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SUMMARY Introducing a mathematical model of image

noise, we formalize the problem of �tting a line to point data as

statistical estimation. It is shown that the reliability of the �tted

line can be evaluated quantitatively in the form of the covariance

matrix of the parameters. We present a numerical scheme called

renormalization for computing an optimal �t and at the same

time evaluating its reliability. We also present a scheme for visu-

alizing the reliability of the �t by means of the primary deviation

pair and derive an analytical expression for the reliability of a

line �tted to an edge segment by using an asymptotic approxi-

mation. Our method is illustrated by showing simulations and

real-image examples.

key words: line �tting, statistical model of noise, optimization

technique, image processing, reliability evaluation, edge detection

1. Introduction

Line �tting is one of the most important processes in

image understanding, because boundaries of many ob-

jects in indoor environments are projected as straight

lines in an image. They can be detected by an edge

operator as edge segments, i.e., sequences of pixels. By

�tting lines to the detected linear edge segments, we

can give the objects in the image a 2-D representation

(or \line drawing"), which becomes the basis of 3-D in-

terpretation of the scene. For example, the 3-D shapes

and locations of objects are inferred from \vanishing

points" and \focuses of expansion" computed as the

intersections of the �tted lines [5]. In the past, various

line �tting techniques have been proposed [3], [13], [15]{

[17], but a main concern has been obtaining an accu-

rate �t . Equally important, however, is the evaluation

of the reliability of the resulting �t. Since errors in line

�tting propagate to the �nal 3-D interpretation, its re-

liability can be evaluated if the reliability of line �tting

can be quantitatively evaluated. This type of analysis

has been done only in an ad hoc manner in the past

[1], [4], [6], [8].

In this paper, we formulate the line �tting problem

as statistical estimation by introducing a mathematical

model of image noise and derive a theoretically opti-

mal �tting scheme in the sense of maximum likelihood
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Fig. 1 Line �tting.

estimation . Then, we give an explicit expression that

evaluates the reliability of the computed �t in quanti-

tative terms and propose a scheme for visualizing the

reliability of the �t by means of the primary deviation

pair . We also present a simple computational scheme

called renormalization for computing an optimal �t and

at the same time evaluating its reliability. We illustrate

our method by showing numerical simulations and real-

image examples. Finally, we derive an analytical ex-

pression for the reliability of the line �tted to a dense

edge pixels by using asymptotic approximation.

2. Line Fitting Problem

Let f(x

�

; y

�

)g, � = 1, ..., N , be a sequence of points

to which a line is to be �tted. In real circumstances,

digital images are not ideal, and image processing op-

erations such as edge detection and template matching

may not be accurate. We refer to such inaccuracy, ir-

respective of its sources, collectively as \image noise".

Let (�x

�

; �y

�

) be the true position of point (x

�

; y

�

), i.e.,

the position that would supposedly be observed if the

image were ideal and the detection operation were ac-

curate. We want to obtain a line Ax+By+C = 0 that

passes through (�x

�

; �y

�

). Namely, we want to compute

A, B, and C such that

A�x

�

+B�y

�

+ C = 0; � = 1; :::; N: (1)

De�ne three-dimensional vectors

x

�

=

0

@

x

�

y

�

1

1

A

; n =

0

@

A

B

C

1

A

: (2)
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Since the scale of the vector n is indeterminate, we nor-

malize it to knk = 1. Let
�
x

�

be the true value of x

�

obtained by replacing x

�

and y

�

by �x

�

and �y

�

, respec-

tively. The line �tting problem can be formally stated

as the following statistical estimation (the inner prod-

uct of vectors a and b is denoted by (a; b)):

Problem: Estimate a unit vector n such that

(n;

�

x

�

) = 0; � = 1; :::; N; (3)

from the data fx

�

g, � = 1, ..., N .

The vectors x

�

and n de�ned by Eqs. (2) can be

given the following geometric interpretation. Take an

XY Z coordinate system such that the image is at Z=1

as shown in Fig. 1. Then, x

�

can be viewed as the

vector that starts from the origin O and terminates at

(x

�

; y

�

); vector n can be identi�ed with the unit sur-

face normal to the plane de�ned by the origin O and

the line Ax+By+C = 0 in the image. The components

of the vectors x

�

and n can be interpreted to be the

homogeneous coordinates of the point (x

�

; y

�

) and the

line Ax+ By + C = 0, respectively [6].

The con�guration described in Fig. 1 can be iden-

ti�ed with perspective projection [5]. If we want to re-

construct a 3-D structure from an image, we must make

this con�guration agree with the actual imaging geom-

etry by doing camera calibration [4], [8]. Here, however,

this con�guration is hypothetical and is used merely for

the convenience of computation.

3. Optimal Estimator and its Reliability

We write

x

�

=
�
x

�

+�x

�

; (4)

and regard the noise �x

�

as a Gaussian random vari-

able of mean 0, independent for each �, and covariance

matrix

V [x

�

] = E[�x

�

�x

>

�

]; (5)

where E[ � ] denotes expectation. The superscript > de-

notes transpose. Since the third component of �x

�

is

always 0, the covariance matrix V [x

�

] is generally a

singular matrix of rank 2. It can be shown that the

optimal estimator of the vector n is obtained by the

minimization

J [n] =

N

X

�=1

(n;x

�

)

2

(n; V [x

�

]n)

! min; (6)

under the constraint knk = 1 [7].

Let
^
n be the resulting estimator, and write

^
n =

�
n+�n; (7)

where
�
n is the true value of n. The reliability of

the estimator
^
n is measured by its covariance matrix

V [
^
n] = E[�

^
n�

^
n

>

]. It can be shown that the covari-

ance matrix has the form

V [

^

n] =

 

N

X

�=1

�
x

�

�
x

>

�

(
�
n; V [x

�

]
�
n)

!

�

; (8)

where ( � )

�

denotes the (Moore-Penrose) generalized

inverse (see Appendix). Equation (8) describes a the-

oretical bound on the attainable accuracy called the

Cramer-Rao lower bound [7].

Example: If each coordinate is perturbed indepen-

dently by Gaussian noise of mean 0 and variance �

2

,

the covariance matrix V [x

�

] has the form

V [x

�

] = �

2

diag(1; 1; 0); (9)

where diag(� � �) denotes the diagonal matrix whose di-

agonal elements are � � � in that order. In this case,

the optimization (6) is equivalent to the familiar least-

squares method

N

X

�=1

D(p

�

; l)

2

! min; (10)

where D(p

�

; l) is the distance between the �th point

p

�

and the line l to be �tted. The Cramer-Rao lower

bound given by Eq. (8) reduces to

V [

^

n] =

�

2

1 + d

2

0

B

@

P

N

�=1

�x

2

�

P

N

�=1

�x

�

�y

�

P

N

�=1

�x

�

P

N

�=1

�y

�

�x

�

P

N

�=1

�y

2

�

P

N

�=1

�y

�

P

N

�=1

�x

�

P

N

�=1

�y

�

N

1

C

A

�

;

(11)

where d is the distance of the line from the image origin.

4. Least-Squares Approximation

We decompose the covariance matrix V [x

�

] into the

form

V [x

�

] = �

2

V

0

[x

�

]: (12)

The constant � indicates the average magnitude of

the image noise; we call it the noise level . The ma-

trix V

0

[x

�

] indicates in which orientation the devia-

tion is likely to occur; we call it the normalized co-

variance matrix . In many circumstances, the qualita-

tive characteristics of image noise, such as homogene-

ity/inhomogeneity, isotropy/anisotropy, and their rel-

ative degrees, can be discerned relatively easily from

the characteristics of the imaging device and the image

processing algorithm, whereas its absolute magnitude

is very di�cult to predict a priori. Here, we assume

that the covariance matrix V [x

�

] is known only up to

scale: V

0

[x

�

] is known, but � is unknown.

If the denominator in Eq. (6) is replaced by a con-

stant, we obtain the following least-squares approxima-

tion :

~

J [n] = (n;Mn)! min : (13)
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Here, M is the moment matrix de�ned by

M =

1

N

N

X

�=1

W

�

x

�

x

>

�

; (14)

W

�

=

1

(n

�

; V

0

[x

�

]n

�

)

; (15)

where n

�

is an appropriate estimate of n. The solu-

tion of the optimization (13) is obtained as the unit

eigenvector of the moment matrix M for the smallest

eigenvalue [5].

5. Unbiased Estimation

It appears that the solution of the least-squares approx-

imation can be obtained by guessing the initial value of

n, substituting it into n

�

, updating n by the result-

ing solution, and iterating this process. However, the

solution thus obtained is in general statistically biased

whatever weights W

�

are used. This is reasoned as fol-

lows.

Taking the expectation of M , we see that

E[M ] =

1

N

N

X

�=1

W

�

E[(
�
x

�

+�x

�

)(
�
x

�

+�x

�

)

>

]

=

�

M +

�

2

N

N

X

�=1

W

�

V

0

[x

�

]; (16)

where

�

M is the unperturbed moment matrix obtained

by replacing x

�

by
�
x

�

in Eq. (14). Equation (16) im-

plies that the solution of the least-squares approxima-

tion is statistically biased by O(�

2

) according to the

perturbation theorem [5].

However, if we de�ne the unbiased moment matrix

^

M =M � �

2

N ; (17)

where

N =

1

N

N

X

�=1

W

�

V

0

[x

�

]; (18)

we have E[

^

M ] =

�

M . Hence, an unbiased estimator of

n is obtained by the optimization

^

J [n] = (n;

^

Mn)! min : (19)

The solution is obtained as the unit eigenvector of

^

M

for the smallest eigenvalue [5].

6. Renormalization

In order to compute the unbiased moment matrix

^

M

by Eq. (17), we need to know the noise level � precisely,

which is very di�cult as we mentioned earlier. If �

is underestimated, the bias still remains, while if it is

overestimated, bias with opposite sign occurs. In order

to avoid this di�culty, we apply an iterative scheme

called renormalization [6], which iteratively estimates �

so that the smallest eigenvalue of

^

M becomes 0. The

procedure for renormalization is as follows [6], [9], [11]:

1. Let c=0 and W

�

=1, �=1, ..., N .

2. Compute the matricesM and N by Eqs. (14) and

(18), respectively.

3. Compute the smallest eigenvalue � of the matrix

^

M =M � cN ; (20)

and the corresponding unit eigenvector n.

4. If � � 0, return n, c and M . Otherwise, update c

and W

�

as follows:

c c+

�

(n;Nn)

; W

�

 

1

(n; V

0

[x

�

]n)

: (21)

5. Go back to Step 2.

Let
^
n be the returned value of n. An unbiased esti-

mator of the squared noise level �

2

is obtained in the

form

�̂

2

=

c

1� 2=N

: (22)

This is a consequence of the fact that N

^

J [
^
n]=�

2

is sub-

ject to a �

2

distribution with N � 2 degrees of freedom

in the �rst order, where

^

J [
^
n] is the residual of the op-

timization (19). From Eqs. (8), (17) and (18), we can

see that the covariance matrix of the estimator
^
n is

estimated by

V [
^
n] =

�̂

2

N

�

^

M

�

�

2

; (23)

where ( � )

�

2

denotes the generalized inverse computed

after projecting the matrix onto the space of rank 2 by

ignoring the smallest eigenvalue [7]. This operation is

necessary because the smallest eigenvalue of

^

M may

not be strictly 0 if the renormalization iterations are

prematurely terminated.

7. Primary Deviation Pair

Since
^
n is a unit vector, errors in

^
n cannot occur in the

direction of
^
n. This means that V [

^
n] has the following

spectral decomposition [5]:

V [

^

n] = �

1

uu

>

+ �

2

vv

>

; �

1

>

=

�

2

> 0: (24)
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Fig. 2 Image points sequence.

(a)

(b)

Fig. 3 (a) Error distribution. (b) Theoretical bound.

Here, �

1

and �

2

are the eigenvalues of V [
^
n]; u and v

are the corresponding unit eigenvectors orthogonal to

^
n. The vector u indicates the orientation of the most

likely deviation; �

1

is the variance in that direction.

Hence, the reliability of
^
n can be visualized by display-

ing the two lines represented by

n

+

= N [
^
n+

p

�

1

u]; n

�

= N [
^
n�

p

�

1

u]; (25)

where N [ � ] denotes normalization into a unit vector.

We call the two lines the primary deviation pair [9]{

[11].

8. Examples

Figure 2 shows eight collinear points in an image. The

distance between the two end points is assumed to be

40 pixels. We added Gaussian random noise of mean 0

and standard deviation 3 pixels to the x and y coordi-

nates of each point independently.

Let (

�

n;x) = 0 and (

^

n;x) = 0 be the true and

the �tted lines, respectively. Since the deviation of
^
n

from
�
n is orthogonal to

�
n to a �rst approximation,

we projected the di�erence
^
n �

�
n onto the plane per-

pendicular to
�
n for 100 trials, each time using di�erent

noise (Fig. 3(a)). The deviation of a �tted line from the

true line can be described as a superposition of a par-

allel displacement and a rotation around a �xed point.

In Fig. 3(a), the vertical direction indicates the degree

of parallel displacement; the horizontal direction indi-

cates the degree of rotation around the center of the

data points (we placed the coordinate origin arbitrar-

ily). We can see that the error distribution is almost

linear. In Fig. 3(b), the standard deviation in each ori-

entation predicted by the Cramer-Rao lower bound (8)

is indicated by an ellipse, which is nearly degenerated

into a line segment; the aspect ratio (height)/(width)

Fig. 4 An optimally �tted line and its primary deviation pair.

(a) (b)

Fig. 5 (a) An edge segment (15 pixels). (b) An optimally

�tted line and its primary deviation pair.

is about 1:9� 10

�2

. Comparing this with Fig. 3(a), we

can con�rm that the theoretical bound on accuracy is

almost attained.

Figure 4 shows a sequence of points with noise.

A line is �tted by renormalization and drawn in a solid

line; its primary deviation pair is drawn in dashed lines.

We can con�rm that the noise tends to cause a rotation

around the center of the data points.

Figure 5(a) is a real image, in which an edge seg-

ment of 15 pixels detected by an edge operator is shown.

A line is optimally �tted by renormalization and drawn

in a solid line in Fig. 5(b); its primary deviation pair

is drawn in dashed lines. Figure 6 shows the corre-

sponding lines for a smaller edge segment (9 pixels).

Comparing Figs. 5 and 6, we can con�rm that the reli-

ability of line �tting decreases as the length of the edge

segment becomes shorter.

9. Asymptotic Approximation

Suppose the number N of pixels is an odd number. Let

w be the distance between (x

1

; y

1

) and (x

N

; y

N

). Put

x

C

=

0

@

�x

(1+N)=2

�y

(1+N)=2

1

1

A

; (26)

which represents the midpoint. Let u be the unit vec-

tor that indicates the orientation of the line (n;x) = 0.

If f(�x

�

; �y

�

)g, � = 1, ..., N , are approximately equidis-

tant, we have

�
x

�

� x

C

+

w

N � 1

�

��

N + 1

2

�

u: (27)

Suppose the image noise is homogeneous and isotropic

and has the covariance matrix (9). Then, Eq. (8) is
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(a) (b)

Fig. 6 (a) An edge segment (9 pixels). (b) An optimally �tted

line and its primary deviation pair.

approximated by

V [
^
n] �

�

2

N (1 + d

2

)

�

x

C

x

>

C

+

w

2

(N + 1)

12(N � 1)

uu

>

�

�

:

(28)

De�ne the edge density (the number of edge pixels per

unit length) by � = N=w. If the edge segment is close

to the image origin, approximations kx

C

k � 1 and

(x

C

;u) � 0 hold. In the limit N ! 1, the follow-

ing asymptotic expression of Eq. (28) is obtained:

V [
^
n] �

12�

2

�w

3

(1 + d

2

)

�

uu

>

+

12

w

2

x

C

x

>

C

�

�

: (29)

We assume that the image coordinates are scaled in

such a way that the size of the image is of order O(1).

Then, d � 1 and 1 � 12=w

2

. Since u and x

C

are

approximately orthogonal, Eq. (29) is approximated in

the following form:

V [
^
n] �

12�

2

�w

3

uu

>

: (30)

The primary deviation pair is approximated by

n

+

� N [
^
n+

2

p

3�

�

1=2

w

3=2

u];

n

�

� N [
^
n�

2

p

3�

�

1=2

w

3=2

u]: (31)

Eq. (30) plays a fundamental role in evaluating the re-

liability of camera calibration and 3-D reconstruction

based on line �tting [1], [4], [8]. It can be seen from

Eqs. (31) that the �tted line is very likely to pass near

the midpoint of the edge segment. It can also be seen

that the error is approximately proportional to �

�1=2

and w

�3=2

.

10. Concluding Remarks

Introducing a mathematical model of image noise, we

have formalized the problem of �tting a line to point

data as statistical estimation. We have shown that the

reliability of the �tted line can be evaluated quanti-

tatively in the form of the covariance matrix of the

parameters and presented a numerical scheme called

renormalization for computing an optimal �t and at

the same time evaluating its reliability. We have also

presented a scheme for visualizing the reliability of the

�t by means of the primary deviation pair and shown

simulations and real-image examples to illustrate our

method. Finally, we have derived an analytical expres-

sion for the reliability of a line �tted to an edge segment

by using an asymptotic approximation.

Our analysis bears some similarity to what is

known as linear regression in statistics [2], [14]. Its aim

is to discern if one quantity linearly depends on another

and, if so, to quantify the dependence. Mathematically,

one �rst expresses the data value in terms of known

variables, unknown parameters, and random noise and

then infers the unknown parameters from multiple data.

In contrast, the line �tting problem we consider here is

to infer a geometry that constrain the data points, not

to estimate a functional relationship. Because of this,

the analysis is more di�cult than for linear regression.

If the noise distribution is assumed to be homo-

geneous and isotropic, as we did in our examples, the

noise characteristics are symmetric with respect to the

line to be �tted. As a result, statistical bias does not

occur, so accuracy is no longer improved by renormal-

ization. However, the advantage of renormalization is

that an optimal �t and its reliability are obtained by

the same computation irrespective of the noise distribu-

tion. The basic theory presented here can be applied to

curves of other types as well [12]. It can also be applied

to �tting a surface to point data in three dimensions

[9]{[11]. In this sense, this paper serves as a prototype

of a wide range of �tting problems in computer vision

and robotics applications.
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Appendix: Bound on Accuracy

Substituting Eqs. (4) and (7) into Eq. (6) and ignor-

ing terms of order three or higher in �n and �x

�

, we

obtain

J [
�
n+�n] =

N

X

�=1

((�n;

�

x

�

) + (

�

n;�x

�

))

2

(

�

n; V [x

�

]

�

n)

: (A� 1)

Since
^
n is a unit vector, �n must satisfy (

�
n;�n)

= 0 to a �rst approximation. Introducing a La-

grange multiplier � to this constraint, di�erentiating

J [
�
n+�n]�2�(

�
n;�n) with respect to �n and setting

the result 0, we obtain

N

X

�=1

(�n;

�

x

�

) + (

�

n;�x

�

)

(

�

n; V [x

�

]

�

n)

�
x

�

= �
�
n: (A� 2)

Multiplying matrix P

�

n

= I �
�
n
�
n

>

(I is the unit ma-

trix) on both sides and noting that P

�

n

�
x

�

=
�
x

�

and

P

�

n

�
n = 0, we have

 

N

X

�=1

�
x

�

�
x

>

�

(
�
n; V [x

�

]
�
n)

!

�n

+

N

X

�=1

�

�
x

�

�
n

>

(
�
n; V [x

�

]
�
n)

�

�x

�

= 0; (A� 3)

from which we obtain

�n = �V

N

X

�=1

�

�
x

�

�
n

>

(
�
n; V [x

�

]
�
n)

�

�x

�

; (A� 4)

where

V =

 

N

X

�=1

�
x

�

�
x

>

�

(
�
n; V [x

�

]
�
n)

!

�

: (A� 5)

The covariance matrix V [
^
n] of the solution

^
n is evalu-

ated as follows (�

��

is the Kronecker delta):

V [
^
n] = E[�n�n

>

]

= V

0

@

N

X

�;�=1

�
x

�

�
n

>

E[�x

�

�x

�

]
�
n
�
x

>

�

(
�
n; V [x

�

]
�
n)(

�
n; V [x

�

]
�
n)

1

A

V

= V

N

X

�;�=1

�
x

�

�
n

>

�

��

V [x

�

]
�
n
�
x

>

�

(

�

n; V [x

�

]

�

n)(

�

n; V [x

�

]

�

n)

V

= V

N

X

�=1

�
x

�

(
�
n; V [x

�

]
�
n)

�
x

>

�

(
�
n; V [x

�

]
�
n)

2

V

= V

N

X

�=1

�
x

�

�
x

>

�

(
�
n; V [x

�

]
�
n)

V = V V

�

V

= V : (A� 6)

Thus, we obtain Eq. (8).
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