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[PAPER

Optimal Estimation of Three-Dimensional Rotation

*

and Reliability Evaluation

SUMMARY  We discuss optimal rotation estimation from
two sets of 3-D points in the presence of anisotropic and inho-
mogeneous noise. We first present a theoretical accuracy bound
and then give a method that attains that bound, which can be
viewed as describing the reliability of the solution. We also show
that an efficient computational scheme can be obtained by using
quaternions and applying renormalization. Using real stereo im-
ages for 3-D reconstruction, we demonstrate that our method is
superior to the least-squares method and confirm the theoretical
predictions of our theory by applying bootstrap procedure.

key words: 3-D rotation, statistical inference, theoretical accu-
racy bound, renormalization, stereo vision, bootstrap

1. Introduction

Determining a rotational relationship between two sets
of 3-D points is an important task for 3-D object re-
construction and recognition. For example, if we use
stereo vision or range sensing, the 3-D shape can be
reconstructed only for visible surfaces. Hence, we need
to fuse separately reconstructed surfaces into one ob-
ject [2],[14]. For this task, we need to determine the
rigid transformation between two sets of points. If one
set is translated so that its centroid coincides with that
of the other, the problem reduces to estimating a rota-
tion.

Let {r,} and {r.}, @ = 1, ..., N, be the sets of
three-dimensional vectors before and after a rotation,
respectively. A conventional method for determining
the rotation is the following least squares method:

N
3 |7l — Rro|* - min. (1)
a=1

In this paper, ||a|| denotes the norm of a vector a.
The solution can be obtained analytically: Horn [5]
proposed a method using quaternions; Arun et al. [1]
used singular value decomposition; Horn et al. [6] used
polar decomposition. The method of Horn [5] is guar-
anteed to yield a rotation matrix, while the methods of
Arun et al. [1] and Horn et al. [6] may yield an orthogo-
nal matrix of determinant —1. This drawback was later
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remedied by Umeyama [15] by introducing a Lagrange
multiplier for that constraint; Kanatani [9] restated it
from a group-theoretical viewpoint.

From a statistical point of view, the above least-
squares method implicitly assumes the following noise
model:

e Points {r,} are observed without noise, while
the rotated points { Rr, } are observed with noise

{Ar]}.

e The noise {Ar/ } is subject to an isotropic, identi-
cal, and independent Gaussian distribution of zero
mean.

The least-squares solution is optimal for this
model. However, this model is not realistic for 3-D
points reconstructed by stereo vision or range sensing,
since the noise is usually neither isotropic nor identical.
Position uncertainty is larger along the viewing direc-
tion than in the directions perpendicular to it, and it
is generally larger as the distance increases. Also, the
3-D points in both sets suffer noise; it is unreasonable
to assume that noise exists only in one set.

In this paper, we first introduce a realistic noise
model and present a theoretical accuracy bound, which
can be evaluated independently of particular solution
techniques involved. Then, we describe an estima-
tion method that attains the accuracy bound; such a
method alone can be called “optimal”. Since the so-
lution attains the accuracy bound, we can view it as
quantitatively describing the reliability of the solution;
in the past, the reliability issue seems to have attracted
little attention.

The optimal method turns out to be highly non-
linear. However, we show that an efficient computa-
tional scheme can be obtained by using quanternions
and applying the renormalization technique proposed
by Kanatani [10]. Using real stereo images for 3-D re-
construction, we demonstrate that our method is supe-
rior to the least-squares method and confirm the theo-
retical predictions of our theory by applying bootstrap
procedure [3].

2. Theoretical Analysis

Let 74 and 7/, @ = 1, ..., N, denote the true 3-D po-
sitions before and after a rotation, respectively, and let
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T4 and 7/, be their respective positions observed in the
presense of noise. We write

TQZ?Q+ATQ/7 Tla:’;la_FAT::M (2)

and assume that Ar, and Ar/, are independent Gaus-
sian random variables of mean zero. Their covariance
matrices are defined by

Virs] = E[Ar,Ar]], V[ = E[Ar),Ar] 7], (3)

where E[-] denotes expectation and the superscript T
denotes transpose. The problem is now formally stated
as follows:

Problem 1: Estimate the rotation matrix R that sat-
isfies

¥, = Rr,, a=1,..,N, (4)

from the noisy data {r,} and {7/ }.

In practice, it is often very difficult to predict the
covariance matrices V[ro| and V[r, | precisely. In many
cases, however, we can estimate their relative scales. If
the 3-D positions are computed by stereo vision for ex-
ample, the distribution of errors can be computed up
to scale from the geometry of the camera configura-
tion [11]. In view of this, we decompose the covariance
matrices into an unknown constant € and known matri-
ces Vy[r,] and Vj[rl] in the form

Vra] = €Vi[ra], V[rl] = Volrl]. (5)

We call € the noise level and Vy[r,] and Vy[r’] the nor-
malized covariance matrices.

The reliability of an estimator is usually evaluated
by its covariance matrix. However, we cannot define the
covariance matrix of a rotation in the usual sense, since
arotation is an element of the group of rotations SO(3),
which is a three-dimensional Lie group. Let R be an
estimator of the true rotation R. Let I, and AQ be,
respectively, the axis (unit vector) and the angle of the

relative rotation RRT. We define a three-dimensional
vector

AR = AL, (6)

and regard this as the measure of deviation of the es-
timator R from the true rotation R. We define the
covariance matrix of R by

V[R] = E[AQRART]. (7)

The group of rotations SO(3) has the topology of
the three-dimensional projective space P2, which is lo-
cally homeomorphic to a 3-sphere S? [7]. If the noise
is small, the deviation A2 is also small and identi-
fied with an element of the Lie algebra so(3) of SO(3).
This is equivalent to regarding errors as occurring in
the tangent space to the 3-sphere S% at R. Hence, we
can apply the theory of Kanatani (Sect. 14.4.3 of [10])

to obtain a theoretical accuracy bound, which he called
the Cramer-Rao lower bound in analogy with the corre-
sponding bound in traditional statistics. In the present
case, it reduces to

VR] - ¢ <Z(R1—~a) X W, x (Rf&)> L ®)
W, = (RVlr]R +%ilr]) (9)

Here, A = B means that A — B is a positive semi-
definite symmetric matrix. The product v X A X v of
a vector uw = (u;) and a matrix A = (4;;) is the ma-
trix whose (ij) element is Zi)hm’n:l EiklEjmnUkUmAln,
where ;1 is the Eddington epsilon, taking 1 when (ijk)
is an even permutation of (123), —1 when it is an odd
permutation of (123), and 0 otherwise. The bound (8)
is derived by assuming that perturbations in the angle
of rotation are very small as compared to w, which is
the case in many practical applications. If the noise is
isotropic and identical, we have Vy[r,] = Vo[ry,] = I
(unit matrix). In this case, Eq. (8) corresponds to the
result obtained by Oliensis [13].

3. Optimal Estimation

Applying the general theory of Kanatani (Sect. 14.5.2
of [10]), we can obtain a computational scheme for solv-
ing Problem 1 in such a way that the resulting solution
attains the accuracy bound (8) in the first order (i.e., ig-
noring terms of O(e*)): we minimize the sum of squared
Mahalanobis distances, i.e.,

N
J = Z(T" —Po, Vo[ra] H(ra — 7a))
a=1
N
+ ) (= T Valra] Tl — 7))
a=1
— min, (10)

subject to the constraint (4). Throughout this paper,
(a,b) denotes the inner product of vectors a and b.
Equation (10) involves the normalized covariance ma-
trices Vy[r,] and Vy[rl] alone; no knowledge of the
noise level € is required. Kanatani [10] called (10) maa-
imum likelihood estimation.

If R is fixed, the values of 7, and 7/, that minimize
J subject to Eq. (4) can be obtained analytically by
introducing Lagrange multipliers. The resulting min-
imum is then minimized with respect to R, and the
problem reduces to

N
J= Z(Tla — Rr,,W,(r!, — Rr,)) = min, (11)
a=1

where W, is the value of W, obtained by replacing
the true value R by variable R in Eq. (9).
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If Vo[ra] = Vo[rl] = I, Eq. (11) reduces to Eq. (1).
This proves that the least-squares method (1) is opti-
mal for isotropic and identical noise, even if 7, and 7/,
both contain noise. This corresponds to the result of
Goryn and Hein [4].

The unknown noise level € can be estimated a pos-
teriori. Let J be the resitdual, i.e., the minimum of J.
Since J/e? is subject to a x? distribution with 3(N —1)
degrees of freedom in the first order (Sect. 7.1.4 of [10]),
we obtain an unbiased estimator of the squared noise
level €2 in the following form:

) J

€ =3N-1) (12)

The minimization (11) must be conducted subject
to the constraint that R be a rotation matrix. This
means we need to parameterize R appropriately and
do numerical search in the parameter space. Such a
technique is often inefficient because it requires eval-
uation of the derivatives in complicated forms. Here,
we adopt a scheme called renormalization proposed by
Kanatani [10]. Although it requires eigenvalue compu-
tation, it is efficient when the dimension of the problem
is small. However, renormalization works with linear
constraints, but our constraint is nonlinear, so it can-
not be applied directly. In the following, we show that
the constraint can be converted into a linear equation
in terms of quaternions.

4. Computational Scheme

Consider a rotation of angle Q around axis ! (unit vec-
tor). Define a scalar gy and a three-dimensional vector

q by

qo = COS —,

5 q) = lsin % (13)

Note that ¢f + [|qy||* = 1 by definition. Conversely, a
scalar go and a three-dimensional vector qp such that
a + ||q1||2 = 1 uniquely determine an axis ! and an-
gle Q (0 £ Q < 7) of a rotation. Hence, a rotation is
uniquely represented by a pair {qo, qq}, which is called
a quaternion [7].

Suppose a point 7, undergoes a rotation R of an-
gle  around axis | and moves to a new position 7/,.
It can be seen from the geometry of rotation that the
displacement 7' — 7 and the midpoint (7 + 7')/2 are
related by

(14)

Solving this for #/ in terms of 7, we can obtain a relation
equivalent to Eq. (4) expressed in terms of the angle )
and axis I of rotation R. Hence, Eq. (14) is equivalent
to Eq. (4). Multiplying Eq. (14) by cos(2/2) on both
sides, we obtain after some manipulations
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/

Q0 (7Y —Ta) + (T4, + 7o) X q1 = 0. (15)

Define a 3 X 4 matrix X, and a four-dimensional
unit vector q by

X, ( ro—re  (rh4re)xI ) (16)

1= (3) w

where the product a x A of a vector @ and a matrix A
is the matrix whose columns are vector products of a
and the corresponding columns of A. Let X, be the
value of X, obtained by replacing r, and 7/, by 7,
and 7/, respectively, in Eq. (16). Then, Eq. (15) can
be expressed as a linear equation in q in the form

X.q=0. (18)

Now the problem is to minimize Eq. (10) subject
to the constraint (18). Introducing Lagrange multipli-
ers for this constraint and eliminating 7, and 7/, we
can reduce the problem to the following minimization

with respect to q:
J=(g,Mq) — min. (19)

Here, M is a 4 x 4 matrix defined by

N
M=> XW.,X.,, (20)

a=1

where W, is a 3 X 3 matrix given by

Wa = (a0® (Volral + Volrl)
— 2005lay x (Vofra] — Valrl )
+ap x (Golra] + Vol x 1) - (21)

Here, the operation S[-] designates symmetrization:
S[A] = (A+AT))2.

If noise is isotropic and identical, Eq. (19) reduces
to the method implied by Zhang and Faugeras [17] and
Weng et al. [16]. In this sense, Eq. (19) can also be
viewed as an extension of their methods to cope with
anisotropic noise.

Since the constraint (18) is linear, the renormaliza-
tion technique of Kanatani [10] can be applied to the
optimization (19). In order to do so, we first evaluate
the bias of the moment matrix M defined by Eq. (20).

Let X, be the true value of X, given by Eq. (16).
If we write X, = X, + AX,, the error term AX, is
given by

Axaz(m;—ma (Ar'a+Ara)xI). (22)

Similarly, let M be the true value of M given by
Eq. (20), and write M = M + AM. Substituting
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Eq. (22) into this, we see that the error term AM has
the following expression:
N
AM =Y (AXIWQXQ +XTWLAX,

a=1
+ AXQTWQAXQ) . (23)

It follows that the moment matrix M has the following
statistical bias.

E[AM] = ZN: E[AX W ,AX,]

a=1

_ i g (Ari=Are, Wa(Ari=Ar,))
- —~ —(AT AP, ) x W o (AT, —Ar,,)
(AP, +Aro ) x W o X (AT, 4+ Ar,)

Define a 4 x 4 matrix IN as follows:

— (ATL 4 A7) X W o (AT —Ary)) )], (24)

N=(n ) (25)
" e ijl(wa;vo[ra] FTalrh). (26)
n= —étg AW (Gl =Tl 27)
N' = g[wa X (Volral + Valrh)l (28)

The inner product (A; B) of matrices A = (A4;;) and B
= (By;) is defined by (A; B) = ¥°; ;_, A;jB;j. The ex-
terior product [A x B] is the matrix whose (i, j) element
is Zz,l,m,nzl €ikl€ jmnAkmBin. The operation A[-] des-
ignates antisymmetrization: A[A] = (A — AT)/2. For
an antisymmetric matrix C = (C};), we define t3[C] =
(C32,C13,Ca1)T. Then, the bias E[AM] is expressed
as follows:

E[AM] = ¢*N. (29)
Applying the recipe of Kanatani [10], we obtain the
following renormalization procedure:

1. From the data {r,} and {7/}, compute X,, a =
1, ..., N, by Eq. (16).

Set c=0and W,=I,a=1,.. N.
Compute the moment matrix M by Eq. (20).
Compute the matrix N by Eq. (25).

ool

Compute the smallest eigenvalue A of matrix
M =M —cN (30)

and the corresponding unit eigenvector q =
(% @1 & Q3)T-

6. If |\| = 0, return q and stop. Otherwise, update ¢

(b) After rotation.

Fig. 1  Stereo images.

and W, as follows and go back to Step 3:

—c+ A (31)
c c+ ———,
(¢, Nq)

W e (a0 (Volral+Valrs))
~ 2q0Slayx (Vilra] = Vilr, )

+ax (Volra+Volri)) <) - (32)

Here, we put q1 = (@1 g2 Q3)T-

5. Experiments

We conducted experiments for 3-D data obtained by
stereo vision. Figures 1(a) and (b) are pairs of stereo
images of an object before and after a rigid rotation
around a vertical axis. We manually selected the fea-
ture points marked by black dots and computed their
3-D positions 7, and normalized covariance matrices
Vo[ra] by the method described in [11], assuming that
image noise was isotropic and homogeneous (but the
resulting errors in the reconstructed 3-D positions were
highly anisotropic and inhomogeneous). We thus ob-
tained two sets of 3-D points.

After translating one set so that its centroid co-
incides with that of the other, we computed the rota-
tion by renormalization. In our experiment, we used
|A| < 107® as the convergence criterion; we have con-
firmed that the result is not affected if it is in the range
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Table 1  Estimated rotations.
Axis Angle
Renormalization (0.9999, 0.0003,0.0123) 29.769°
Least squares (0.9985, —0.0545, 0.0040) | 26.790°
True values (1.0000, 0.0000, 0.0000) 30.000°

(a) Renormalization. (b) Least squares.

Fig. 2

Error distribution.

10719 ~ 1075. As a comparison, we also tried the con-
ventional least-squares method (the schemes described
in [1],[5],[6],[9], [15]-[17] all yield the same solution).
Table 1 lists the computed values together with the
true values. We can see from this that our method
considerably improves accuracy as compared with the
least-squares method. However, this is for just one in-
stance. In order to assert the superiority of our method,
we need to examine the reliability of the solution for all
possible occurrences of noise.

We evaluated the reliability of the computed so-
lution R by applying a procedure called (parametric)
bootstrap [3]. In the present case, we do not know the
true positions {7,}, but we know the true rotation
R (see Table 1). So, we first estimate {%,} by opti-
mally correcting the data {r,} and {7/} into {7, } and
{#1 }, respectively, so that the constraint #/, = R#,
is exactly satisfied. This optimal correction is done as

follows' [10]:

';"oz =7+t ‘/E)[TOJ]RTWCY(T:X - RTC’)’ (33)
- _ =T -t
W, = (RVE)[’I’Q]R + Volr! ) -

. (34)

Estimating the variance €2 by Eq. (12), we gener-
ated random independent Gaussian noise that has the
estimated variance é? and added it to the projections of
the corrected positions {#,} and {#,} (= {R#,}) on
the image planes of the left and the right cameras in-
dependently. Then, we computed the rotation R* and
the error vector A§2" in the form given by Eq. (6).

Fiure 2(a) shows three-dimensional plots of the er-
ror vector A£2” for 100 trials. The ellipsoid in the figure
is defined by

(A", VIR T'AQ") =1, (35)

PIf the true value R is not known, its estimate R is used.

1251
Table 2  Bootstrap errors and the theoretical lower bound.
Eg 59
Renormalization | 0.0277° | 1.1445°
Least squares 0.0468° | 3.0868°
Lower bound 0° 1.1041°

where VA[IA{] is the covariance matrix computed by ap-
proximating R, {7,}, and € by R, {?a}, and €2, re-
spectively, on the right-hand side of eq. (8). This el-
lipsoid indicates the standard deviation of the errors in
each orientation [10]; the cube in the figure is displayed
as a reference. Figure 2(b) is the corresponding figure
for the least-squares method (the ellipsoid and the cube
are the same as in Fig. 2(a)).

Comparing Figs. 2(a) and (b), we can confirm that
our method improves the accuracy of the solution con-
siderably as compared with the least-squares method.
We can also see that errors for our method distribute
around the ellipsoid defined by Eq. (35), indicating
that our method already attains the theretical accuracy
bound; no further improvement is possible.

The above visual observation can be given quanti-
tative measures. We define the bootstrap mean mg, and

the bootstrap covariance matriz V[R*] by

B
* 1 *
mh = 52 A (36)
b=1
. 1&
VIR] = EZ(AQZ —mg)(AQL; —my)T, (37)

o~
Il
-

where B is the number of bootstrap samples and A2}
is the error vector for the bth sample. The bootstrap
mean error Ef and the bootstrap standard deviation
S, are defined by

Ey =|lmgl, Sq = VIR, (38)

where tr A denotes the trace of matrix A. The corre-
sponding standard deviation for the (estimated) the-

oretical lower bound V[R] is y/trV[R]. Table 2 lists
the values of Eg, and S§ for our method and the least-
squares method (B = 2000) together with their theo-
retical lower bounds. We see from this that although
the mean errors are very small for both methods, the
standard deviation of our solution is almost 1/3 that
of the least-squares solution and very close to the theo-
retical lower bound. The difference is due to statistical
fluctuations; it also depends on the random numbers
used for evaluation.

Thus, we can confirm that the reliability of the
solution computed by our method can indeed be evalu-
ated by (approximately) evaluating the theoretical ac-
curacy bound given by Eq. (8).
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6. Concluding Remarks

We have discussed optimal rotation estimation from
two sets of 3-D points in the presence of anisotropic
and inhomogeneous noise. We have first presented a
theoretical accuracy bound defined independently of so-
lution techniques and then given a method that attains
it; our method is truly “optimal” in that sense. This
optimal method is highly nonlinear, but we have shown
that an efficient computational scheme can be obtained
by using quaternions and applying the renormalization
technique.

Since the solution attains the accuracy bound, we
can view it as describing the reliability of the solution;
the computation does not require any knowledge about
the noise magnitude. Using real stereo images for 3-D
reconstruction, we have demonstrated that our method
is considerably more accurate than the conventional
least-squares method. We have also confirmed the the-
oretical predictions of our theory by applying bootstrap
procedure.
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