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Abstract
We give a formal definition ofgeometric fittingin a way
that suits computer vision applications. We point out that
the performance of geometric fitting should be evaluated in
the limit of small noiserather than in the limit of a large
number of data as recommended in the statistical literature.
Taking theKCR lower boundas an optimality requirement
and focusing on the linearized constraint case, we compare
the accuracy of Kanatani’s renormalization with maximum
likelihood (ML) approaches including the FNS of Chojnacki
et al. and the HEIV of Leedan and Meer. Our analysis re-
veals the existence of a method superior to all these.

1. Introduction
By geometric fitting, we mean fitting geometric con-

straints to observed data and discerning the underlying geo-
metric structure from the coefficients of the fitted equations
[10]. A large class of computer vision problems fall into
this framework. The simplest one is to fit a parametric curve
(e.g., a line, a circle, an ellipse, or a polynomial curve) in
the form

F (x; u) = 0 (1)

to N points{(xα, yα)} in the image, wherex = (x, y)> is
the position vector, andu = (u1, ..., up)> is the parameter
vector.

For noisy data{(xα, yα)}, no parameteru satisfies
F (xα;u) = 0 for all α = 1, ...,N , so one often computes a
u such that

JLS =
N∑

α=1

F (xα;u)2 → min . (2)

This is called theleast-squares(LS) methodor algebraic
distance minimization. However, it is widely known that
the resulting solution has strong statistical bias.

A better method known to yield higher accuracy is to re-
gard the data{xα} as perturbed from theirtrue positions
{x̄α} which exactly satisfyF (x; u) = 0 and to simultane-
ously estimate the true positions{x̄α} and the parameteru
that maximize the statistical likelihood. If noise is subject to
isotropic, independent, and identical Gaussian distribution,
this reduces to the minimization

JML =
N∑

α=1

‖xα − x̄α‖2 → min, (3)

subject to the constraint

F (x̄α;u) = 0, α = 1, ..., N. (4)

This is calledmaximum likelihood(ML) estimationor geo-
metric distance minimization.

Eqs. (3) and (4) can be converted to unconstrained min-
imization by using Lagrange multipliers. Introducing lin-
ear approximation by assuming that noise is small, we can
rewrite eq. (3) as follows (see Appendix A for the deriva-
tion):

JML =
N∑

α=1

F (xα;u)2

‖∇xFα‖2 → min . (5)

Here,∇xFα denotes the gradient of the functionF (x; u)
in eq. (1) with respect tox evaluated atx = xα. This min-
imization is known to be effective in many problems and
is one of the most widely used methods in computer vision
applications [10].

This approach is not limited to curve fitting but can be
extended to many other problems. For example, given cor-
respondences of feature points over multiple images, the
trajectoryof a particular point can be identified with a sin-
gle point in the product space of the images, known as the
joint image. Fitting a geometric constraint derived from the
camera imaging geometry, such as theepipolar constraint,
the trifocal constraint, the quadrifocal constraint, or the
affine constraint, we can compute the camera motion and
the 3-D shape of the scene from the coefficients of the fitted
equations [8].

However, a still unanswered question is if eq. (5) is really
optimal and if better methods exist at all.

2. How Can We Compare Methods?

The reason this question is difficult to answer is that it is
not clear how to measure the “goodness” of a method. For
example, we may measure the accuracy of an estimateû by
the norm‖û − u‖ of the difference from its true valueu.
However, there are many objections to this. Some may say
that we should take expectation with respect to our belief or
experience as to what value the parameteru is likely to take
(theBayesian approach). Others may argue that we should
rather focus on the error in the application domain, e.g., if



the valueû is to be used for 3-D reconstruction, we should
evaluate the reconstruction error thatû incurs.

Even if we adopt the simplest measure‖û − u‖, the
problem is not solved, because noise is random and hence
an estimatêu can happen to coincide with the true value
u, whatever method we use. So, we need to compute the
mean squareE[‖û − u‖2], whereE[ · ] is the expectation
with respect to the noise distribution. Many prefer the mean
square because this generally makes the subsequent anal-
ysis easy, but other choices are conceivable: some prefer
max ‖û − u‖; others endorseE[‖û − u‖]. However, the
analysis is still intractably complicated even if the simplest
mean square is used.

For comparing the performance of statistical estimation
methods, statisticians usually simplify the analysis by in-
troducing asymptotic approximations as the numbern of
observations increases. Following them, many computer vi-
sion researchers analyze asymptotic behavior as the number
N of data increases for evaluating the performance of geo-
metric fitting. However, is the numberN of data really the
number of “observations”?

3. How Can We Increase Data?
The tenet of statistics is to observe a random phe-

nomenon and discern the underlying mechanism, assuming
that the observed data are deterministically generated but
corrupted by random noise. We cannot infer the mechanism
from only one observation, but because noise is random, the
effect of noise is expected to be canceled if observations
are repeated; the hidden mechanism will reveal itself as the
number of observations increases. Hence, statisticians mea-
sure the performance of statistical estimation by the rate of
the increase of accuracy as the numbern of observation in-
creases. However, if we identify thenumberN of datawith
the “number of observations”, many inconsistencies arise
[12, 14].

Firstly, it is assumed in statistics that observations can be
repeated as many times as desiredin principle, i.e., except
for the fact that observations entail costs and are subject to
many constraints in the real world. In contrast, the input for
computer vision is images. We may observemany different
images, but except in simulations we cannot repeatedly ob-
serve thesameimage corrupted bydifferentnoise. Hence,
the number of observation is alwaysn = 1.

Secondly, the unknowns for the standard statistical es-
timation are the parameters of the underlying mechanism,
while for geometric fitting the true values of the data are
also unknowns. Hence, if we increase the number of
data, the number of unknowns also increases accordingly,
and their estimation accuracy cannot be improved however
many data we observe. Such increasing parameters are
callednuisance parametersto distinguish them from the re-
mainingstructural parameters. For curve fitting, for exam-

ple, we may correctly estimate the true curve by increasing
the number of points, but we cannot estimate their true po-
sitions on that curve.

Thirdly, we cannot simplyincreasethe data but also need
to considerhowwe increase them. For line fitting, for exam-
ple, the fitting accuracy does not improve if we repeatedly
add new points in the neighborhood of a particular point.
In contrast, the accuracy will dramatically improve if we
distribute new points uniformly along the line to be fitted.
Recently, various theories have been proposed for introduc-
ing thedistributionof the true positions along the curve and
marginalizing them over the distribution. Such formulations
are calledsemiparametric models[2, 20, 21].

If we have a lot of data, ML is known to benot optimal.
In fact, Endoh et al. [7] pointed out that 3-D interpretation
from a dense optical flow field by ML is not optimal, and
Ohta [20] showed that the semiparametric model yields a
better result. Okatani and Deguchi [21] demonstrated that
for estimating 3-D shape and motion from multiple images,
the semiparametric model can result in higher accuracy. In
all cases, however, the procedure is very complicated, and
the performance can surpass ML only when the number of
data is extremely large and the problem has a special form.

On the other hand, ML in the form of eq. (5) is always
effective in all practical applications. At present, no method
that surpasses ML in usual situations is known. This implies
that ML may be optimal in some sense in “usual” situations.
If so, in what sense? What are the “usual” situations?

An answer to this question was given by Kanatani [10,
11]. In the following, we summarize his formulation.

4. KCR Lower Bound
The fundamental difference of Kanatani’s approach from

the standard statistical estimation is that it focuses onsmall
noiserather than asymptotic analysis for a large numbern
of observations. This is motivated by the fact that computer
vision deals with pixel-level small errors, while the tradi-
tional statistical estimation is mainly concerned with large
errors, e.g., in fieldwork in real environments.

Estimating the parameteru from the data{xα} means
finding an estimatêu expressed as a function of the data
{xα}:

û = û(x1, ..., xN ). (6)

Such a function̂u is called anestimatorof u. Let us mea-
sure the accuracy of estimatorû by itscovariance matrix

V [û] = E[(û− u)(û− u)>]. (7)

Its tracetrV [û] = E[‖û− u‖2] is the mean-square error.
Suppose each datumxα is displaced from its true value

x̄α by component-wise independent Gaussian noise of
mean 0 and standard deviationε:

xα = x̄α + ∆xα, ∆xα ∼ N(0, ε2I). (8)
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We callε thenoise level. Let∆u be the error in the estima-
tor û:

û = u + ∆u. (9)

Substituting eqs. (8) and (9) into eq. (5), doing Taylor ex-
pansion in∆xα and∆u by assuming that noise is small,
and computing the value∆u that minimizes eq. (5), we
find that the covariance matrixV [ûML] of the ML estimator
ûML can be expanded inε as follows [10] (see Appendix B
for the derivation):

V [ûML] =ε2

(
N∑

α=1

(∇uF̄α)(∇uF̄α)>

‖∇xF̄α‖2

)−1

+ O(ε4). (10)

Here,∇uF̄α denotes the gradient of the functionF (x;u)
in eq. (1) with respect tou evaluated atx = x̄α.

We can also show that the first term on the right-hand
side of eq. (10) is a lower bound on an arbitrary unbiased
estimator̂u in the following sense [10] (see Appendix C for
the derivation):

V [û] Âε2

(
N∑

α=1

(∇uF̄α)(∇uF̄α)>

‖∇xF̄α‖2

)−1

. (11)

Here,Â denotes that the difference of the left-hand side
from the right is positive semidefinite.

Thus, the covariance matrix of the ML estimatorûML

attains the lower bound except forO(ε4). In this sense, ML
is optimal. Chernov and Lesort [3] called eq. (11) theKCR
(Kanatani-Cramer-Rao) lower boundand derived it under
a weaker condition.

The above result can be extended further. First, we need
not assume isotropic and identical Gaussian noise. The
same argument applies to a wide class of probability dis-
tributions called theexponential family. If the noise distri-
bution is different from datum to datum, all we need is to
introduce covariance matricesV [xα] in eq. (5). The datum
x and the parameteru can be subject to some constraints,
such as being unit vectors. Multiple constraints, each in the
form of eq. (1), can exist, and some of them can be overlap-
ping or redundant. However, the analysis goes similarly if
we introduce pseudoinverse and projection operators [10].

5. CR Lower Bound
The KCR lower bound is different from the well known

CR (Cramer-Rao) lower bound: the difference is less in the
bound than in theproblem. As mentioned earlier, statistical
estimation is to discern the hidden mechanism by repeating
observations. This is formalized as estimation of the pa-
rameterθ by observingn independent instancesx1, ...,xn

of a random variableX occurring according to an assumed
probability densityp(x; θ). Maximum likelihood(ML) es-
timation is to compute the valuêθML of θ that maximizes

the likelihood

L =
n∏

i=1

p(xi;θ). (12)

Considering the asymptotic limitn →∞ and invoking the
law of large numbers, which states that the sample mean of
independent instances of a random variable converges to its
expectation asn →∞, together with thecentral limit the-
orem, which states that the distribution of the sample mean
can be asymptotically approximated by a Gaussian distri-
bution, we can show under a fairly general condition that
the covariance matrixV [θ̂ML] of the ML estimator̂θML is
expanded in1/n in the form

V [θ̂ML] =
1
n

J−1 + O(
1
n2

), (13)

whereJ is theFisher information matrixdefined by

J = E[
(
∇θ log p(x; θ)

)(
∇θ log p(x;θ)

)>
]. (14)

The expectationE[ · ] is taken with respect to the probability
densityp(x; θ). The first term on the right-hand side of
eq. (13) is called theCR (Cramer-Rao) lower bound, and
the followingCramer-Rao inequalityholds for an arbitrary
unbiased estimator̂θ (see, e.g., [10] for the proof):

V [θ̂] Â 1
n

J−1. (15)

It follows that the covariance matrix of the ML estimator
θ̂ML attains the CR lower bound except forO(1/n2). In
this sense, ML is optimal.

6. Duality of Interpretation
Thus, the KCR lower bound and the CR lower bound are

different concepts. Yet, there is something common in their
formalisms.

The reason why the performance of the standard statisti-
cal estimation is evaluated in the asymptotic limitn → ∞
of the numbern of observations is that a method whose ac-
curacy increases rapidly asn → ∞ can attain admissible
accuracy with a fewer number of observations (Fig. 1(a)).
Such a method is desirable if we consider the cost of obser-
vations in real situations.

In contrast, the performance of geometric fitting should
be evaluated in the limitε→ 0 of the noise levelε, because a
method whose accuracy increases rapidly asε→ 0 can tol-
erate larger uncertainty for admissible accuracy (Fig. 1(b)).
Such a method is preferable if we consider the uncertainty
inherent of image processing operations.

Now, consider the following thought experiment. For
geometric fitting, the image data may not be exact due to the
uncertainty of image processing operations, butthey always
have the same value however many times we observe them.
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Figure 1. (a) For the standard statistical estimation, it is desired that the accuracy increases rapidly as n →
∞ for the number n of observations, because admissible accuracy can be reached with a smaller number of
observations. (b) For geometric fitting, it is desired that the accuracy increases rapidly as ε → 0 for the noise
level ε, because larger data uncertainty can be tolerated for admissible accuracy.

Suppose, hypothetically, they change their values each time
we observe them (as if in quantum mechanics). Then, we
would obtainn different values forn observations. Under
independent Gaussian noise, an optimal estimate of the true
value is their sample mean. As is well known, the standard
deviation of a sample mean ofn observations is1/

√
n times

that of individual observations.
Thus, repeating such hypothetical observations is equiv-

alent to reducing the noise levelε to ε/
√

n. It follows that
the perturbation analysis forε→ 0 is mathematically equiv-
alent to the asymptotic analysis forn →∞ of the number
n of hypothetical observations. This is the reason why the
asymptotic approximation· · ·+O(1/

√
nk) for the standard

statistical estimation corresponds to· · ·+ O(εk) for the ge-
ometric fitting [13].

This type of duality of interpretation also arises for
model selection: we obtain thegeometric AICand the
geometric MDL for geometric fitting as counterparts of
Akaike’s AIC (Akaike information criterion) [1] and Rissa-
nen’sMDL (minimum description length) [22] for statistical
estimation, respectively [13].

7. Linearized Constraints

In many computer vision applications, the constraint (1)
can be linearized in the form

(ξ(xα), u) = 0, (16)

whereξ( · ) is a (generally nonlinear) mapping from anm-
dimensional vector to ap-dimensional vector. In the follow-
ing, we write(a, b) for the inner product of vectorsa and
b. In order to remove scale indeterminacy, we normalizeu
to ‖u‖ = 1.

Example 1 Suppose we want to fit a quadratic curve (cir-
cle, ellipse, parabola, hyperbola, or their degeneracy) toN
points{(xα, yα)}, α = 1, ...,N , in the plane. The constraint
has the form

Ax2
α + 2Bxαyα + Cy2

α + 2(Dxα + Eyα) + F = 0. (17)

If we define

ξ(x, y) = (x2 2xy y2 2x 2y 1)>,

u = (A B C D E F )>, (18)

eq. (17) is linearized in the form of eq. (16). 2

Example 2 Suppose we haveN corresponding points in
two images of the same scene viewed from different po-
sitions. If point(xα, yα) in the first image correspond to
(xα, yα) in the second, there exists a singular matrixF ,
called thefundamental matrix, such that in the absence of
noise

(




xα

yα

1


 , F




x′α
y′α
1


) = 0. (19)

This is called theepipolar equation[8]. If we define

ξ(x, y, x′, y′)=(xx′ xy′ x yx′ yy′ y x′ y′ 1)>,

u=(F11 F12 F13 F21 F22 F23 F31 F32 F33)>, (20)

eq. (19) is linearized in the form of eq. (16). 2

The KCR lower bound for the linearized constraint (16)
has the form

VKCR[û] = ε2
( N∑

α=1

ξ̄αξ̄
>
α

(u, V0[ξα]u)

)−
, (21)

where( · · · )− denotes pseudoinverse. The symbolξ̄α is
an abbreviation forξα(x̄α), andV0[ξα] is the normalized
covariance matrix (scaled so thatε = 1) of ξ(xα): it can be
expressed as

V0[ξα] = ∇xξ>α∇xξα (22)

except forO(ε4), where∇xξα denotes them× p Jacobian
matrix

∇xξ =




∂ξ1/∂x1 · · · ∂ξp/∂x1

...
.. .

...
∂ξ1/∂xm · · · ∂ξp/∂xm


 . (23)

evaluated atx = xα.
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8. In Search of an Optimal Estimator

Now, we try to find an optimal estimator̂u that satisfies
the KCR lower bound (21). This is diametrically opposite to
the conventional approach of finding some method heuristi-
cally and doing analysis or simulationa posteriorito see if
the bound is indeed attained.

The starting point is the observation that the pseudoin-
verse on the right-hand of eq. (21) reflects the fact that the
vectoru in eq. (16) is normalized to‖u‖ = 1. Hence, its
domain is the unit sphereSp−1 in Rp, its uncertainty being
restricted only in the direction orthogonal tôu. The pseu-
doinverse( · · · )− on the right-hand side of eq. (21) projects
· · · onto the tangent space toSp−1 at û.

It follows that the null space ofVKCR[û] is in the direc-
tion of û, meaning that̂u is theunit eigenvector ofVKCR[û]
for eigenvalue 0. Thus, if we know the KCR lower bound
VKCR[û], we can obtain an optimal estimatorû as its unit
eigenvector for eigenvalue 0.

This appears impossible becauseVKCR[û] involves the
true values{x̄α} andu, which we do not know. However,
this can be overcome by approximating{x̄α} by the data
{x̄α} and iteratively estimatingu. All we need to do is ana-
lytically evaluate the error incurred by such approximations.
If the error in the resulting covariance matrix isO(ε4), we
are done.

9. Perturbation Theorem

If we define

M =
N∑

α=1

ξαξ>α
(u, V0[ξα]u)

. (24)

the KCR lower bound (21) is written as

VKCR[û] = ε2M̄−, (25)

whereM̄ is the value ofM obtained by replacing{ξα} by
their true values{ξ̄α}.

Since pseudoinverse preserves the null space, the null
space ofM̄ is the same as that of̄M

−
, hence ofVKCR[û].

It follows that the unit eigenvector ofVKCR[û] for eigen-
value 0 isthe unit eigenvector of̄M for eigenvalue 0. In
fact, we can directly confirm this: the constraint(ξ̄α, u) =
0 implies

M̄u =
N∑

α=1

ξ̄αξ̄
>
α u

(u, V0[ξα]u)
=

N∑
α=1

(ξ̄α,u)ξ̄α

(u, V0[ξα]u)
= 0. (26)

However, we do not know the true matrix̄M . So, we
approximate it by the matrixM in eq. (24) and evaluate the
incurred error. SinceM is generally nonsingular, it does
not have eigenvalue 0. So, we compute the unit eigenvector

of M for the smallest1 eigenvalueλ and let the solution of

Mu = λu, (27)

beû. However, the matrixM also involves the unknownu,
so we do iterations: we computeM using theith estimate
ui and let the solution of eq. (27) beui+1, i = 0, 1, 2, ...,
starting from an initial guess. If the iterations converge, the
resultingû satisfies eq. (27) (up to the convergence thresh-
old).

Now, we evaluate to what extent the resultingû approx-
imates the trueu. Let

ξα = ξ̄α + ∆ξα. (28)

The error inM is

∆M = M − M̄

=
N∑

α=1

(ξ̄α+∆ξα)(ξ̄α+∆ξα)>

(u, V0[ξα]u)
−

N∑
α=1

ξ̄αξ̄
>
α

(u, V0[ξα]u)

=
N∑

α=1

∆ξαξ̄
>
α+ξ̄α∆ξ>α

(u, V0[ξα]u)
+

N∑
α=1

∆ξα∆ξ>α
(u, V0[ξα]u)

=
N∑

α=1

∆ξαξ̄
>
α + ξ̄α∆ξ>α

(u, V0[ξα]u)
+ O(ε2). (29)

According to theperturbation theorem, the perturbation of
M̄ into M̄ −∆M induces the perturbation ofu as follows
[10]:

û = u + M̄
−∆Mu + O(ε2). (30)

Its covariance matrix is evaluated as follows:

V [û] = E[(û− u)(û− u)>]

= E[M̄−∆Muu>∆MM̄
−]+O(ε4)

= E[M̄−
N∑

α=1

∆ξαξ̄
>
α+ξ̄α∆ξ>α

(u, V0[ξα]u)
uu>

N∑

β=1

∆ξβ ξ̄
>
β+ξ̄β∆ξ>β

(u, V0[ξβ ]u)
M̄

−]+O(ε4)

= E[M̄−
N∑

α=1

(∆ξα, u)(∆ξβ ,u)ξ̄αξ̄
>
β

(u, V0[ξα]u)(u, V0[ξβ ]u)
M̄

−]+O(ε4)

= M̄
−

N∑

α,β=1

(u, E[∆ξα∆ξ>β ]u)ξ̄αξ̄
>
β

(u, V0[ξα]u)(u, V0[ξβ ]u)
M̄

−+O(ε4)

= M̄
−

N∑

α,β=1

(u, ε2δαβV0[ξα]u)ξ̄αξ̄
>
β

(u, V0[ξα]u)(u, V0[ξβ ]u)
M̄

−+O(ε4)

= M̄
−

N∑
α=1

ε2ξ̄αξ̄
>
α

(u, V0[ξα]u)
M̄

−+O(ε4)

1The matrixM is positive semidefinite by construction, so its eigen-
values are all nonnegative.
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= ε2M̄
−

M̄M̄
−+O(ε4) = ε2M̄

−+O(ε4)
= VKCR[û]+O(ε4). (31)

Here,δαβ is the Kronecker delta, taking 1 forα = β and
0 otherwise. In the above derivation, we use the equality
E[∆ξα∆ξ>β ] = δαβV0[ξα], which follows from the assump-
tion that noise in eachxα is independent. The remainder
term isO(ε4). This is a consequence of the fact that the
noise distribution is symmetric with respect to the origin,
hence terms of all odd degrees inε vanish in expectation.

Thus, we find that the unit eigenvector̂u of M in
eq. (24) for the smallest eigenvalue isoptimal in the sense
that its covariance matrix attains the KCR lower bound
VKCR[û] except forO(ε4).

10. Bias Removal
Not being satisfied with this, let us go further. Can this be

what we could do? Can’t we further improve the accuracy?
The annoying fact is that the second term̄M

−∆Mu on
the right-hand side of eq. (30) is not zero in expectation, i.e.,
it has statistical bias. Eq. (29) implies that∆M is unbiased
except forO(ε2), but if we do not ignoreO(ε2), we see that

E[∆M ] =
N∑

α=1

E[∆ξα]ξ̄>α+ξ̄αE[∆ξ>α ]
(u, V0[ξα]u)

+
N∑

α=1

E[∆ξα∆ξ>α ]
(u, V0[ξα]u)

=
N∑

α=1

ε2V0[ξα]
(u, V0[ξα]u)

= ε2N , (32)

where we define

N =
N∑

α=1

V0[ξα]
(u, V0[ξα]u)

. (33)

Hence, the expectation of eq. (30) is

E[û] = u + ε2M̄
−

Nu + O(ε2). (34)

Can we remove the termε2M̄
−

Nu?
After careful examinations, we find that this can be done

if eq. (24) is replaced by

M̂ = M − ε2N . (35)

If we let û be the unit eigenvector of̂M for the smallest
eigenvalue, eq. (30) is replaced by

û = u + M̄
−∆M̂u + O(ε2), (36)

doing the same perturbation analysis, and

E[∆M̂ ] = E[M̂−M̄ ] = E[M−M̄−ε2N ] = O. (37)

This does not affect the fact that the covariance matrix at-
tains the KCR lower bound except forO(ε4), because in
eq. (31) the difference between∆M and∆M̂ is absorbed
in the remainder termO(ε4).

11. Renormalization
Since the noise levelε on the right-hand side of eq. (35)

is unknown, we need to estimate it. This is easily done by
choosing the value ofε2 in eq. (35) so thatM̂ has eigen-
value 0. Suppose we use a tentative valueε2, and letλ be
the smallest (in absolute value) eigenvalue ofM̂ with the
unit eigenvector̂u. If λ 6= 0, we increment the currentε2

by c so that(M̂ − cN)û = 0, or

(û, (M̂ − cN)û) = (û, M̂û)− c(û,Nû)
= λ− c(û, Nû) = 0. (38)

Hence,c = λ/(û,Nû). We iterate this process untilλ ≈ 0.
If we incorporate this iteration into the computation of the
eigenvectoru of M̂ , we obtain the following scheme:

1. Guess an initial valueu0, and letc0 = 0.

2. LettingM i−1 andN i−1 be, respectively, the matrices
M andN in eqs. (24) and (33) computed using the
(i− 1)th estimateui−1, solve the eigenvalue problem

(M i−1 − ci−1N i−1)u = λu, (39)

and letui be the unit eigenvector for the smallest (in
absolute value) eigenvalue.

3. If λ is sufficiently close to 0, stop and returnui asû.
Else, let

ci ← ci−1 +
λ

(ui, N(ui−1)ui)
, (40)

and go pack to Step 2 after lettingui−1 ← ui.
This is nothing but therenormalizationof Kanatani [9, 10,
14], though he introduced this by an intuition different from
the above reasoning.

If the renormalization iterations converge, we have
(M − cN)û = 0. Computing the inner product witĥu
on both sides, we have

(û, (M − cN)û) = (û, Mû)− c(û, Nû) = 0. (41)

Hence,

c =
(û,Mû)
(û, Nû)

. (42)

It is difficult to evaluate the expectation ofc exactly, because
û depends on not onlyM but alsoc itself. However, if we
let û ≈ u to a first approximation, we obtain

E[c] =
(u, E[M ]u)

(u,Nu)
=

(u, ε2Nu)
(u, Nu)

= ε2. (43)

If û is a good approximation ofu, which is usually the
case, the error in the above approximation is expected to be
a higher order termO(ε4). Thus,

E[M̂ − M̄ ] = ε2N − E[c]N = O(ε4). (44)
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The initial guessu0 is given, for example, by the unit
eigenvector of

MLS =
N∑

α=1

ξαξ>α (45)

for the smallest eigenvalue. This is simply the least-square
method (2), for it minimizes the sum of squares

JLS =
N∑

α=1

(ξα,u)2. (46)

12. Controversies about Renormalization

Kanatani’s renormalization turned out to produce highly
accurate values in many computer vision applications, and
it is now an indispensable tools for computing the funda-
mental matrix and homographies for 3-D reconstruction and
image mosaicing applications [16, 17]. It is used across the
world and incorporated in some commercial products, too.

However, questions and doubts have constantly been
raised about its interpretation. This is because Kanatani
introduced renormalization as abias removal procedure
[9, 10, 14]. But, if bias removal is the sole purpose, why
don’t we start with the matrixMLS?

Kanatani endorsed the use of the matrixM in eq. (24)
in an analogy with ML. Extending this view, Chojnacki
et al. [4] asserted that renormalization is an approximate
method for ML and proposed a new method calledFNS
(fundamental numerical scheme) for directly computing
ML [5]. They also pointed out that in this respect theHEIV
(heteroscedastic errors-in-variables) of Leedan and Meer
[18] falls in the same category [6], too. From these obser-
vations, Chojnacki et al. [4] asserted superiority of the FNS
and the HEIV over renormalization.

From the description in the preceding section, however,
it is now evident thatrenormalization has nothing to do with
ML. The use of the matrixM is justified only by realizing
that what we really want isthe eigenvector of the KCR lower
bound. The only link of renormalization with ML is the fact
that the ML estimator also satisfies the KCR bound in the
leading term [15].

Thus, Kanatani’s renormalization is justified in this new
light. However, a new question arises. Why is removing
the second term on the right-hand side of eq. (34) effective?
The right-hand side has the remainder termO(ε2) after all.
Since the removed term is alsoO(ε2), the order of approxi-
mation does not change.

Yet, it has been proven by simulations and real data ex-
periments that the removal of that term results in significant
improvement of accuracy (see, e.g., [16, 17]). It has also
been confirmed that the accuracy of renormalization is prac-
tically comparable to the FNS the HEIV. Is this a miraculous

coincidence2?
Evidently, we couldn’t answer this question as long as

we are restricted to first order analysis: we are forced to do
second order analysis.

13. Second Order Perturbation
We now write

M = M̄ + ∆1M + ∆2M , (47)

where∆1 and∆2 designate perturbations of ordersO(ε)
andO(ε2), respectively. From the derivation of eq. (29),
we find that

∆1M =
N∑

α=1

∆ξαξ̄
>
α + ξ̄α∆ξ>α

(u, V0[ξα]u)
, (48)

∆2M =
N∑

α=1

∆ξα∆ξ>α
(u, V0[ξα]u)

. (49)

Eq. (27) can be written in the form

(M̄ + ∆1M + ∆2M)(u + ∆1u + ∆2u + · · ·)
= (∆1λ + ∆2λ + · · ·)(u + ∆1u + ∆2u + · · ·). (50)

Comparing terms ofO(1), O(ε), andO(ε2) on both sides,
we obtain the following expressions (see Appendix D for
the derivation):

∆1u = −M̄
−∆1Mu, (51)

∆2u = −M̄
−∆2Mu + M̄

−∆1MM̄
−∆1Mu

−‖M̄−∆1Mu‖2u. (52)

SinceE[∆1M ] = O, we haveE[∆1u] = 0. SinceE[∆2M ]
= ε2N , the expectation of∆2u is

E[∆2u] = −ε2M̄
−

Nu + M̄
−

E[∆1MM̄
−∆1M ]u

−E[‖M̄−∆1Mu‖2]u. (53)

We can showE[‖M̄−∆1Mu‖2] = ε2tr(M̄−) (see Ap-
pendix E for the proof). Since renormalization removes the
bias term−ε2M̄

−
Nu, the renormalization solution̂uRN

has the following expectation:

E[ûRN] = u + M̄
−

E[∆1MM̄
−∆1M ]u

−ε2tr(M̄−)u + O(ε4). (54)

14. Errors in Maximum Likelihood
We now compare eq. (54) with ML. For the linearized

constraint (16), the ML minimization (5) reduces to

JML =
N∑

α=1

(ξα, u)2

(u, V0[ξα]u)
→ min . (55)

2Nikolai Chernov, the author of [3], described so in a personal commu-
nication with the author.
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This is an approximation to the true ML of eq. (3) for
small noise, but since we are concerned with perturbation
for small ε (recall the arguments in Sec. 6), we call this
simply ML. The FNS of Chojnacki et al. [5] the HEIV of
Leedan and Meer [18], and the recent method of Mühlich
and Mester [19], which is a variant of the method known as
equilibrationor whitening, all aim to minimize eq. (55).

DifferentiatingJML with respect tou, we obtain

∇uJML =
N∑

α=1

2(ξα,u)ξα

(u, V0[ξα]u)
−

N∑
α=1

2(ξα, u)2V0[ξα]u
(u, V0[ξα]u)2

. (56)

Hence, the ML estimator̂uML is the solution of

Mû = Lû, (57)

where we define

M =
N∑

α=1

ξαξ>α
(u, V0[ξα]u)

, L =
N∑

α=1

(ξα, u)2V0[ξα]
(u, V0[ξα]u)2

. (58)

The FNS and the HEIV both solve eq. (57) by iterations.
One may wonder if eq. (56) vanishes only in the direction

orthogonal tou because the minimization (55) should be
subject to the normalization‖u‖ = 1. However, eq. (55) is
ahomogeneous form of degree 0in u and hence is invariant
to scale change ofu. It follows that∇uJML is identically 0
in the direction ofu, hence 0 in all directions [5].

The perturbation ofM̄ is written in the form of
eqs. (47)∼(49). ForL, we observe

L =
N∑

α=1

(ξ̄α + ∆ξα, u)2V0[ξα]
(u, V0[ξα]u)2

=
(∆ξα,u)2V0[ξα]
(u, V0[ξα]u)2

= ∆2L. (59)

In other words,L is O(ε2) from the beginning, so eq. (57)
is written in the form

(M̄ + ∆1M + ∆2M)(u + ∆1u + ∆2u + · · ·)
= ∆2L(u + ∆1u + ∆2u + · · ·). (60)

Comparing terms ofO(1), O(ε), andO(ε2) on both sides,
we obtain the following expressions (see Appendix F for the
derivation):

∆1u = −M̄
−∆1Mu, (61)

∆2u = −M̄
−∆2Mu + M̄

−∆1MM̄
−∆1Mu

+M̄
−∆2Lu− ‖M̄−∆1Mu‖2u. (62)

We have already seen thatE[∆1u] = 0 andE[∆2M ] = εN .
From eq. (59), the expectation of∆2L is

E[∆2L] = E[
N∑

α=1

(∆ξα,u)2V0[ξα]
(u, V0[ξα]u)2

]

=
N∑

α=1

(u, E[∆ξα∆ξ>α ]u)V0[ξα]
(u, V0[ξα]u)2

=
N∑

α=1

(u, ε2V0[ξα]u)V0[ξα]
(u, V0[ξα]u)2

= ε2
N∑

α=1

V0[ξα]
(u, V0[ξα]u)

= ε2N . (63)

Thus, the expectation of the ML estimatorûML is

E[ûML] = u + M̄
−

E[∆1MM̄
−∆1M ]u

−ε2tr(M̄−)u + O(ε4). (64)

This coincides with eq. (54).

15. Toward Further Improvement
Our conclusions are summarized as follows:

1. Renormalization is not an approximate solution tech-
nique for ML. It is to compute the solution that satisfies
the KCR lower bound followed by removal of one of
theO(ε2) bias terms.

2. The difference of the renormalization solution̂uRN

from the ML estimator̂uML is in expectation

E[ûRN − ûML] = O(ε4). (65)

3. The covariance matricesV [ûRN] andV [ûLM] of the
renormalization solutionuRN and the ML estimator
uML both attain the KCR lower boundVKCR[û] except
for O(ε4).

V [ûRN] = VKCR[û] + O(ε4),
V [ûML] = VKCR[û] + O(ε4). (66)

4. The covariance matricesV [ûRN] and V [ûML] coin-
cide except forO(ε6).

V [ûRN] = V [ûML] + O(ε6). (67)

5. The renormalization solution̂uRN and the ML
estimator ûML share a common error term
M̄

−
E[∆1MM̄

−∆1M ]u.

The last fact implies that we can obtain a method superior to
both renormalization and ML by estimating and subtracting
that error term. This is currently under investigation.

It seems that one of the reasons this type of analysis has
not been attempted in the past is that computer vision re-
searchers are likely to take textbooks of statistics for granted
and blindly follow the asymptotic analysis asN → ∞ for
the numberN of data. Rather, computer vision researchers
should bring forth theories and analyses specific to their ap-
plications. This paper demonstrates how promising such an
attempt can be.
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Appendix
A: Linear Approximation of ML

Substitutingx̄α = xα − ∆xα into eq. (4) and assum-
ing that the noise term∆xα is small, we obtain the linear
approximation

Fα − (∇xFα, ∆xα) = 0. (68)

Introducing Lagrange multipliersλα, let

L =
1
2

N∑
α=1

‖∆xα‖2+
N∑

α=1

λα(Fα−(∇xFα, ∆xα)). (69)

The solution∆xα that minimizesL subject to the constraint
(68) satisfies∇∆xαL = 0, α = 1, ...,N , or

∆xα − λα∇xFα = 0. (70)

Hence,∆xα = λα∇xFα. Substitution of this into eq. (68)
yields

Fα − (∇xFα, λα∇xFα) = 0, (71)

from which we obtainλα in the form

λα =
Fα

‖∇xFα‖2 . (72)

Thus, eq. (3) is rewritten in the form

JML =
N∑

α=1

‖λα∇xFα‖2 =
N∑

α=1

F 2
α

‖∇xFα‖4 ‖∇xFα‖2

=
N∑

α=1

F 2
α

‖∇xFα‖2 . (73)

B: Covariance Matrix of ML

After substitution of eqs. (8) and (9) into eq. (5) and do-
ing Taylor expansion,JML is written as

JML =
N∑

α=1

((∇xF̄α, ∆xα) + (∇uF̄α, ∆u))2

‖∇xF̄α‖2
+ O(ε3),

(74)
where ‖∇xFα‖2 in the denominator is replaced by
‖∇xF̄α‖2, which does not affect the leading term because
the numerator isO(ε2); the difference is absorbed into the
remainder termO(ε3).
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If we find ∆u that minimizes eq. (74), the ML estimator
ûML is given byu + ∆u. The solution∆u is obtained by
solving∇∆uJML = 0. Since the first term on the right-hand
side of eq. (74) is a quadratic form in∆uα, we have

∇∆uJML =2
N∑

α=1

((∇xF̄α,∆xα)+(∇uF̄α,∆u))∇uF̄α

‖∇xF̄α‖2
+O(ε2). (75)

Letting this be 0, we have

N∑
α=1

(∇uF̄α)(∇uF̄α)>

‖∇xF̄α‖2
∆u

= −
N∑

α=1

(∇uF̄α)(∇xF̄α)>

‖∇xF̄α‖2
∆xα + O(ε2), (76)

from which we obtain
N∑

α=1

(∇uF̄α)(∇uF̄α)>

‖∇xF̄α‖2
∆u∆u>

N∑

β=1

(∇uF̄β)(∇uF̄β)>

‖∇xF̄β‖2

=
N∑

α,β=1

(∇uF̄α)(∇xF̄α)>

‖∇xF̄α‖2
∆xα∆x>β

(∇xF̄β)(∇uF̄β)>

‖∇xF̄α‖2

+O(ε3). (77)

Taking expectation on both sides, we obtain

N∑
α=1

(∇uF̄α)(∇uF̄α)>

‖∇xF̄α‖2
V [ûML]

N∑

β=1

(∇uF̄β)(∇uF̄β)>

‖∇xF̄β‖2

=
N∑

α=1

(∇uF̄α)(∇xF̄α)>

‖∇xF̄α‖2
(∇xF̄α)(∇uF̄α)>

‖∇xF̄α‖2
+ O(ε4)

=
N∑

α=1

(∇uF̄α)(∇xF̄α)>

‖∇xF̄α‖2
+ O(ε4), (78)

where we have used the relations

E[∆xα∆x>β ] = δαβε2I, (79)

andE[O(ε3)] = O(ε4). From eq. (78) follows eq. (10).

C: Derivation of the KCR Lower Bound

We assume that estimatorû is unbiased, i.e.,

E[û− u] = 0, (80)

which should be anidentity in {x̄α} and u that satisfies
eq. (4). From the definition of the expectationE[ · ], the
infinitesimal variation ofE[û− u] is3

δ

∫
(û− u)p1 · · · pNdx = −

∫
(δu)p1 · · · pNdx

3Recall that we consider variations in{x̄α} (not{xα}) andu. Since
the estimator̂u is a function of the data{xα}, it does not change for these
variations. The variationδu is independent of{xα}, so it can be moved
outside the integral

∫
dx. Also note that

∫
p1 · · · pNdx = 1.

+
N∑

α=1

∫
(û− u)p1 · · · δpα · · · pNdx

= −δu +
∫

(û− u)
N∑

α=1

(p1 · · · δpα · · · pN )dx, (81)

where
∫

dx is a shorthand of
∫ · · · ∫ dx1 · · ·xN . By as-

sumption, the probability density ofxα is

p(xα) =
1

(
√

2π)nεn
e−‖xα−x̄α‖2/2ε2

, (82)

which we abbreviate topα. The infinitesimal variation of
eq. (82) with respect tōxα is

δpα = (lα, δx̄α)pα, (83)

where we define thescorelα by

lα ≡ ∇x̄α
log pα =

xα − x̄α

ε2
. (84)

Since{x̄α} andu are constrained by eq. (4), their varia-
tions are constrained to be

(∇xF̄α, δx̄α) + (∇uF̄α, δu) = 0. (85)

Because eq. (80) is an identity in{x̄α} andu that satis-
fies eq. (4), the variation (81) should vanish for arbitrary
variations{δx̄α} andδu that satisfy eq. (85). Substituting
eq. (83) into eq. (81), we conclude that

E[(û− u)
N∑

α=1

l>α δx̄α] = δu, (86)

for arbitrary variations{δx̄α} andδu that satisfy eq. (85).
Consider the following particular variations{δx̄α}:

δx̄α = − (∇xF̄α)(∇uF̄α)>

‖∇xF̄α‖2
δu. (87)

It is easy to confirm that eq. (85) is identically satisfied.
Substituting eq. (87) into eq. (86), we obtain

E[(û− u)
N∑

α=1

m>
α ]δu = −δu, (88)

where we define the vectors{mα} by

mα =
(∇uF̄α)(∇xF̄α)>

‖∇xF̄α‖2
lα. (89)

Because eq. (86) should hold for arbitrary variations{δx̄α}
andδu that satisfy eq. (85), eq. (88) should hold for arbi-
traryunconstrainedvariationsδu, which means

E[(û− u)
N∑

α=1

m>
α ] = −I. (90)
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Using this and recalling the definition (7) of the covariance
matrixV [û], we obtain

E[
(

û− u∑N
α=1mα

)(
û− u∑N
α=1mα

)>
]=

(
V [û] −I
−I M

)
, (91)

where we define the matrixM by

M = E[
( N∑

α=1

mα

)( N∑

β=1

mβ

)>
]

=
N∑

α,β=1

(∇uF̄α)(∇xF̄α)>

‖∇xF̄α‖2
E[lαlβ ]

(∇xF̄α)(∇uF̄α)>

‖∇xF̄α‖2

=
1
ε2

(∇uF̄α)(∇uF̄α)>

‖∇xF̄α‖2
. (92)

In the above equation, we use the identityE[lαl>β ] =
δαβI/ε4, which is easily confirmed from eqs. (79) and (84).
The matrixJα ≡ E[lαl>α ] is theFisher information matrix
of the distributionpα and thatE[lαl>β ] = δαβJα if the dis-
tributions{pα} are mutually independent.

Since the inside of the expectationE[ · ] on the left-hand
side of eq. (91) is evidently positive semidefinite , so is
the right-hand side. Hence, the following is also positive
semidefinite:(

I M−1

M−1

)(
V [û] −I
−I M

)(
I

M−1 M−1

)

=
(

V [û]−M−1

M−1

)
. (93)

From this, we conclude thatV [û]−M−1 should be positive
semidefinite, implying eq. (11).

The above proof is for the simplest case, but the same re-
sult holds for more general cases. If we have multiple con-
straints, which may not be independent of each other, or if
the domains of the data and the parameters are constrained,
we can introduce pseudoinverse and projection operators.
If the error distribution is not Gaussian or different from
datum to datum, the scorelα and the Fisher information
matrixJα take very complicated forms, but the logic is the
same [10].

D: Higher Order Terms of Renormalization

1. The vectoru should be perturbed subject to the normal-
ization constraint, so

‖u + ∆1u + ∆2u + · · · ‖2
=(u+∆1u+∆2u+· · · , u+∆1u+∆2u+· · ·)=1. (94)

Comparing terms ofO(1), O(ε), andO(ε2) on both sides,
we obtain

(u, u) = ‖u‖2 = 1, (u,∆1u) = 0, (95)

(u, ∆2u) = −(∆1u, ∆1u) = −‖∆1u‖2. (96)

2. Comparing terms ofO(1) on both sides of eq. (50), we
obtainM̄u = 0.

3. Comparing terms ofO(ε) on both sides of eq. (50), we
obtain

M̄∆1u + ∆1Mu = ∆1λu. (97)

Computing inner product withu on both sides, we obtain

(u,M̄∆1u) + (u, ∆1Mu) = ∆1λ(u,u). (98)

Noting that(u, M̄∆1u) = (M̄u, ∆1u) = 0, (u, u) = ‖u‖
= 1, and eq. (48), we obtain

∆1λ = (u, ∆1Mu)

=
N∑

α=1

(u, ∆ξα)(ξ̄α, u) + (u, ξ̄α)(∆ξα,u)
(u, V0[ξα]u)

= 0. (99)

Let λ1, ...,λn−1 be the nonzero eigenvalues of̄M , andu1,
..., un−1 the corresponding orthonormal system of eigen-
vectors (recall that the unit eigenvector for eigenvalue 0 is
u itself). Computing inner product withui on both sides of
eq. (97), we obtain

(ui, M̄∆1u) + (ui,∆1Mu) = ∆1λ(ui, u). (100)

Since (ui,M̄∆1u) = (M̄ui,∆1u) = (λiui, ∆1u) and
(ui, u) = 0, the above equation is rewritten as

λi(ui, ∆1u) + (ui,∆1Mu) = 0. (101)

Since∆1u is orthogonal tou by the second of eqs. (95), it
can be expressed as a linear combination of the orthonormal
systemu1, ...,un−1 in the form

∆1u =
n−1∑

i=1

(ui, ∆1u)ui = −
n−1∑

i=1

ui(ui, ∆1Mu)
λi

= −
(n−1∑

i=1

uiu
>
i

λi

)
∆1Mu = −M̄

−∆1Mu. (102)

4. Comparing terms ofO(ε2) on both sides of eq. (50), we
obtain

M̄∆2u+∆2Mu+∆1M∆1u = ∆1λ∆1u+∆2λu. (103)

Computing inner product withu on both sides, we have

(u,M̄∆2u) + (u, ∆2Mu) + (u, ∆1M∆1u)

= ∆1λ(u, ∆1u) + ∆2λ(u, u). (104)
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Noting that(u, M̄∆2u) = (M̄u, ∆2u) = 0, (u,∆1u) = 0,
(u, u) = ‖u‖ = 1, and eq. (102), we obtain

∆2λ = (u, ∆2Mu) + (u, ∆1M∆1u)

= (u, ∆2Mu)− (u, ∆1MM̄
−∆1Mu). (105)

Computing inner product withui on both sides of eq. (103),
we obtain

(ui, M̄∆2u) + (ui,∆2Mu) + (ui,∆1M∆1u)

= ∆1λ(ui, ∆1u) + ∆2λ(ui,u). (106)

Noting that(ui,M̄∆2u) = (M̄ui,∆2u) = (λiui,∆2u),
(ui,u) = 0, and eqs. (99), (102), we obtain

λi(ui, ∆2u)+(ui, ∆2Mu)−(ui, ∆1MM̄
−∆1Mu) = 0.

(107)
From this and eq. (96), we obtain

∆2u =
n−1∑

i=1

(ui, ∆2u)ui + (u, ∆2u)u

= −
n−1∑

i=1

ui(ui, ∆2Mu)
λi

+
n−1∑

i=1

ui(ui, ∆1MM̄
−∆1Mu)

λi
− ‖∆1u‖2u

= −
(n−1∑

i=1

uiu
>
i

λi

)
∆2Mu− ‖M̄−∆1Mu‖2u

+
(n−1∑

i=1

uiu
>
i

λi

)
∆1MM̄

−∆1Mu

= −M̄
−∆2Mu + M̄

−∆1MM̄
−∆1Mu

−‖M̄−∆1Mu‖2u. (108)

E: Evaluation of E[‖M̄−∆1Mu‖2]

Since(ξα, u) = 0, eq. (48) implies

∆1Mu =
N∑

α=1

(∆ξα, u)ξ̄α

(u, V0[ξα]u)
. (109)

Hence,

E[‖M̄−∆1Mu‖2] = E[(M̄−∆1Mu, M̄
−∆1Mu)]

= E[(∆1Mu, (M̄−)2∆1Mu)]

= E[(
N∑

α=1

ξ̄α(∆ξα, u)
(u, V0[ξα]u)

, (M̄−)2
N∑

β=1

ξ̄β(∆ξβ , u)
(u, V0[ξβ ]u)

)]

=
N∑

α,β=1

E[(∆ξα, u)(∆ξβ , u)](ξ̄α, (M̄−)2ξ̄β)
(u, V0[ξα]u)(u, V0[ξβ ]u)

=
N∑

α,β=1

(u, E[∆ξα∆ξ>β ]u)(ξ̄α, (M̄−)2ξ̄β)
(u, V0[ξα]u)(u, V0[ξβ ]u)

=
N∑

α,β=1

(u, ε2δαβV0[ξα]u)(ξ̄α, (M̄−)2ξ̄β)
(u, V0[ξα]u)(u, V0[ξβ ]u)

= ε2
N∑

α=1

(u, V0[ξα]u)(ξ̄α, (M̄−)2ξ̄α)
(u, V0[ξα]u)2

= ε2
N∑

α=1

(ξ̄α, (M̄−)2ξ̄α)
(u, V0[ξα]u)

= ε2tr(
N∑

α=1

ξ̄αξ̄
>
α

(u, V0[ξα]u)
(M̄−)2) = ε2tr(M̄(M̄−)2)

= ε2tr(M̄−
M̄M̄

−) = ε2tr(M̄−). (110)

F: Higher Order Terms of ML

1. From the constraint thatu be a unit vector, eq. (94) holds
for the perturbations∆1u and∆2u.

2. Comparing terms ofO(1) on both sides of eq. (60), we
obtainM̄u = 0.

3. Comparing terms ofO(ε) on both sides of eq. (60), we
obtain

M̄∆1u + ∆1Mu = 0. (111)

Multiplying both sides byM̄
−

from left, we obtain

P u∆1u + M̄
−∆1Mu = 0, (112)

whereP u = I − uu> is the projection operator alongu
(note thatM̄

−
M̄ = P u [10]). Since∆1u is orthogonal

to u by the second of eqs. (95), we haveP u∆1u = ∆1u.
Hence, we obtain eq. (61).

4. Comparing terms ofO(ε2) on both sides of eq. (60), we
obtain

M̄∆2u + ∆1M∆1u + ∆2Mu = ∆2Lu. (113)

Multiplying both sides byM̄
−

from left, we obtain after
some rearrangements

P u∆2u = −M̄
−∆2Mu + M̄

−∆1MM̄
−∆1Mu

+M̄
−∆2Lu. (114)

This is the component of∆2u orthogonal tou. The com-
ponent alongu is−‖∆1u‖2u from eq. (96). Hence,

∆2u = P u∆2u− ‖∆1u‖2u. (115)

The first order perturbation∆1u is the same as in the case
of renormalization (see eqs. (51) and (61)). Hence,‖∆1u‖2
=−‖M̄−∆1Mu‖2u, as we have already shown. Thus, we
obtain eq. (62).
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