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Abstract

We give a formal definition ajeometric fittingin a way
that suits computer vision applications. We point out that

the performance of geometric fitting should be evaluated in

the limit of small noiserather than in the limit of a large
number of data as recommended in the statistical literature.
Taking theKCR lower boundas an optimality requirement
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subject to the constraint

F(zy;u) =0, .y N. 4)
This is calledmaximum likelihoodML) estimationor geo-
metric distance minimization

Egs. (3) and (4) can be converted to unconstrained min-

a=1,

and focusing on the linearized constraint case, we comparejmization by using Lagrange multipliers. Introducing lin-

the accuracy of Kanatani's renormalization with maximum
likelihood (ML) approaches including the FNS of Chojnacki
et al. and the HEIV of Leedan and Meer. Our analysis re-
veals the existence of a method superior to all these.

1. Introduction

By geometric fitting we mean fitting geometric con-

straints to observed data and discerning the underlying geo-

metric structure from the coefficients of the fitted equations
[10]. A large class of computer vision problems fall into
this framework. The simplest one is to fit a parametric curve
(e.g., a line, a circle, an ellipse, or a polynomial curve) in
the form
F(x;u) =0 @

to N points{(z,y.)} in the image, where: = (x,y) " is
the position vector, and = (uy,...,u,) " is the parameter
vector.

For noisy data{(x.,v.)}, Nno parameters satisfies
F(xq;u) =0foralla =1, ..,N, soone often computes a
u such that

N
Jus = Z F(wa;u)2 — min.
a=1

This is called thdeast-squaregLS) methodor algebraic
distance minimization However, it is widely known that
the resulting solution has strong statistical bias.

A better method known to yield higher accuracy is to re-
gard the datgdx,} as perturbed from theirue positions
{Z,} which exactly satisfyF'(x; u) = 0 and to simultane-
ously estimate the true positiof#, } and the parameter
that maximize the statistical likelihood. If noise is subject to

isotropic, independent, and identical Gaussian distribution,

this reduces to the minimization

®3)

N
Jur = Y |@a — o> — min,

a=1

ear approximation by assuming that noise is small, we can
rewrite eq. (3) as follows (see Appendix A for the deriva-
tion):

F(@0;u)?

IV Fall?

N

JML = Z — min . (5)
a=1

Here, V F,, denotes the gradient of the functidf(x; u)
in eq. (1) with respect ta: evaluated atr = x,. This min-
imization is known to be effective in many problems and
is one of the most widely used methods in computer vision
applications [10].

This approach is not limited to curve fitting but can be
extended to many other problems. For example, given cor-
respondences of feature points over multiple images, the
trajectory of a particular point can be identified with a sin-
gle point in the product space of the images, known as the
joint image Fitting a geometric constraint derived from the
camera imaging geometry, such as épépolar constraint
the trifocal constraint the quadrifocal constraint or the
affine constraintwe can compute the camera motion and
the 3-D shape of the scene from the coefficients of the fitted
equations [8].

However, a stillunanswered question is if eq. (5) is really
optimal and if better methods exist at all.

2. How Can We Compare Methods?

The reason this question is difficult to answer is that it is
not clear how to measure the “goodness” of a method. For
example, we may measure the accuracy of an estitnaie
the norm||@ — wu|| of the difference from its true value.
However, there are many objections to this. Some may say
that we should take expectation with respect to our belief or
experience as to what value the paramatéex likely to take
(the Bayesian approagh Others may argue that we should
rather focus on the error in the application domain, e.g., if



the valuew is to be used for 3-D reconstruction, we should ple, we may correctly estimate the true curve by increasing
evaluate the reconstruction error thaincurs. the number of points, but we cannot estimate their true po-

Even if we adopt the simplest measyfé — u||, the sitions on that curve.
problem is not solved, because noise is random and hence Thirdly, we cannot simplyncreasethe data but also need
an estimatex can happen to coincide with the true value to considehowwe increase them. For line fitting, for exam-
u, whatever method we use. So, we need to compute theple, the fitting accuracy does not improve if we repeatedly
mean squard?|[||a — ul||?], whereE[ -] is the expectation  add new points in the neighborhood of a particular point.
with respect to the noise distribution. Many prefer the mean In contrast, the accuracy will dramatically improve if we
square because this generally makes the subsequent anatistribute new points uniformly along the line to be fitted.
ysis easy, but other choices are conceivable: some prefeRecently, various theories have been proposed for introduc-
max |4 — u||; others endors&[||a — u||]. However, the  ing thedistributionof the true positions along the curve and
analysis is still intractably complicated even if the simplest marginalizing them over the distribution. Such formulations
mean square is used. are calledsemiparametric model[, 20, 21].

For comparing the performance of statistical estimation  If we have a lot of data, ML is known to ot optimal.
methods, statisticians usually simplify the analysis by in- In fact, Endoh et al. [7] pointed out that 3-D interpretation
troducing asymptotic approximations as the numhbesf from a dense optical flow field by ML is not optimal, and
observations increases. Following them, many computer vi-Ohta [20] showed that the semiparametric model yields a
sion researchers analyze asymptotic behavior as the numbdpetter result. Okatani and Deguchi [21] demonstrated that
N of data increases for evaluating the performance of geo-for estimating 3-D shape and motion from multiple images,
metric fitting. However, is the numbeY of data really the  the semiparametric model can result in higher accuracy. In

number of “observations™? all cases, however, the procedure is very complicated, and
the performance can surpass ML only when the number of
3. How Can We Increase Data? data is extremely large and the problem has a special form.

The tenet of statistics is to ob d h On the other hand, ML in the form of eq. (5) is always
austics 1S 1o ObSEIVe a random PNe- oo iive in all practical applications. At present, no method

nomenon and discern the underlymg _mgchamsm, assumingy, surpasses ML in usual situations is known. This implies
that the observed data are deterministically generated buEhat ML may be optimal in some sense in “usual’ situations

corrupted by random noise. We cannot infer the mechanismIf so. in what sense? What are the “usual” situations?
from only one observation, but because noise is random, the A’n answer to thié question was given by Kanataﬁi [10,
effect of noise is e_xpected to be.cancgled i opservanonsll]_ In the following, we summarize his formulation.

are repeated; the hidden mechanism will reveal itself as the
number of observations increases. Hence, statisticians mea, KCR Lower Bound
sure the performance of statistical estimation by the rate of

the increase of accuracy as the numberf observation in- The fundamental difference of Kanatani's approach from
creases. However, if we identify tmeimberN of datawith the standard statistical estimation is that it focusesroall

the “number of observations”, many inconsistencies arise Noiserather than asymptotic analysis for a large number
[12, 14]. of observations. This is motivated by the fact that computer

Firstly, it is assumed in statistics that observations can beVision deals with pixel-level small errors, while the tradi-
repeated as many times as desireg@rinciple, i.e., except  tional statistical estimation is mainly concerned with large
for the fact that observations entail costs and are subject to®'T0rs, e.g., in fieldwork in real environments.
many constraints in the real world. In contrast, the input for  Estimating the parameter from the data{x., } means
computer vision is images. We may obsemany different ~ finding an estimatei expressed as a function of the data
images but except in simulations we cannot repeatedly ob- {za}:
serve thesameimage corrupted bylifferentnoise. Hence, =, ...,TN). (6)

the number of observation is always= 1. Such a function is called arestimatorof . Let us mea-
Secondly, the unknowns for the standard statistical es-syre the accuracy of estimatiby its covariance matrix

timation are the parameters of the underlying mechanism,

while for geometric fitting the true values of the data are Via] = El(a —u)(a —u)T]. (1)

also unknowns. Hence, if we increase the number ofI

data, the number of unknowns also increases accordingly, Suppose each datum, is displaced from its true value

and their estimation accuracy cannot be improved howeveri,a by component-wise independent Gaussian noise of

many data we observe. Such increasing parameters are ean 0 and standard deviatien

callednuisance parametets distinguish them from the re-

mainingstructural parametersFor curve fitting, for exam- Ty = Ty + Az, Az, ~ N(0,6%1). (8)

ts tracetrV [a] = E[||& — u||?] is the mean-square error.



We calle thenoise level Let Au be the error in the estima-  thelikelihood N
tor u:
= u+ Au. ) L‘Hp("’“e)' (12)

Substituting egs. (8) and (9) into eq. (5), doing Taylor ex- Considering the asymptotic limit — co and invoking the
pansion inAz, and Au by assuming that noise is small, |aw of large numberswhich states that the sample mean of
and computing the valuAw that minimizes eq. (5), we  independent instances of a random variable converges to its
find that the covariance matriX[ay ] of the ML estimator  expectation a® — oo, together with thesentral limit the-

unmr, can be expanded inas follows [10] (see Appendix B orem which states that the distribution of the sample mean
for the derivation): can be asymptotically approximated by a Gaussian distri-
N L\ bution, we can show under a fairly general condition that
. VuFo)(VuFy, the covariance matri¥’[6\1,] of the ML estimato@yyy, is
V] =<7 (Z ( |V1(Fa||2 ! ) +0(h). (10) expanded iri /n in the form

a=1

Here, V, F,, denotes the gradient of the functidf(x; u) VO] = lJ‘1 + O(%), (13)
in eq. (1) with respect ta evaluated ak = z,,. " "

We can also show that the first term on the right-hand whereJ is theFisher information matri>defined by
side of eq. (10) is a lower bound on an arbitrary unbiased

estimatoru in the following sense [10] (see Appendix C for J = E[(Vg log p(x; 9)) (ve log p(x; 9))T], (14)
the derivation):

N The expectatio®| - | is taken with respect to the probability
— — T . . . . _ -
Via] =& (Z (VuFo)(VuF,) ) (11) densityp(x; 0). The first term on the right-hand side of

[V Fo eg. (13) is called th€R (Cramer-Rad lower bound and
the following Cramer-Rao inequalityrolds for an arbitrary

Here, = denotes that the difference of the left-hand side unbiased estimatdt (see, e.g., [10] for the proof):

from the right is positive semidefinite.

a=1

Thus, the covariance matrix of the ML estimatoyr, V6] - lJ‘l. (15)
attains the lower bound except foX(c*). In this sense, ML n
is optimal. Chernov and Lesort [3] called eq. (11) K€R It follows that the covariance matrix of the ML estimator
(Kanatani-Cramer-Raplower boundand derived it under g, attains the CR lower bound except fox(1/n2). In
a weaker condition. this sense, ML is optimal.

The above result can be extended further. First, we need

not assume isotropic and identical Gaussian noise. The6. Duality of Interpretation
same argument applies to a wide class of probability dis-
tributions called theexponential family If the noise distri-
bution is different from datum to datum, all we need is to
introduce covariance matricd§x, ] in eq. (5). The datum

x and the parametar can be subject to some constraints,
such as being unit vectors. Multiple constraints, each in the
form of eq. (1), can exist, and some of them can be overlap-
ping or redundant. However, the analysis goes similarly if
we introduce pseudoinverse and projection operators [10].

Thus, the KCR lower bound and the CR lower bound are
different concepts. Yet, there is something common in their
formalisms.

The reason why the performance of the standard statisti-
cal estimation is evaluated in the asymptotic limit- oo
of the number of observations is that a method whose ac-
curacy increases rapidly as— oo can attain admissible
accuracy with a fewer number of observations (Fig. 1(a)).
Such a method is desirable if we consider the cost of obser-
vations in real situations.

5. CRLower Bound In contrast, the performance of geometric fitting should

The KCR lower bound is different from the well known be evaluated in the limit — O of the noise levet, because a
CR (Cramer-Rao) lower bound: the difference is less in the method whose accuracy increases rapidly as 0 can tol-
bound than in th@roblem As mentioned earlier, statistical erate larger uncertainty for admissible accuracy (Fig. 1(b)).
estimation is to discern the hidden mechanism by repeatingSuch a method is preferable if we consider the uncertainty
observations. This is formalized as estimation of the pa- inherent of image processing operations.

rameter® by observing: independent instances, ..., T, Now, consider the following thought experiment. For
of a random variable&X' occurring according to an assumed geometric fitting, the image data may not be exact due to the
probability densityp(x; 8). Maximum likelihood ML) es- uncertainty of image processing operations,thay always

timationis to compute the vaIuéML of @ that maximizes have the same value however many times we observe them
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Figure 1. (a) For the standard statistical estimation, it is desired that the accuracy increases rapidly as n
n of observations, because admissible accuracy can be reached with a smaller number of
observations. (b) For geometric fitting, it is desired that the accuracy increases rapidly as

oo for the number

£B N (b) €

e — 0 for the noise

level e, because larger data uncertainty can be tolerated for admissible accuracy.

Suppose, hypothetically, they change their values each timdf we define

we observe them (as if in quantum mechanics). Then, we

would obtainn different values fom observations. Under

independent Gaussian noise, an optimal estimate of the true
value is their sample mean. As is well known, the standard

deviation of a sample meanofobservations i$//n times
that of individual observations.

E(z,y) = (a® 2oy y* 20 2y 1),
u=(ABCDEFT, (18)
eqg. (17) is linearized in the form of eq. (16). O

Example 2 Suppose we havéV corresponding points in

Thus, repeating such hypothetical observations is equiv-two images of the same scene viewed from different po-

alent to reducing the noise leveto ¢/+/n. It follows that
the perturbation analysis fer— 0 is mathematically equiv-
alent to the asymptotic analysis far— oo of the number

sitions. If point(z.,y.) in the first image correspond to
(za,ya) In the second, there exists a singular matkix
called thefundamental matrixsuch that in the absence of

n of hypothetical observations. This is the reason why the pgise

asymptotic approximation -+ O(1/ Vnk ) for the standard
statistical estimation corresponds te + O(<*) for the ge-
ometric fitting [13].

This type of duality of interpretation also arises for
model selection we obtain thegeometric AlCand the
geometric MDLfor geometric fitting as counterparts of
Akaike’s AIC (Akaike information criterioh[1] and Rissa-
nen’sMDL (minimum description lengjti22] for statistical
estimation, respectively [13].

7. Linearized Constraints

In many computer vision applications, the constraint (1)

can be linearized in the form

(€($a),u) =0, (16)

where£( ) is a (generally nonlinear) mapping from an
dimensional vector to g-dimensional vector. In the follow-
ing, we write(a, b) for the inner product of vectors and
b. In order to remove scale indeterminacy, we normaidize
to ||ul| = 1.

Example 1 Suppose we want to fit a quadratic curve (cir-
cle, ellipse, parabola, hyperbola, or their degeneracyy to
points{(za,ya)}, @ =1, ...,N,in the plane. The constraint
has the form

Az? +2Bxoye + Cy2 4+ 2(Dzo + Eyo) + F = 0. (17)

/

Ta xl,
( Yo , F y/a ) =0. (19)
1 1

This is called theepipolar equatiori8]. If we define

E(z,y, 2,y )=z’ zy mya’ yy' ya' Y 1)7,
u=(Fy; Fio Fi3 Fyy Fay Foz F31 F3y F33)", (20)

eqg. (19) is linearized in the form of eq. (16). O

The KCR lower bound for the linearized constraint (16)
has the form
N z zT
al—2(S° _Safa  \7
VKCR[U] =€ ((;1 (’LL, Vo[ﬁa]u)) )

where (---)~ denotes pseudoinverse. The sym#glis

an abbreviation fo€ , (z,), andV;[€,] is the normalized
covariance matrix (scaled so that 1) of £(x,,): it can be
expressed as

(21)

Vol€a] = Vx€o V€, (22)

except forO(*), whereV,&,, denotes then x p Jacobian
matrix

851/3331 3£p/83’1

851/833m

evaluated at = z,,.

8§p/axm



8. In Search of an Optimal Estimator of M for the smallesteigenvalue\ and let the solution of

Now, we try to find an optimal estimatar that satisfies
the KCR lower bound (21). This is diametrically opposite to
the conventional approach of finding some method heuristi-bea. However, the matri¥\/ also involves the unknowa,
cally and doing analysis or simulatienposteriorito see if ~ SO we do iterations: we compufel using theith estimate
the bound is indeed attained. u; and let the solution of eq. (27) be;11,:=0, 1, 2, ...,

The starting point is the observation that the pseudoin- starting from an initial guess. If the iterations converge, the
verse on the right-hand of eq. (21) reflects the fact that theresultingz satisfies eq. (27) (up to the convergence thresh-
vectoru in eq. (16) is normalized t§u| = 1. Hence, its ~ 0ld).
domain is the unit sphers?—! in R?, its uncertainty being Now, we evaluate to what extent the resultiagpprox-
restricted only in the direction orthogonal o The pseu-  imates the true. Let
doinversg( - - - )~ on the right-hand side of eq. (21) projects

Mu = \u, (27)

- onto the tangent space 88! at. €o = 8o+ Ak (28)
It follows that the null space dfkcr[@] is in the direc-  The error inM is
tion of &, meaning that: is theunit eigenvector oVikcr [4] _
for eigenvalue 0 Thus, if we know the KCR lower bound AM =M -M
Vkcr[@], we can obtain an optimal estimataras its unit (E+AE)EFNE)T X £.€l
eigenvector for eigenvalue 0. = (u, Vo[, ]u) _azl (u, Vol€,,]u)

This appears impossible becaugecg @] involves the

< 1= 11

true values{z, } andwu, which we do not know. However, B Agaé;uéaAgI al AE AL

this can be overcome by a_pproximati@@a} by the data o (u, Vo€, ]u) = (u, Vol€]u)

{Z.} and iteratively estimating. All we need to do is ana- I

lytically evaluate the error incurred by such approximations. Z AE €, +ENEL +0(2) (29)
If the error in the resulting covariance matrix@§s?), we B (u, Vo€, ]u) ’

a=1

are done.
According to theperturbation theoremthe perturbation of

9. Perturbation Theorem M into M — AM induces the perturbation af as follows

. [10]:
If we define @ =u-+M AMu+ O(e?). (30)
N ¢ ST Its covariance matrix is evaluated as follows:
M = Z S 1.1 S— (24)
= (u, Vo[€,]u) Via] = E[(t — u) (i —u) ]

the KCR lower bound (21) is written as
Vikerla] =M™, (25)

whereM is the value ofM obtained by replacingg,, } by
their true valueg &, }.

Since pseudoinverse preserves the null space, the null

space ofM is the same as that & , hence ofVicr [#].
It follows that the unit eigenvector dfxcr[a] for eigen-
value 0 isthe unit eigenvector oM for eigenvalue 0 In
fact, we can directly confirm this: the constraidt,, u) =
0 implies

N
Z UVO ) =0. (26)

However, we do not know the true matri. So, we
approximate it by the matrid/ in eq. (24) and evaluate the
incurred error. SincéV! is generally nonsingular, it does

= E[M*AMuuTAMM*]JrO(&)

e Z Asus ot As ® T

Vol€o]u)
Y A5656+€6A55 4
Z::—u VolE ) M~ ]+0(*)
al Asﬁ, w)€ .
EIM D vo Ju) (s, Vol Ju) ™ 1O

X (w, E[AeQAﬁﬂ] W)€, &y
T VolE Ju)on Vale Juy 1 O

(U’EQ(SOAﬂVb[é ] )€ 5[3 =

T, VolE. Ju) o, Vol Juy 1 O
L& el
= MY e

M~

[e3

@
I

M=

:M7

[e3

=¥

M +0(e*)

1The matrix M is positive semidefinite by construction, so its eigen-

not have eigenvalue 0. So, we compute the unit eigenvectonalues are all nonnegative.



=e?M MM +0(*) =M +0(*) 11. Renormalization

Vier[@]+0(eh). (31) Since the noise level on the right-hand side of eq. (35)
is unknown, we need to estimate it. This is easily done by
choosing the value of? in eq. (35) so thai\I has eigen-
value 0. Suppose we use a tentative vaitieand let)\ be

the smallest (in absolute value) eigenvalueldf with the
unit eigenvector. If A # 0, we increment the curreat

by ¢ so that(M — ¢N)@ =0, or

Here, §,3 is the Kronecker delta, taking 1 far = § and
0 otherwise. In the above derivation, we use the equality
E[AE,AE] = 005V0[€,], which follows from the assump-
tion that noise in eack,, is independent. The remainder
term isO(e*). This is a consequence of the fact that the
noise distribution is symmetric with respect to the origin,
hence terms of all odd degrees:ciwvanish in expectation. (@, (M — eN)a) = (4, Mﬁ) — (@, Naw)
Thus, we find that the unit eigenvectér of M in

eq. (24) for the smallest eigenvaluedgtimalin the sense =A@, Na) =0. (38)
that its covariance matrix attains the KCR lower bound pepce,. = A/ (&, N4). We iterate this process untilx 0
Vicr|i] except forO(e?). If we mcorporate this iteration into the computation of the

) eigenvectomr of M, we obtain the following scheme:
10. Bias Removal
Not being satisfied with this, let us go further. Can this be
what we could do? Can’t we further improve the accuracy?
The annoying fact is that the second tedh  AMw on
the right-hand side of eq. (30) is not zero in expectation, i.e.,
it has statistical bias. Eq. (29) implies thaf\f is unbiased (M;_1 —¢i-1Ni_1)u = \u, (39)
except forO(£?), but if we do not ignore(¢?), we see that

1. Guess an initial value, and letey = 0.

2. LettingM;_, andN;_, be, respectively, the matrices
M and N in egs. (24) and (33) computed using the
(i — 1)th estimateu,_, solve the eigenvalue problem

and letu; be the unit eigenvector for the smallest (in

E[AM]—%EM& €, +E, Bl Aé’ i [AE, Aé‘ ] absolute value) eigenvalue.
= (u, Vo€, ]u = (u,Vol€,]u) 3. If X is sufficiently close to 0, stop and retut asi.
N 21/ Else, let
_ Z € 0[£a] _ €2N, (32) \
(u, Vo[€,]u) Ci < Ci—1+ (40)

(ui, N(ui,l)ui) ’

N and go pack to Step 2 after letting_; «— wu;.
N — Z : Vol€a] ) (33) This is nothing but theenormalizationof Kanatani [9, 10,

= (u,V [€,]uw) 14], though he introduced this by an intuition different from
. . the above reasoning.
Hence, the expectation of eq. (30) is If the renormalization iterations converge, we have
Eli] = u + M~ Nu + O(e2). (34) (M — ¢N)4 = 0. Computing the inner product with

on both sides, we have

Can we remove the terat M Nu? X . R R o
After careful examinations, we find that this can be done (% (M — eN)@) = (&, Ma) — c(w, Nu) = 0. (41)
if eq. (24) is replaced by Hence,
N = M — &N, (35) _ (&, Ma)
(@, Nu)
Itis difficult to evaluate the expectation oéxactly, because
u depends on not onl}4 but alsoc itself. However, if we

(42)

If we let & be the unit eigenvector a¥Z for the smallest
eigenvalue, eq. (30) is replaced by

G =wu-+ M AMu+ 0(£?) (36) let o ~ wu to a first approximation, we obtain
doing the same perturbation analysis, and Eld = (u, E[Mu) _ (u,e’Nu) _ 2 (43)
(u, Nu) (u, Nu) '

E[AM] = E[M—M) = E[M —-M—¢*N] = 0. (37)
If @ is a good approximation of,, which is usually the

This does not affect the fact that the covariance matrix at- case, the error in the above approximation is expected to be
tains the KCR lower bound except far(e ) because in a higher order tern®(¢*). Thus,

eq. (31) the difference betweexM and A M is absorbed X
in the remainder tern(s4). E[M — M| =¢*N — E[¢JN =0(*).  (44)



The initial guessu, is given, for example, by the unit  coincidencé?
eigenvector of Evidently, we couldn’t answer this question as long as
N we are restricted to first order analysis: we are forced to do
Mys =Y €., (45)  second order analysis.

. L 13. Second Order Perturbation
for the smallest eigenvalue. This is simply the least-square

method (2), for it minimizes the sum of squares We now write
Ny M=M+A M+ A,M, (47)
Jis =Y (€4, u)”. (46)  whereA; and A, designate perturbations of orde®se)
a=1 and O(g?), respectively. From the derivation of eq. (29),
. L we find that
12. Controversies about Renormalization
AS £, + £ A&
Kanatani’s renormalization turned out to produce highly ALM = Z (w, Vo[€Ju) (48)
accurate values in many computer vision applications, and
it is now an indispensable tools for computing the funda- N A€, Ag
mental matrix and homographies for 3-D reconstruction and B M = Z (u, Vol€ (49)

image mosaicing applications [16, 17]. It is used across the

world and incorporated in some commercial products, too. Eg. (27) can be written in the form
However, questions and doubts have constantly been , -

raised about its interpretation. This is because Kanatani (M + ArM + Ao M)(u + Aqu+ Aot +--)

introduced renormalization as keias removal procedure = (AA+ DA+ )(u+ Aju+ Agu+--+). (50)

[9, 10, 14]. But, if bias removal is the sole purpose, why Comparing terms ob(1), O(¢), andO(<2) on both sides,

don’'t we start with the matrids? we obtain the following expressions (see Appendix D for
Kanatani endorsed the use of the maik in eq. (24)  the derivation):

in an analogy with ML. Extending this view, Chojnacki o

et al. [4] asserted that renormalization is an approximate Aju=-M A;Mu, (51)

method for ML and proposed a new method calfedS Aou = —M AsMu+ M AMM A;Mu

(fundamental numerical schejnéor directly computing T 2

ML [5]. They also pointed out that in this respect tHEIV —IM A Mul"u. (52)

(heteroscedastic errors-in-variablesf Leedan and Meer  SinceE[A; M| =0, we haveE[A;u] = 0. SinceE[A; M]

[18] falls in the same category [6], too. From these obser- =2 N, the expectation oh,u is

vations, Chojnacki et al. [4] asserted superiority of the FNS

and the HEIV over renormalization. E[Aou] = M Nu+ M E[A MM A Mlu
From the description in the preceding section, however, —E[|M~ A Mu|?|u. (53)

itis now evident thatenormalization has nothing to do with B

ML. The use of the matrid/ is justified only by realizing ~ We can showE[||M~A; Mu|?] = e*tr(M ) (see Ap-

that what we really want ihe eigenvector of the KCR lower ~Pendix E for the proof). Since renormalization removes the
bound The only link of renormalization with ML is the fact ~ bias term—<2M ~ Nw, the renormalization solutiofiry

that the ML estimator also satisfies the KCR bound in the has the following expectation:

leading term [15].

Thus, Kanatani’s renormalization is justified in this new Eltgn] = w+ M E[MMM A M]u

light. However, a new question arises. Why is removing —e%tr(M u + O(e). (54)
the second term on the right-hand side of eq. (34) effective? . . Lo
The right-hand side has the remainder tene?) after all. 14. Errors in Maximum Likelihood
Since the removed term is alét(e?), the order of approxi- We now compare eq. (54) with ML. For the linearized
mation does not change. constraint (16), the ML minimization (5) reduces to
Yet, it has been proven by simulations and real data ex- N

eriments that the removal of that term results in significant (€qru)? .
p 9 Jmr, = Z ——=———— — min. (55)
improvement of accuracy (see, e.g., [16, 17]). It has also (u, Vo[€,]u)

a=1

peen confirmed that the accuracy of renormfi'izaﬂ?n IS Prac-  2jkolai Chernov, the author of [3], described so in a personal commu-
tically comparable to the FNS the HEIV. Is this a miraculous nication with the author.




This is an approximation to the true ML of eq. (3) for

small noise, but since we are concerned with perturbation

for small ¢ (recall the arguments in Sec. 6), we call this
simply ML. The FNS of Chojnacki et al. [5] the HEIV of
Leedan and Meer [18], and the recent method afith
and Mester [19], which is a variant of the method known as
equilibrationor whitening all aim to minimize eq. (55).
Differentiating .Jyr, with respect tau, we obtain

S 260 WEn 260, w)VolEu
VaduL = o & 56
M) o) 2 (w Ve O
Hence, the ML estimataiiyg, is the solution of
M = La, (57)

where we define

N
£
M = ZUVO guVo Ju)?’ (°8)

The FNS and the HEIV both solve eq. (57) by iterations.
One may wonder if eq. (56) vanishes only in the direction
orthogonal tou because the minimization (55) should be
subject to the normalizatiofu| = 1. However, eq. (55) is
ahomogeneous form of degre@Ou and hence is invariant
to scale change af. It follows thatVJyy, is identically O
in the direction ofu, hence 0 in all directions [5].
The perturbation of M is written in the form of
egs. (47)-(49). ForL, we observe

L= Z

= AQL.

+Asa,u> Volta] _ (Aby,w)?Vilé,]
(o, Vo € )2 (o, Vo€, Ju)?

(59)

In other words,L is O(&?
is written in the form

) from the beginning, so eq. (57)

= AoL(u+ Aju+ Dou+--). (60)

Comparing terms of)(1), O(e), andO(£?) on both sides,
we obtain the following expressions (see Appendix F for the
derivation):
Alu = —MiAlM’LL,
AQU = —M_AQM'U, + M_AlMM_AlMu
+M AyLu — |M~ Ay Mu|*u.

(61)

(62)

We have already seen thafA;u] =0 andE[A; M| =
From eq. (59), the expectation 8f L is

VO [Ea]

)
(u, Vo€,]u)?

eN.

N
E[Z (A€a7u

a=1

E[A;L] = ]

(u, E[AE AL Jw)Vol€,]

T (, VolE,Ju)?

N N
_ (u762%[€(x]u)%[£a] _ 2 Vb[&a]
- 2 (w. Vo€ Ju?  ~ ° 2 (u, Vol€,]u)
=¢e¢“N. (63)

Thus, the expectation of the ML estimatay;y, is
Elty] =u+ M E[A;MM A Mlu
—e%tr(M u + O(eh). (64)

This coincides with eq. (54)

15. Toward Further Improvement
Our conclusions are summarized as follows:

1. Renormalization is not an approximate solution tech-
nique for ML. Itis to compute the solution that satisfies
the KCR lower bound followed by removal of one of
the O(£?) bias terms.

. The difference of the renormalization solutiéiky
from the ML estimatotiyyy, is in expectation

N

Elagyn — anp] = O(eh). (65)

. The covariance matricd§[urn] and V[urm] of the
renormalization solutiorugry and the ML estimator
uypr, both attain the KCR lower bouridccr [i] except
for O(e*).

Viarn] = Vierl[@] + O(eh),
Vid] = Vier[a] + O(e?).

(66)

N

. The covariance matricég[ugrn] and V[ang,] coin-
cide except foO ().
Vlarn] = V] + O(e°). (67)
. The renormalization solutionigy and the ML
estimator «y, share a common error term
M_E[AlMM_AlM]’U,

The last fact implies that we can obtain a method superior to
both renormalization and ML by estimating and subtracting
that error term. This is currently under investigation.

It seems that one of the reasons this type of analysis has
not been attempted in the past is that computer vision re-
searchers are likely to take textbooks of statistics for granted
and blindly follow the asymptotic analysis &6 — oo for
the numberV of data. Rather, computer vision researchers
should bring forth theories and analyses specific to their ap-
plications. This paper demonstrates how promising such an
attempt can be.
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If we find Aw that minimizes eq. (74), the ML estimator
uyL 1S given byu + Awu. The solutionAw is obtained by
solvingV auJumr, = 0. Since the first term on the right-hand
side of eq. (74) is a quadratic form iku,,, we have

(ViFo, Axy)+(VuFu, Au)) Vo F,
VauJur =2 =
azl [VxFall?
+0(e?). (75)
Letting this be 0, we have
YVuF,)T
Z Au
= \V Fa ||2
N
vx ) 2
- Az, + O(e7), (76)
Z IIV Fol?
from which we obtain
N —
F, uFu) F oF
Z(vu a)(v2 AATZV ﬁ VQﬁ)
0 IV IV Fs]|
o\ T
_ Z v F ) AwaAw;}r (VxFﬁ)(_quﬁ)
a,8=1 W F 12 [VxFall?
+0(%). (77)
Taking expectation on both sides, we obtain
i(vuﬁa)(v oF) Z (VaF3)(VuFs) T
Z 0 IIVkEaP? = IVl
- Fo) T (VoF) (VaFa) T
x4 _ ut o +O(E4)
z:: IIV F H2 IV Fo |2
N
WViFo)T 4
=y ——— = 4+ 0(e"), (78)
Z:: IV Fol?
where we have used the relations
E[Az Az)] = dape’T (79)

andE[O(g3)] = O(g?
C: Derivation of the KCR Lower Bound
We assume that estimataris unbiased, i.e.,

E[t—u] =0,

). From eq. (78) follows eqg. (10).

(80)

which should be andentity in {z,} andw that satisfies
eq. (4). From the definition of the expectati@ -], the
infinitesimal variation ofE'[@ — u] is®

) /('&—u)p1~~dem:—/(5u)p1~~deac

3Recall that we consider variations {& } (not {x }) andw. Since
the estimatot is a function of the dat@x.. }, it does not change for these
variations. The variatiodw is independent of z. }, so it can be moved
outside the integraf da. Also note that/ p; - - pda = 1.

11

-pndx

N
+ (A_ )1"'5(1"
;/u wps -+ bp

N
—ou +/(’&—U)Z(P1 < 0pg - -pn)dx,  (81)
a=1

where [ dx is a shorthand off --- [dx,---zy. By as-
sumption, the probability density af,, is
1 e 2 2
Q) = —— —NTa—Tall*/2¢ 82
p(Ta) (Vo , (82

which we abbreviate tp,,. The infinitesimal variation of

eq. (82) with respect ta,, is

5pa = (lav 55304)1)047 (83)
where we define thecorel,, by
lo = Vx, logp, = 2o _Ta (84)
9

Since{z,, } andu are constrained by eq. (4), their varia-
tions are constrained to be

(VsFn, 620) + (VuFa, du) = 0. (85)

Because eq. (80) is an identity frxx,} andw that satis-
fies eq. (4), the variation (81) should vanish for arbitrary
variations{éz, } anddu that satisfy eq. (85). Substituting
eg. (83) into eq. (81), we conclude that

N
U — u) Z 116z,] = du,
a=1
for arbitrary variationq dz, } anddwu that satisfy eq. (85).

Consider the following particular variatio§sz,, }:

(vxFa)(VuFa)T
Vs Fall?

(86)

0Ly = —

Su. (87)

It is easy to confirm that eq. (85) is identically satisfied.
Substituting eq. (87) into eq. (86), we obtain

N
U — u) Z m/ |ou = — (88)
a=1
where we define the vectofsn,, } by
(VuFo)(VxFa) "
a = = a- 89
S )

Because eg. (86) should hold for arbitrary variati¢ss,, }
anddu that satisfy eq. (85), eq. (88) should hold for arbi-
trary unconstrainedariationsdu, which means

N
i —u) Y my] =

(90)



Using this and recalling the definition (7) of the covariance (w, Aou) = —(Aju, Aju) = —||Ajul®. (96)

matrix V'[u], we obtain ) )
2. Comparing terms of)(1) on both sides of eq. (50), we

N N T -
- - Via] —I btainMwu = 0.
E| ’LII,V u ’LII,V u = _[u] (91) obtainMu
Za:lma Za:lma I M . .
3. Comparing terms of)(¢) on both sides of eq. (50), we

where we define the matrixZ by obtain
N N T MA1U+A1M’U,:A1)\U (97)
M:E[(Z ma) (Zmﬁ) ] o _ . .
— =1 Computing inner product witlr on both sides, we obtain
N n P \T _
_ Z )(Vx f 2) Bt Vo) (Vula) (w, MA ) + (u, Ay Mu) = A A(u,u).  (98)
R Hv Fo [VFal ’ )
1 (VuF (VuFu)T ©2) I:I(iting (tjhat(ué,l.é\/[Alu)bT (_Mu, Aju) =0, (u,u) = |jul
= 3 A =1, and eq. (48), we obtain
In the above equation, we use the identﬂ{lalg] = Ad=(u AlMu)
SapI /e*, which is easily confirmed from egs. (79) and (84). N (u, A w.E VAL u
The matrixJ,, = E[l,1.] is theFisher information matrix Z $) (u ‘)/[ ( 1’5‘1)( Cartt) _ 0. (99)
of the distributionp,, and thatE[lalg] = 0apd o If the dis- a=1 olé

tributions{p,, } are mutually independent. . _
. I i Let A\, ..., \,,_1 be the nonzero eigenvalues®f, andu,
Since the inside of the expectati@# - | on the left-hand ! ! g "

. . . " o . ..., up—1 the corresponding orthonormal system of eigen-
side of eq. (91) is evidently positive semidefinite , so is o . .
. . N .~ vectors (recall that the unit eigenvector for eigenvalue 0 is
the right-hand side. Hence, the following is also positive

u itself). Computing inner product with; on both sides of

semidefinite: eq. (97), we obtain
(e ) (0 ) (o ae)
M -I M Mt M (wi, MAw) + (w;, Ay Mu) = AA(u;,w).  (100)
Vi) — M~! _ _ _
= M—l . (93) Since (’LL“MAl'UJ) = (M’LL“Al’U,) = ()\ﬂlll,Alu) and

(u;,u) = 0, the above equation is rewritten as
From this, we conclude th&t[a] — M ~* should be positive

semidefinite, implying eq. (11). Ni(ui, Aqu) + (u;, AyMu) = 0. (101)

The above proof is for the simplest case, but the same re-
sult holds for more general cases. If we have multiple con- SinceA;u is orthogonal ta by the second of egs. (95), it
straints, which may not be independent of each other, or if can be expressed as a linear combination of the orthonormal
the domains of the data and the parameters are constrainegystemuy, ..., u, 1 in the form
we can introduce pseudoinverse and projection operators. . -
If the error distribution is not Gaussian or different from A — Z(unﬁm) o Z wi(u;, Ay Mu)

datum to datum, the scoidg, and the Fisher information pt pt i
matrix J ., take very complicated forms, but the logic is the 1
same [10]. - it - M~
[10] (Z} 5 )A Mu = —M~ A, Mu. (102)

D: Higher Order Terms of Renormalization

1. The vectoru should be perturbed subject to the normal- 4. Comparing terms of)(¢?) on both sides of eq. (50), we
ization constraint, so obtain

u+ Arw+ Apu+ -2 M AsutAs Mut+A 1 M A u = A AA u+As u. (103)

=(u+A1u+Asu+- -, ut+Ajut+Aqu+t---)=1. (94)
. i Computing inner product witky on both sides, we have
Comparing terms 0©(1), O(e), andO(£?) on both sides,
we obtain (u, MAsu) + (u, Ao Mu) + (u, Ay M A u)

(w,u) = ul?=1, (u,A1u)=0,  (95) = A A(w, Agu) + A A (u, u). (104)
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Noting that(u, M Asu) = (Mwu, Ayu) =0, (u, Aju)
(u,u) = ||ul| = 1, and eq. (102), we obtain

:O'

AQ)\ = (u
(u, AQMU)

, Ao Mu) + (u, Ay M A u)
— (u, AlMM_AlM’LL)

(105)

Computing inner product witk; on both sides of eq. (103),

we obtain

(’U,Z', MAQU) + (Ui, AQMU) + (’LLZ', AlMAl’U,)

= A\ (ug, Ayu) + A\ (ug, u). (106)

NOting that(ul, MAQU) (MU“ AQU) = ()\Z’U,Z, AQ’U,),
(u;,uw) =0, and egs. (99), (102), we obtain

)\Z'(’LLZ', AQU)-F(’U,“ AQM’UJ)—(’UJ“ AlMMiAlMU) =0.
(207)

From this and eq. (96), we obtain

n—1

Asu = Z(ui, Asu)u; + (u, Asu)u
i=1

_ nil ui(ul—, AQMU)

- i—1 Ai

n—1

+Z ul uwAl

i=1

-

=1

MM ™ A;Mu)
Ai

— A *u

u;u

)AgMuf M~ Ay Mul?u

7

n—1

+(Z

i=1

uu

)AlMM A Mu

i

7M_A2M’U, + M_AlMM_AlMu
—|M ™AL Mu||*u.

(108)

E: Evaluation of E[|M ™~ A1 Mu||?]
u) =0, eq. (48) implies

N
AlMu: Z

a=1

Since(¢&,,,

(AE,, u)E,
( Vol€,Ju) (109)
Hence,

E[|M~ A Mul|?| = E[(M~ A Mu, M~ A;Mu)]
= E[(A\Mu,(M ™ )>A;Mu))

o
(3 Llbent) 5y £p(Ag,u)
- E[(; (11, Vo €] E:: (1, Vo[£
- Ju)(Aég,u)](€,, (M7)°Es)
QZI (0, VolE 0 (s Vo IE )
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(u, BIAE, AL S Ju) (€, (M)*Ey)
(u’ Vo [‘Ea]u) (uv Vo [gﬁ}u)

M=

a,B=1

@

(u,e%0apVo[€o]u) (€a: (M )?Ep)
(U’7 %[Ea]u)(uv ‘/O[Eﬁ]u)

(u, Vol€Ju) (€, (M)%E,)

1 (ua Vo [Eoz]u)z

(£a, (M)°€,)

- (w, VolE, u)

N _
£.6

= 52t1‘(z 7(’(1, Vo[£ ] )

a=1
=*tr(M MM ) =*r(M").
F: Higher Order Terms of ML

1. From the constraint that be a unit vector, eq. (94) holds
for the perturbation&\; u andAsu.

7=

2

] =

m

«

62

WE

«

(M)?) = e*te(M(M")?)

(110)

2. Comparing terms of)(1) on both sides of eq. (60), we
obtainMu = 0.

3. Comparing terms of)(¢) on both sides of eq. (60), we
obtain

Multiplying both sides byM ~ from left, we obtain
P, Aju+M AMu=0 (112)

where P, = I — uu' is the projection operator along
(note thatM ~ M = P, [10]). SinceA,u is orthogonal
to u by the second of egs. (95), we hafg,Aju = Aju.
Hence, we obtain eq. (61).

4. Comparing terms of)(s?) on both sides of eq. (60), we

obtain

Multiplying both sides byM ~ from left, we obtain after
some rearrangements

PHAQU = 7M7A2M’U, + MiAlMMiAlM’U,
+M~ AyLu. (114)

This is the component ah,u orthogonal tou. The com-
ponent along is —||A;u||?u from eq. (96). Hence,

Aou = PyAou — || Arul®u. (115)

The first order perturbatiof; v is the same as in the case
of renormalization (see egs. (51) and (61)). Herje®, u |2

=—| M~ Ay Mu)|*u, as we have already shown. Thus, we
obtain eq. (62).



