,
Lo &1 — Lo -~ Ly — Lo | _ | Lo L1 - Dp
1 0 0 1 1 - 1

Mo, D

>

9z

2L, WL MOININA 7 (ZIUT L > THAIRIZZEL L ) L Zdud oo Z2HEMEICE 5720 D

THoM, EDx, 2HEEITL >THHEUERIBGEONS,

73. J=N za—g|? = zjj (To—g, 20 —g) % x THIT 2L (= 8%, K (A15), (A25)), VJ

=23 (@a—g) =22 2, —2NgTH3. Iz 0 LiE L. K (7.13) BE5ND,

74 SN 2, =Ng kb, XKDk ICFES,

N N
Z:Z(maf Zma Z *nglJrzggT
= a=1 a=1

2
2

N
=Y @,z —Ngg' —Ngg' + Ngg' E:wa — Ngg'
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81. AMZ7 v 7 r AT ThHtuL, X (84) - (86)DLICLT, % mxriiil A LH D rxnirsl Ay
ko T, A=A1Ay ERETES, WL, B2 mxriTil AL £H 5 rxnfThl Ay ik oo T A=
A A, EfRTETHIURE, X (83) kD ARIV I r AT TH 2.

8.2. (1) . (8.11) @ 2M HEITTHI M D 3 KDIN % my, me, ms LT 5 &, 3 (8.12) 1%, X (8.10) D o
FNDBIRDEHIHIF S E2ERT 5,

Zal
Ya2
T = Xomy +Yoma + Zyms
TaM
YaM

:Z’Lbi, % « )ﬁ@%%ﬁg\ mi, Mo, M3 @gﬁ% 3 %ﬁ%ﬁﬁ%%ﬁc:%iﬂ‘(bﬁé Z &. %%%3—% L
=0T, EOEOEND 2D 3 XIS RIcE E NS,

(2) TD3XILEBTZRMEZ KD B 2 LiF, 2M KIUZEHID N K (Ta1, Ya2s - Tarts Yar), « = 1, .o, N
IZ 3 RICHRT 22 4 TIZD AREE 45, L3> T, 7T3ficlR7 LI, T N Ez2Fl&E
L ClfiR7z 2M x N 1751, $7&bb, X (8.10) DBIHITTII W %

W = O1U1V] + O2U2V2 + 03U3V3 + - - -

ERFRMED T UL, {ur, ug, uzt BIZ D 3 KL T EMDOIEHESLEKR TH S, DL E, K
Hiie A X7 (7740 hx7) TR (8.12) DDRBILDSI>T, W 7V 7233 THY, o4 =
o5 = =0ThH5D, EEDH XI5 BIHTTIHIW TIEZN561E0TRVLDT, RHID 3
HEHRD BT, IRl TIEOTH .



