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SUMMARY We implement a graphical interface that auto-

matically transforms a �gure input by a mouse into a regular

�gure which the system infers is the closest to the input. The

di�culty lies in the fact that the classes into which the input is

to be classi�ed have inclusion relations, which prohibit us from

using a simple distance criterion. In this letter, we show that this

problem can be resolved by introducing the geometric AIC .
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1. Introduction

A mouse is one of the most fundamental interfaces for

generating �gures interactively. One problem with it

is generation of regular �gures. Design of industrial

objects requires many kinds or regularity such as or-

thogonality and parallelism. However, the input �gure

need not satisfy the required regularity if the mouse

is manipulated by a human. In many drawing tools,

users are required to choose a speci�c mode of regular-

ity (e.g., mode for rectangles) from a menu beforehand

or enforce a speci�c regularity by inputting a command

afterward. Is it not possible to automate this process?

For example, if a user inputs an approximate rectan-

gle, is it not possible for the computer to automatically

infers the intended shape and correct the input �gure

into the inferred shape?

This appears simple at �rst sight. For example,

we introduce some distance measure that describes dis-

similarity between two �gures. We prepare candidate

classes of regular �gures such as the class of rectangles

and the class of squares. Given an input �gure, we

choose from each class the closest �gure to the input

in the distance measure we de�ned. Finally, we choose

the one that has the smallest distance among them.

This paradigm has a fatal 
aw. This is because

classes of regular �gures have inclusion relations. For

example, the class of squares is a subset of the class of

rectangles. It follows that the distance from any �gure

to the closest square is always no more than the distance

to the closest rectangle. This means that squares are
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Fig. 1 A class included in another is not chosen.

never chosen. In general, classes that are included in

other classes are never chosen whatever distance mea-

sure is used (Fig. 1).

In pattern recognition, it is tacitly assumed that

the classes into which an input is to be classi�ed are

disjoint . One solution to the problem of classes with

inclusion is arti�cial separation of the classes. For ex-

ample, we may introduce an empirical threshold � and

decide that a rectangle is a square if the ratio of the

lengths of adjacent sides are between 1 � � and 1 + �,

thereby separating the class of squares from the class

of rectangles. However, the inclusion relation is one

of the most important bases of geometric reasoning;

its arti�cial disruption might cause di�culties in auto-

mated reasoning. Moreover, how can we determine the

threshold �? There exists no guiding principle for its

determination.

In statistics, a well known criterion for selecting a

reasonable model is the AIC [1]. However, inferences

in statistics are usually formulated as estimating the

parameters of the distribution from which the data are

drawn. It follows that it is di�cult to apply the AIC

to the problem we are now concerned. However, we

can generalize the principle that underlies the AIC to

geometric inference. The resulting criterion is called

the geometric AIC [2], [3]. In this letter, we present a

scheme for classifying regular �gures without introduc-

ing any empirical thresholds.

2. Classi�cation of Quadrilaterals

Consider trapezoids, parallelograms, diamonds (rhom-

buses), rectangles, and squares as typical examples of

regular �gures (Fig. 2). We represent a point (x; y)

in two dimensions by a three-dimensional vector x =

(x; y; 1)

>

(> denotes transpose). Consider a quadrilat-

eral de�ned by connecting four points x

1

, x

2

, x

3

, and

x

4

in that order.
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Fig. 2 Class inclusion relations for quadrilaterals.

Let us call the necessary and su�cient condition

for a �gure to be regular the constraint equation(s) for

the regularity. For the regular �gures listed in Fig. 2,

the constraint equations are as follows. Here, j � ; � ; j

denotes scalar triple product, and ( � ; � ) denotes inner

product; we de�ne k = (0; 0; 1)

>

.

Trapezoids. At least two sides are parallel:
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Parallelograms. The two pairs of sides are par-

allel:
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Rectangles. The two pairs of sides are parallel,

and adjacent sides are orthogonal:
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Diamonds (rhombuses). The two pairs of sides

are parallel, and the two diagonals are orthogonal:
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Squares. The two pairs of sides are parallel, ad-

jacent sides are orthogonal, and the two diagonals are

orthogonal:
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3. Geometric AIC

Consider a �gure withN vertices x

1

, ..., x

N

with L con-

straint equations. By de�nition, the third components

of vectors x

1

, ..., x

N

are all 1. Hence, they have 2N de-

grees of freedom in all, so the direct sum

L

N

�=1

x

�

can

be identi�ed with a point in a 2N -dimensional space

xα

X

S

N

α=1

α=1

N

xα
^

Fig. 3 Orthogonal projection onto the model.

X , in which L constraint equations de�ne a (2N � L)-

dimensional manifold S. We call S the model of the

L constraint equations. Optimally modifying an in-

put �gure so that the constraint equations are satis-

�ed is equivalent to orthogonally projecting

L

N

�=1

x

�

to

L

N

�=1

^
x

�

on the model S [2], [3] (Fig.3).

Consider the residual

^

J =

N

X

�=1

kx

�

� x̂

�

k

2

: (1)

If x

1

, ..., x

N

are perturbed from their true positions

�
x

1

, ...,
�
x

N

by independent Gaussian noise of mean 0

and variance �

2

, it can be shown that

^

J=�

2

is subject

to a �

2

distribution with L degrees in the �rst order

[3]. Hence,

�̂

2

=

^

J

L

(2)

is an unbiased estimator of the variance �

2

.

If the noise in the true positions
�
x

1

, ...,
�
x

N

were

di�erent, we would observe di�erent positions x

�

1

, ...,

x

�

N

. Consider the following expected residual :

^

J

�

=

N

X

�=1

kx

�

�

�
^
x

�

k

2

: (3)

It can be shown that

^

J is smaller than

^

J

�

by 2(2N �

L)�

2

in expectation. So, we de�ne the geometric AIC

as follows [2], [3]:

AIC(S) =

^

J + 2(2N � L)�

2

: (4)

Suppose the L

0

constraint equations of model S

0

can be obtained by adding some equations to the L

constraint equations of model S. Then, we say model

S

0

is stronger than model S, or model S is weaker than

model S

0

, and write

S

0

� S: (5)

If the weaker model S holds, the variance �

2

of the noise

can be estimated by eq. (2) whether or not the stronger

model S

0

is satis�ed. Let

^

J and

^

J

0

be the correspond-

ing residuals. The criterion based on the geometric AIC

can be written as follows:

^

J

0

^

J

<

2L

0

� L

L

: (6)
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(a) (b) (c) (d) (e)

Fig. 4 Input �gures and inferred shapes: (a) trapezoid; (b) parallelogram; (c) rectangle;

(d) diamond; (e) square.

4. Classi�cation Procedure

We turn back to quadrilaterals. Let

^

J

trap

be the resid-

ual for optimally correcting x

1

, x

2

, x

3

, and x

4

into

vertices of a trapezoid. Similarly, let

^

J

para

,

^

J

rect

,

^

J

diam

,

and

^

J

squa

be the residuals for correcting the input �g-

ure into a parallelogram, a rectangle, a diamond, and a

square, respectively. The procedure for discrimination

is as follows:

1. a. If

^

J

para

<

=

3

^

J

trap

, judge the input �gure to be

a parallelogram and go to Step 2.

b. Output an optimally corrected trapezoid, and

stop.

2. a. If

^

J

rectangle

<

=

2

^

J

para

, judge the input �gure to

be a rectangle and go to Step 3.

b. If

^

J

diam

<

=

2

^

J

para

, judge the input �gure to be

a diamond and go to Step 4.

c. Output an optimally corrected parallelogram,

and stop.

3. a. If

^

J

squa

<

=

(5=3)

^

J

rect

, judge the input �gure

to be a square, output an optimally corrected

square, and stop.

b. Output an optimally corrected rectangle, and

stop.

4. a. If

^

J

squa

<

=

(5=3)

^

J

diam

, judge the input �gure

to be a square, output an optimally corrected

square, and stop.

b. Output an optimally corrected diamond, and

stop.

Note that this procedure does not involve any empirical

threshold �.

Figure 4 shows implementation examples: input

�gures are inferred to be (a) a trapezoid, (b) a par-

allelogram, (c) a rectangle, (d) a diamond, and (e) a

square. The input �gure is drawn in thin lines; the

corrected �gure is drawn in thick lines.

5. Concluding Remarks

We have presented a graphic interface for inferring reg-

ularity in a �gure input by a mouse without using any

empirical thresholds; it automatically imposes the in-

ferred regularity. We argued that, unlike the usual pat-

tern recognition problem, we cannot select the closest

class measured by some distance criterion if the classes

have inclusion relations. We then showed that this dif-

�culty can be resolved by introducing the geometric

AIC .

Although recognition and classi�cation of features

that have inclusion relations have been studied in rela-

tion to a variety of applications [5], [6], the intrinsic dif-

�culty caused by the inclusion relations does not seem

to be fully understood yet [4]. The approach presented

here is expected to play an important role in dealing

with such problems.
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