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SUMMARY Introducing a mathematical model of image

noise, we formalize the problem of �tting a conic to point data

as statistical estimation. It is shown that the reliability of the

�tted conic can be evaluated quantitatively in the form of the

covariance tensor. We present a numerical scheme called renor-

malization for computing an optimal �t and at the same time

evaluating its reliability. We also present a scheme for visualiz-

ing the reliability of the �t by means of the primary deviation

pair . Our method is illustrated by showing simulations and real-

image examples.

key words: conic �tting, reliability evaluation, statistical model

of noise, image processing, statistical optimization

1. Introduction

Many industrial objects have circular and spherical

shapes, which are projected as ellipses in their images.

Therefore, ellipses, or conics in general, are very impor-

tant image features in computer vision and robotics ap-

plications [6], [23], [24]. If a conic in an image is known

to be a projection of a circle or an ellipse of known

shape, its 3-D position can be computed by an analyt-

ical means (but not always uniquely) [12]. In order to

do such an analysis, we must detect a conic by an edge

operator as a sequence of pixels and �t a conic equation

to the detected pixels.

Many conic �tting techniques have been proposed

in the past: crude estimation based on the Hough trans-

form [4], [7], [26], least-squares estimation with di�er-

ent parameterizations and criteria [2], [3], [16], [17], [21],

[25], and various techniques based on edges, gray levels,

heuristics, and other information [1], [5], [18], [20], [24]

(see [22] for an overview). However, little attention has

been paid to the statistical behavior of the image noise.

An exception is Porrill [19], who incorporated a statisti-

cal consideration and applied an iterative �lter, which

he called the \extended Kalman �lter". He pointed

out the existence of statistical bias in the least-squares

solution and proposed a correction scheme for remov-

ing it. Applying the traditional statistical approach to

the curve �tting problem, Joseph [8] and Werman and

Geyzel [27] analyzed the asymptotic behavior of the
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coe�cients of the �tting equation for large noise in the

limit of a large number of data.

In this paper, we formulate the conic �tting prob-

lem as statistical estimation, but our approach is oppo-

site to that of [8] and [27]: we �x the number of data and

do perturbation analysis for small noise. Introducing a

mathematical model of image noise, we derive a theoret-

ically optimal �tting scheme in the sense of maximum

likelihood estimation. We also give an explicit expres-

sion that evaluates the reliability of the computed �t

in quantitative terms and propose a scheme for visual-

izing the reliability of the �t by means of the primary

deviation pair . Then, we present a simple computa-

tional scheme called renormalization for computing an

optimal �t and at the same time evaluating its relia-

bility. We illustrate our method by showing numerical

simulations and real-image examples.

2. Conic Fitting

A conic is a curve on a two-dimensional plane whose

equation has the form

Ax

2

+ 2Bxy + Cy

2

+ 2(Dx+Ey) + F = 0: (1)

If a point (x; y) is represented by a three-dimensional

vector x = (x; y; 1)

>

(the superscript > denotes trans-

pose), Eq. (1) can be written in the form

(x;Qx) = 0; (2)

where Q is a three-dimensional symmetric matrix de-

�ned by

Q =

0

@

A B D

B C E

D E F

1

A

: (3)

In this paper, we denote the inner product of vectors a

and b by (a; b).

Let f(x

�

; y

�

)g, � = 1, ..., N , be the points that

are supposed to be on a conic. In real circumstances,

digital images are not ideal, and image processing op-

erations such as edge detection may not be accurate.

We refer to such inaccuracy, irrespective of its sources,

collectively as \image noise". Let (�x

�

; �y

�

) be the true

position of point (x

�

; y

�

), i.e., the position that would

supposedly be observed if the image were ideal and the



1324

IEICE TRANS. INF. & SYST., VOL. E79{D, NO. 9 SEPTEMBER 1996

detection operation were accurate. We want to obtain

a conic that passes through (�x

�

; �y

�

).

Since the matrixQ in Eq. (2) is determined only up

to scale, we adopt the normalization kQk = 1, where

the matrix norm of Q = (Q

ij

) is de�ned by kQk =

q

P

3

i;j=1

Q

2

ij

. The conic �tting problem is formally

stated as follows:

Problem: Estimate a symmetric matrix Q of unit

norm such that

(

�

x

�

;Q

�

x

�

) = 0; � = 1; :::; N; (4)

from the data fx

�

g, � = 1, ..., N .

3. Optimal Estimation

We decompose x

�

into the form

x

�

=
�
x

�

+�x

�

; (5)

and regard the noise term �x

�

as an independent

Gaussian random variable of mean 0 and covariance

matrix

V [x

�

] = E[�x

�

�x

>

�

]; (6)

where E[ � ] denotes expectation. Since the third com-

ponent of �x

�

is always zero, V [x

�

] is a singular matrix

of rank 2.

It can be shown that if the image noise is small

and the product of two Gaussian random variables are

approximated to be Gaussian, the optimal estimate of

Q can be obtained as the solution of the minimization

J [Q] =

N

X

�=1

(x

�


 x

�

� V [x

�

];Q)

2

4(x

�

;QV [x

�

]Qx

�

) + 2(V [x

�

]Q;QV [x

�

])

! min; (7)

under the constraint kQk = 1 [11] (see Appendix). In

this paper, we de�ne the inner product of matrices A =

(A

ij

) and B = (B

ij

) by (A;B) =

P

3

i;j=1

A

ij

B

ij

. The

symbol 
 denotes the tensor product.

Let

^

Q be the solution of the minimization (7), and

write

^

Q =

�

Q+�Q; (8)

where

�

Q is the true value of Q. The reliability of

^

Q is

measured by its covariance tensor

V [

^

Q] = E[�Q
�Q]: (9)

It can be shown that this covariance tensor has the fol-

lowing form [11]:

V [

^

Q] =

 

N

X

�=1

P(
�
x

�



�
x

�

)
P(
�
x

�



�
x

�

)

4(
�
x

�

;

�

QV [x

�

]

�

Q
�
x

�

) + 2(V [x

�

]

�

Q;

�

QV [x

�

])

!

�

:

(10)

Here, the superscript \�" denotes the (Moore-Penrose)

generalized inverse, and P = (P

ijkl

) is the projection

tensor de�ned by

P

ijkl

= �

ik

�

jl

�

�

Q

ij

�

Q

kl

; (11)

where �

ij

is the Kronecker delta , taking value 1 for i =

j and value 0 otherwise. It can be shown that Eq. (10)

gives a theoretical bound on attainable accuracy called

the Cramer-Rao lower bound [11].

4. Least-Squares Approximation

We decompose the covariance matrix V [x

�

] into the

form

V [x

�

] = �

2

V

0

[x

�

]: (12)

The constant � indicates the average magnitude of

the image noise; we call it the noise level . The ma-

trix V

0

[x

�

] indicates in which orientation the devia-

tion is likely to occur; we call it the normalized co-

variance matrix . In many circumstances, the qualita-

tive characteristics of image noise, such as homogene-

ity/inhomogeneity, isotropy/anisotropy, and their rel-

ative degrees, can be discerned relatively easily from

the characteristics of the imaging device and the image

processing algorithm, whereas its absolute magnitude

is very di�cult to predict a priori. Here, we assume

that the covariance matrix V [x

�

] is known only up to

scale: V

0

[x

�

] is known, but � is unknown.

If the denominator in Eq. (7) is replaced by a con-

stant, we obtain the least-squares approximation

J [Q] =

N

X

�=1

(Q;M

�

Q)! min : (13)

Here,M

�

is the e�ective moment tensor de�ned by

M

�

=

1

N

N

X

�=1

W

�

(x

�


 x

�

� �

2

V

0

[x

�

])


 (x

�


 x

�

� �

2

V

0

[x

�

]); (14)

W

�

=

1

4(x

�

;Q

�

V

0

[x

�

]Q

�

x

�

)+2�

2

(V

0

[x

�

]Q

�

;Q

�

V

0

[x

�

])

;

(15)

where Q

�

is an appropriate estimate of Q. If we let

�

2

= 0 in Eqs. (14) and (15), Eq. (13) reduces to the

widely used least-squares method [9].

The solution of the minimization (13) is obtained

as the eigenmatrix of norm 1 of tensorM

�

for the small-

est eigenvalue [9], where we say that matrix A is an

eigenmatrix of tensor T for eigenvalue � if TA = �A

(the product TA of a tensor T = (T

ijkl

) and a ma-

trix A = (A

ij

) is a matrix whose (ij) element is
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P

3

k;l=1

T

ijkl

A

kl

). In order to compute the eigenma-

trix Q of tensorM

�

, we identify the matrix Q = (Q

ij

)

and the tensor M

�

= (M

�

ijkl

) with the following six-

dimensional vector q and six-dimensional matrix M

�

,

respectively:

q = (Q

11

; Q

22

; Q

33

;

p

2Q

23

;

p

2Q

31

;

p

2Q

12

)

>

; (16)

M

�

=

0

B

B

B

B

B

B

@

M

�

1111

M

�

1122

M

�

1133

M

�

2211

M

�

2222

M

�

2233

M

�

3311

M

�

3322

M

�

3333

p

2M

�

2311

p

2M

�

2322

p

2M

�

2333

p

2M

�

3111

p

2M

�

3122

p

2M

�

3133

p

2M

�

1211

p

2M

�

1222

p

2M

�

1233

p

2M

�

1123

p

2M

�

1131

p

2M

�

1112

p

2M

�

2223

p

2M

�

2231

p

2M

�

2212

p

2M

�

3323

p

2M

�

3331

p

2M

�

3312

2M

�

2323

2M

�

2331

2M

�

2312

2M

�

3123

2M

�

3131

2M

�

3112

2M

�

1223

2M

�

1231

2M

�

1212

1

C

C

C

C

C

C

A

: (17)

Then, Q is an eigenmatrix of tensorM

�

for eigenvalue

� if and only if q is an eigenvector of matrix M

�

for

eigenvalue �.

5. Unbiased Estimation

It can be shown that the solution of the least-squares

approximation is statistically biased whatever weights

W

�

are used [9], [10]. In fact, de�ne the moment tensor

M =

1

N

N

X

�=1

W

�

x

�


 x

�


 x

�


 x

�

; (18)

and let

�

M be the unperturbed moment tensor obtained

by replacing x

�

by
�
x

�

. Equation (4) implies that Q is

the eigenmatrix of

�

M for eigenvalue 0. However, the

tensorM

�

de�ned by Eq. (14) has expectation E[M

�

]

=

�

M+O(�

2

). Hence, the expectation of its eigenmatrix

is biased from its true value by O(�

2

) according to the

perturbation theorem [9]. This bias can be removed by

the following procedure.

De�ne tensors N

(1)

= (N

(1)

ijkl

) and N

(2)

= (N

(2)

ijkl

)

by

N

(1)

ijkl

=

1

N

N

X

�=1

W

�

(V

0

[x

�

]

ij

x

�(k)

x

�(l)

+ V

0

[x

�

]

ik

x

�(j)

x

�(l)

+ V

0

[x

�

]

il

x

�(j)

x

�(k)

+ V

0

[x

�

]

jk

x

�(i)

x

�(l)

+ V

0

[x

�

]

jl

x

�(i)

x

�(k)

+ V

0

[x

�

]

kl

x

�(i)

x

�(j)

); (19)

N

(2)

ijkl

=

1

N

N

X

�=1

W

�

(V

0

[x

�

]

ij

V

0

[x

�

]

kl

+ V

0

[x

�

]

ik

V

0

[x

�

]

jl

+ V

0

[x

�

]

il

V

0

[x

�

]

jk

):

(20)

Let

�

N

(1)

be the unperturbed value of N

(1)

obtained by

replacing x

�

by
�
x

�

in Eq. (19). Then, we obtain the

following relation:

E[M] =

�

M+ �

2

�

N

(1)

+ �

4

N

(2)

: (21)

It follows that if we de�ne the unbiased moment tensor

^

M =M� �

2

N

(1)

+ �

4

N

(2)

; (22)

we have E[

^

M] =

�

M. Hence, an unbiased estimator of

Q is obtained by the optimization

^

J [Q] = (Q;

^

MQ)! min : (23)

The solution is obtained as the eigenmatrix of

^

M of

norm 1 for the smallest eigenvalue [9].

6. Renormalization

In order to compute the unbiased moment tensor

^

M, we

need to estimate the noise level � precisely, which is very

di�cult as we mentioned earlier. If � is underestimated,

the bias still remains, while if it is overestimated, the

bias with opposite sign occurs. This di�culty can be

avoided by iteratively estimating � so that the small-

est eigenvalue of

^

M becomes 0. This procedure, which

we call the (second order) renormalization, is given as

follows [10], [13], [15]:

1. Let c = 0 and W

�

= 1, � = 1, ..., N .

2. Compute the tensors M, N

(1)

, and N

(2)

de�ned

by Eqs. (18), (19), and (20), respectively.

3. Compute the smallest eigenvalue � of the tensor

^

M =M� cN

(1)

+ c

2

N

(2)

; (24)

and the corresponding eigenmatrix Q of norm 1.

4. If � � 0, return Q, c, and

^

M. Else, update c and

W

�

as follows:

D =

�

(Q;N

(1)

Q)� 2c(Q;N

(2)

Q)

�

2

� 4�(Q;N

(2)

Q); (25)

If D

>

=

0;

c c+

(Q;N

(1)

Q)� 2c(Q;N

(2)

Q)�

p

D

2(Q;N

(2)

Q)

;

If D < 0; c c+

�

(Q;N

(1)

Q)

; (26)

W

�

 

1

4(x

�

;QV

0

[x

�

]Qx

�

) + 2c(V

0

[x

�

]Q;QV

0

[x

�

])

:

(27)
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Fig. 1 Equidistant points on an ellipse in the �rst quadrant.

(a) (b)

Fig. 2 (a) Ten �ts obtained by the least-squares method. (b)

Corresponding �ts obtained by renormalization.

5. Go back to Step 2.

Let

^

Q be the returned value of Q. An unbiased esti-

mator of the squared noise level �

2

is obtained in the

form

�̂

2

=

c

1� 5=N

: (28)

This is a consequence of the fact that N

^

J [

^

Q]=�

2

is sub-

ject to a �

2

distribution with N � 5 degrees of freedom

in the �rst order [11], where

^

J [

^

Q] is the residual of the

optimization (23). The covariance tensor of the estima-

tor

^

Q is estimated by

V [

^

Q] =

�̂

2

N

�

^

M

�

�

5

; (29)

where ( � )

�

5

denotes the generalized inverse computed

after projecting the tensor onto a tensor of rank 5 by

ignoring the smallest eigenvalue [11], [13]. This opera-

tion is necessary because the smallest eigenvalue of

^

M

may not be strictly 0 if the renormalization iterations

are prematurely terminated.

The renormalization procedure described above is

obtained by extending the prototype proposed in [10] in

such a way that error terms of up to the second order

are compensated for. However, the di�erence due to

this extension is very small, so in actual computation

it su�ces to use Eq. (26), ignoring the term c

2

N

(2)

in

Eq. (24).

7. Primary Deviation Pair

We can decompose the covariance tensor V [

^

Q] into the

following form by applying the spectral decomposition

[9]:

V [

^

Q] =

5

X

i=1

�

i

U

i


U

>

i

; (30)

(a) (b)

Fig. 3 (a) Points perturbed by noise. (b) An optimal �t (solid

line) and its primary deviation pair (dashed lines).

Here, �

i

is the ith largest eigenvalue of the tensor V[

^

Q];

U

i

is the corresponding eigenmatrix of unit norm. The

matrix U

1

indicates the most likely mode of deviation;

�

1

is the variance in that mode. It follows that the

reliability of the estimator

^

Q can be visualized by dis-

playing the two conics represented by

Q

+

= N [

^

Q+

p

�

1

U

1

];

Q

�

= N [

^

Q�

p

�

1

U

1

]; (31)

where N [ � ] denotes normalization into a matrix of unit

norm. We call these two conics the primary deviation

pair [13]{[15].

8. Examples

Figure 1 shows sixty equidistant points on an ellipse

in the �rst quadrant. The major and minor radii are

assumed to be 100 pixels and 50 pixels, respectively.

We added Gaussian random noise of mean 0 and stan-

dard deviation 0.5 pixels to the x and y coordinates of

each point independently. Figure 2(a) shows ten �ts

computed by the least-squares method (by using the

weight W

�

given by Eq. (15) for the true conic), each

time using di�erent noise; the true conic is drawn in a

dashed line. The existence of statistical bias is evident.

Figure 2(b) shows corresponding optimal �ts computed

by renormalization. We can see that the statistical bias

has been removed. Figure 3(a) shows one instance of

perturbed points; Figure 3(b) shows a �tted conic and

its primary deviation pair. We can see that the primary

deviation pair well characterizes the random deviations

shown in Fig. 2(b).

Figure 4(a) is part of an edge image obtained by

applying an edge operator to a real image. A conic is

optimally �tted to one edge segment that constitutes

a conic and superimposed on the original real image

in a solid line (Fig. 4(b)); its primary deviation pair

is drawn in dashed lines. Figure 5 shows another ex-

ample. As we can see, not only an optimal �t can be

obtained but its reliability can also be visualized with-

out any knowledge of the image noise. We can also see

that the reliability rapidly decreases as the length of

the conic edge segment decreases.
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9. Concluding Remarks

Introducing a mathematical model of image noise, we

have formalized the problem of �tting a conic to point

data as statistical estimation. We have shown that the

reliability of the �tted conic can be evaluated quantita-

tively in the form of the covariance tensor and presented

a numerical scheme called renormalization for comput-

ing an optimal �t and at the same time evaluating its

reliability. We have also presented a scheme for visual-

izing the reliability of the �t by means of the primary

deviation pair and shown simulations and real-image

examples to illustrate our method.
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Appendix: Optimal Estimation

De�ne a matrix

X

�

= x

�


 x

�

; (A� 1)

and let

�

X

�

be the unperturbed value of X

�

obtained

by replacing x

�

by
�
x

�

. Then, Eq. (4) can be written

in the form

(

�

X

�

;Q) = 0: (A� 2)

Substituting Eq. (5) into Eq. (A� 1), we can decompose

Eq. (A� 1) into the form

X

�

= (
�
x

�

+�x

�

)
 (
�
x

�

+�x

�

)

=

�

X

�

+�x

�




�

x

�

+

�

x

�


�x

�

+�x

�


�x

�

: (A� 3)

Since E[�x

�

]=0, we see that

E[X

�

] =

�

X

�

+ V [x

�

]: (A� 4)
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(a) (b)

Fig. 4 (a) An edge image. (b) An optimally �tted conic and

its primary deviation pair.

De�ne the e�ective value X

�

�

of X

�

by

X

�

�

=X

�

� V [x

�

]: (A� 5)

If we write X

�

�

=

�

X

�

+�X

�

, we can regard �X

�

as

the following matrix random variable of mean O:

�X

�

= X

�

�

�

�

X

�

= �x

�



�
x

�

+
�
x

�


�x

�

+�x

�


�x

�

� V [x

�

]: (A� 6)

If the ith components of
�
x

�

and �x

�

are written as

�
x

�(i)

and �x

�(i)

, respectively, the covariance tensor

V [X

�

] has the following (ijkl) element:

E[�X

�


�X

�

]

ijkl

= E[�x

�(j)

�x

�(k)

]�x

�(i)

�x

�(l)

+E[�x

�(j)

�x

�(l)

]�x

�(i)

�x

�(k)

+E[�x

�(i)

�x

�(k)

]�x

�(j)

�x

�(l)

+E[�x

�(i)

�x

�(l)

]�x

�(j)

�x

�(k)

�E[�x

�(i)

�x

�(j)

]V [x

�

]

kl

�E[�x

�(k)

�x

�(l)

]V [x

�

]
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+E[�x

�(i)

�x

�(j)

�x

�(k)

�x

�(l)

]

+ V [x

�

]
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V [x

�

]
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= V [x

�

]

jl

�x

�(i)

�x

�(k)

+ V [x

�

]
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�x
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�x

�(l)

+ V [x

�

]
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�x

�(j)

�x
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: (A� 7)

Here, we have used the following identity for a Gaus-

sian random variable v = (v

i

) of mean 0 and covariance

matrix � = (�

ij

) [11]:

E[v

i

v

j

v

k

v

l

] = �

ij

�

kl

+ �

ik

�

jl

+ �

il

�

jk

: (A� 8)

It can be shown that the optimal estimator of Q is ob-

tained by the minimization [11]

J [Q] =

N

X

�=1

(X

�

�

;Q)

2

(Q;V [X

�

]Q)

! min : (A� 9)

From Eq. (A� 7), we obtain

(Q;V [X

�

]Q) = 4(
�
x

�

;QV [x

�

]
�
x

�

)

+2(V [x

�

]Q;QV [x

�

]): (A� 10)

(a) (b)

Fig. 5 (a) An edge image. (b) An optimally �tted conic and

its primary deviation pair.

Approximating
�
x

�

by data x

�

, we obtain Eq. (7).
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