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SUMMARY Introducing a mathematical model of noise in

stereo images, we propose a new criterion for intelligent statisti-

cal inference about the scene we are viewing by using the geomet-

ric information criterion (geometric AIC ). Using synthetic and

real-image experiments, we demonstrate that a robot can test

whether or not the object is located very far away or the object

is a planar surface without using any knowledge about the noise

magnitude or any empirically adjustable thresholds.

key words: AIC, testing of hypotheses, model selection, stereo

vision, in�nity test, planarity test.

1. Introduction

Stereo vision is one of the most widely used means of

sensing for autonomous robot navigation, and various

techniques have been proposed for correspondence de-

tection between the two images [3], [13]. The reliability

of the reconstructed 3-D shape has also been studied by

introducing a statistical model of image noise [2], [8]{

[11]. However, no attempts seem to have been made at

intelligent statistical inference about the scene based on

stereo images.

For example, the 3-D shape of an object can be

accurately reconstructed from stereo images if the ob-

ject is known to be a planar surface [8]. Hence, if a

robot can infer that the object is a planar surface, it

can produce an accurate planar surface by using that

knowledge. This is very important for robots working

indoors, since indoor scenes have many planar objects

(walls, ceilings, 
oors, tables, etc.).

On the other hand, the 3-D reconstruction is un-

reliable if the object is very far away. If a robot can

infer that the object is too far away, it can output, say,

a warning message, telling us that the disparity is too

short for reliable 3-D reconstruction. This is very im-

portant for a stereo system with a short baseline, e.g.,

when small cameras are attached to a robot hand.

A naive solution to these problems is �rst recon-

structing the 3-D shape and deciding that the object

is planar if the reconstructed shape is approximately

planar within a speci�ed threshold or the object is too
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away if the reconstructed position is farther a way than

a speci�ed threshold. But how can we set these thresh-

olds?

The thresholds should be high if the images are

accurate and low if the images are not accurate. They

also depend on the resolution of the cameras, the shape

of the objects, the lighting condition, the number of

corresponding points, the accuracy of the image pro-

cessing techniques involved, and many other factors.

Hence, even if we �nd an appropriate threshold value

after repeating many trial-and-error experiments, that

value becomes meaningless in a new environment.

In this paper, we present an environment-

independent criterion for intelligent statistical inference

without introducing any thresholds to be adjusted empir-

ically. It is obtained by applying the geometric infor-

mation criterion (or geometric AIC for short) [5], [7].

We show synthetic and real-image examples to illus-

trate our method.

2. Statistical Model of Image Noise

We de�ne an XY Z camera coordinate system in such a

way that the origin O is at the center of the lens and the

Z-axis is in the direction of the optical axis. With an

appropriate scaling, the image plane can be identi�ed

with the plane Z = 1, on which an xy image coordinate

system is de�ned in such a way that the origin o is on

the Z-axis and the x- and y-axes are parallel to the X-

and Y -axes, respectively.

For a stereo system, we de�ne a reference coordi-

nate system with respect to the �rst camera and place

the second camera in a position obtained by translating

the �rst camera by vector h and rotating it around the

center of the lens by matrix R. We call fh, Rg the

motion parameters (Fig. 1).

Let (x; y) be the image coordinates of a feature

point projected onto the image plane of the �rst cam-

era, and (x

0

; y

0

) those for the second camera. We use the

following three-dimensional vectors to represent them

(the superscript > denotes transpose):

x = (x; y; 1)

>

; x

0

= (x

0

; y

0

; 1)

>

: (1)

Let fx, x

0

g be a corresponding pair. Their uncer-

tainty can be described by their covariance matrices

V [x] and V [x

0

] by regarding x and x

0

as independent
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Fig. 1 Camera imaging geometry and the motion parameters

of a stereo system.

Gaussian random variables. The form of the covari-

ance matrices depend on the matching method of the

two images. Matthies and Shafer [10] discussed this

problem in detail and gave uncertainty models for var-

ious types of matching methods. In general, the abso-

lute magnitude of the uncertainty is di�cult to predict

a priori, but its geometric characteristics, such as ho-

mogeneity/inhomogeneity and isotropy/anisotropy can

be relatively easily predicted. Here, we assume that

the covariance matrices are known only up to scale and

write

V [x] = �

2

V

0

[x]; V [x

0

] = �

2

V

0

[x

0

]: (2)

The constant �, which indicates the average magnitude

of the image noise, is assumed unknown; we call it the

noise level . The matrices V

0

[x] and V

0

[x

0

] indicate in

which orientation the deviation is likely to occur; they

are assumed known and called the normalized covari-

ance matrices. Since the third components of x and x

0

are 1, they are singular matrices of rank 2.

3. General Stereo Vision

Ideally, vectors x, Rx

0

, and h should be coplanar

(Fig. 1), so they should satisfy the following epipolar

equation [3], [4], [13]:

jx;h;Rx

0

j = 0: (3)

In this paper, ja; b; cj denotes the scalar triple product

of vectors a, b, and c.

Let fx

�

, x

0

�

g, � = 1, ..., N , represent the cor-

responding points, and let V

0

[x

�

] and V

0

[x

0

�

] be their

normalized covariance matrices. Since they do not nec-

essarily satisfy Eq. (3), we correct them so that the cor-

rected positions f
^
x

�

,
^
x

0

�

g satisfy Eq. (3). An optimal

correction in the sense of maximum likelihood estima-

tion is obtained by minimizing the sum of the squared

Mahalanobis distances

J =

N

X

�=1

(x

�

�
^
x

�

; V

0

[x

�

]

�

(x

�

�
^
x

�

))

+

N

X

�=1

(x

0

�

�
^
x

0

�

; V

0

[x

0

�

]

�

(x

0

�

�
^
x

0

�

))!min (4)

under the constraint that fx̂

�

, x̂

0

�

g satisfy Eq. (3).

Here, V

0

[x

�

]

�

and V

0

[x

0

�

]

�

are the (Moore-Penrose)

generalized inverses of V

0

[x

�

] and V

0

[x

0

�

], respectively.

In this paper, (a; b) denotes the inner product of vec-

tors a and b.

It can be shown that the minimum value of J ,

which we call simply the residual , is given as follows

[5]:

^

J=

N

X

�=1

(x

�

;Gx

0

�

)

2

(x

0

�

;G

>

V

0

[x

�

]Gx

0

�

)+(x

�

;GV

0

[x

0

�

]G

>

x

�

)

:

(5)

Here, G is the essential matrix [3], [4], [13] de�ned by

G = h �R; (6)

where the right-hand side denotes the matrix de�ned

by the vector product of h and each column of R.

4. In�nitely Far Away Scene

Suppose fx, x

0

g are images of a feature point that be-

longs to an object located practically in�nitely far away

(e.g., a mountain, a boat on the sea, or an airplane in

the sky). Ideally, the following equation must be satis-

�ed [5]:

x�Rx

0

= 0: (7)

The observed positions fx

�

, x

0

�

g do not necessarily sat-

isfy this equation. So, we correct them so that the cor-

rected positions fx̂

�

, x̂

0

�

g satisfy Eq. (7). An optimal

correction in the sense of maximum likelihood estima-

tion is obtained by the minimization (4) under the con-

straint that fx̂

�

, x̂

0

�

g satisfy Eq. (7), and the residual

is given as follows [5]:

^

J

1

=

N

X

�=1

(x

�

�Rx

0

�

;W

�

(x

�

�Rx

0

�

)): (8)

Here,W

�

is a matrix de�ned by

W

�

=

�

(Rx

0

�

)� V

0

[x

�

]� (Rx

0

�

)

+ x

�

�RV

0

[x

0

�

]R

>

� x

�

�

�

2

: (9)

For a vector a and a matrix U , the product a�U�a is

an abbreviation of (a�U)(a�I)

>

, where I is the unit

matrix. The symbol ( � )

�

2

denotes generalized inverse

computed after projecting the matrix onto a matrix of

rank 2 by ignoring the smallest eigenvalue [5]. This op-

eration is necessary to prevent numerical instability of

the computation [5].

5. Planar Surface Scene

Suppose fx, x

0

g are images of a feature point on a pla-

nar surface. Let n be the unit normal to the surface,
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and d its distance (positive in the direction n) from the

origin O. We call fn, dg the surface parameters. Ide-

ally, the following equation must be satis�ed [4], [5], [8]:

x

0

�Ax = 0; A = R

>

(hn

>

� dI): (10)

So, we correct the observed positions fx

�

, x

0

�

g in such

a way that the corrected positions fx̂

�

, x̂

0

�

g satisfy

Eqs. (10) for some surface parameters fn, dg. An op-

timal correction of fx

�

, x

0

�

g and estimation of fn, dg

in the sense of maximum likelihood estimation can be

done by the minimization (4). This computation can be

e�ciently done by an iterative procedure called renor-

malization [8]. The residual of the optimization (4) is

given as follows [5]:

^

J

�

=

N

X

�=1

(x

0

�

�

^

Ax

�

;W

�

(x

0

�

�

^

Ax

�

)): (11)

Here,

^

A is the matrix obtained by substituting the sur-

face parameters fn̂

^

dg computed by renormalization

into the second of Eqs. (10), and W

�

is a matrix de-

�ned by

W

�

=

�

x

0

�

�

^

AV

0

[x

�

]

^

A

>

� x

0

�

+ (

^

Ax

�

)� V

0

[x

0

�

]� (

^

Ax

�

)

�

�

2

: (12)

6. Geometric Model

3-D reconstruction by stereo vision can be generalized

in abstract terms as follows. A pair of corresponding

vectors fx, x

0

g can be identi�ed with a six-dimensional

direct sum vector x � x

0

. Since the third components

of x and x

0

are both 1, the vector x�x

0

is constrained

to be in the four-dimensional a�ne subspace

X = f(x; y; 1; x

0

; y

0

; 1)

>

jx; y; x

0

; y

0

2 Rg � R

6

; (13)

which we call the data space (R denotes the set of real

numbers).

Suppose there exists a constraint on the shape

and/or location of the object that can be expressed as

L equations parameterized by an n-dimensional vector

u in the form

F

(k)

(x;x

0

;u) = 0; k = 1; :::; L: (14)

As equations of fx, x

0

g, these L equations need not be

algebraically independent

y

. We call the number r of in-

dependent equations the rank of the constraint. Equa-

tion (14) then de�nes a manifold S of codimension (=

the di�erence between the dimension of the space, in

y

In order to avoid pathological cases, we need to assume

that each of the L equations de�nes a manifold of codi-

mension 1 in the data space X in such a way that the L

manifolds intersect each other transversally . See [5] for the

details.

x xα α’

x xα α’
^ ^

S

Fig. 2 The model S is optimally �tted to the data points, and

the data points are optimally projected onto it.

this case X , and the dimension of the manifold) r in

the data space X . We call S the (geometric) model.

The domain U of the vector u that parameterizes the

constraint is called the parameter space. If the param-

eter space U is an n

0

-dimensional manifold in R

n

, we

say that the model S has n

0

degrees of freedom.

Given N corresponding points fx

�

, x

0

�

g, � = 1,

..., N , in the presence of noise, there may not exist

any instance of S that exactly passes through all the

N points x

�

� x

0

�

2 X . The 3-D reconstruction by

stereo vision can be formally stated as the problem of

estimating the true positions f�x

�

, �x

0

�

g, � = 1, ..., N ,

and the true value �u of the parameter that satisfy

F

(k)

(
�
x

�

;
�
x

0

�

;
�
u) = 0; k = 1; :::; L; (15)

for � = 1, ..., N from the noisy data fx

�

, x

0

�

g.

If we write the positions into which fx

�

, x

0

�

g are

to be corrected as f
^
x

�

,
^
x

0

�

g, the maximum likelihood

solution of the above problem is obtained by the opti-

mization (4) under the constraint that x

�

�x

0

�

2 S . In

geometric terms, this is equivalent to �tting the model

S optimally by adjusting the parameter u 2 U (Fig. 2).

Let

^

S be the resulting optimal �t, which is the

maximum likelihood estimator of the model S. For a

�xed parameter value u, the maximum likelihood es-

timators of f
�
x

�

,
�
x

0

�

g are obtained by projecting each

direct sum point x

�

�x

0

�

2 X onto S. Let x̂

�

� x̂

0

�

be

the resulting optimal projection, and let

^

J be the resid-

ual of the function J obtained by substituting f
^
x

�

,
^
x

0

�

g

for f
�
x

�

,
�
x

0

�

g. It can be proved that

^

J=�

2

is subject to

a �

2

distribution with rN � n

0

degrees of freedom in

the �rst order [5]. Hence, an unbiased estimator of the

squared noise level �

2

is obtained in the following form:

�̂

2

=

^

J

rN � n

0

(16)

7. Geometric Information Criterion

A good model should explain the observed data fx

�

,

x

0

�

g, � = 1, ..., N , well, which implies that the resid-

ual

^

J should be small. However, since

^

J=�

2

is subject

to a �

2

distribution with rN � n

0

degrees of freedom,

the residual

^

J becomes smaller as r decreases and n

0

increases. In other words, the residual

^

J can be made

arbitrarily small by reducing the codimension r (i.e.,
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increasing the dimension) of S and increasing the num-

ber of free parameters n

0

of S . Such a model can only

explains the current data which happen to be observed;

there is no guarantee that it could explain the data if

the noise occurred di�erently.

This observation implies that the \goodness" of a

model should be measured by its \predicting capabil-

ity" [1]. Let fx

�

�

, x

�

�

0

g be future data that have the

same probability distribution as the current data fx

�

,

x

0

�

g and are independent of fx

�

, x

0

�

g. The residual for

the maximum likelihood estimators fx̂

�

, x̂

0

�

g, which

are computed from the current data fx

�

, x

0

�

g, with

respect to the future data fx

�

�

, x

�

�

0

g is

^

J

�

=

N

X

�=1

(x

�

�

�
^
x

�

; V

0

[x

�

]

�

(x

�

�

�
^
x

�

))

+

N

X

�=1

(x

�

�

0

� x̂

0

�

; V

0

[x

0

�

]

�

(x

�

�

0

� x̂

0

�

)): (17)

It can be shown that

^

J is smaller than

^

J

�

by 2(pN+n

0

)

in expectation, where p = 4� r is the dimension of the

manifold S [5]. Hence, the geometric information crite-

rion (or geometric AIC for short) is de�ned as follows

[5]:

AIC(S) =

^

J + 2(pN + n

0

)�

2

: (18)

Let S

1

be a model of dimension p

1

and codimen-

sion r

1

with n

0

1

degrees of freedom, and S

2

a model of

dimension p

2

and codimension r

2

with n

0

2

degrees of

freedom. Suppose model S

2

is obtained by adding an

additional constraint to model S

1

. We say that model

S

2

is stronger than model S

1

, or model S

1

is weaker

than model S

2

, and write

S

2

� S

1

: (19)

Let

^

J

1

and

^

J

2

be the residuals of S

1

and S

2

, respec-

tively. If model S

1

is correct, the squared noise level

�

2

is estimated by Eq. (16). Substituting it into the

expression for the geometric AIC, we obtain

AIC(S

1

) =

^

J

1

+

2(p

1

N + n

0

1

)

r

1

N � n

0

1

^

J

1

; (20)

AIC(S

2

) =

^

J

2

+

2(p

2

N + n

0

2

)

r

1

N � n

0

1

^

J

1

: (21)

If AIC(S

2

) < AIC(S

1

), the predicting capability is ex-

pected to increase by replacing the general model S

1

by

the strong model S

2

. Recalling that the geometric AIC

is an estimator of the expected residual (see Eq. (17)),

we compute the square root of the ratio of Eqs. (20)

and (21):

K=

v

u

u

t

r

1

N�n

0

1

(2p

1

+r

1

)N+n

0

1

 

^

J

2

^

J

1

+

2(p

2

N+n

0

2

)

r

1

N�n

0

1

!

: (22)

This quantity describes the ratio of the expected de-

viation from model S

2

to the expected deviation from

model S

1

. It follows that if K < 1, model S

2

is prefer-

able to S

1

with regard to the predicting capability. This

criterion requires no knowledge about the noise magni-

tude and involves no empirically adjustable thresholds.

8. Model Selection for Stereo Vision

We now consider the following three models:

1. General model: If we observe N corresponding

points fx

�

, x

0

�

g and if we do not have any knowl-

edge about the structure of the scene, the con-

straint is solely the epipolar equation (3), which

de�nes a three-dimensional manifold S in the four-

dimensional data space X . Since no free parame-

ters are involved, model S has zero degrees of free-

dom.

2. In�nitely far away model: If all the feature points

are located in�nitely far away, the constraint is

given by Eq. (7). Only two of its three compo-

nent equations are independent, so it de�nes a two-

dimensional manifold S

1

in X . Since no free pa-

rameters are involved, model S

1

has zero degrees

of freedom.

3. Planar surface model : If all the feature points

are coplanar in the scene, the constraint is given

by Eqs. (10). Only two of its three component

equations are independent, so it de�nes a two-

dimensional manifold S

�

in X . The unknown sur-

face parameters fn, dg have �ve degrees of free-

dom.

Since the general model S applies irrespective of the

structure of the scene, the object is judged to be lo-

cated in�nitely far away if

K

1

=

v

u

u

t

1

7

 

^

J

1

^

J

+ 4

!

< 1; (23)

and to be planar if

K

�

=

v

u

u

t

1

7

 

^

J

�

^

J

+

4N + 6

N

!

< 1: (24)

The procedure for automatic inference about the

scene is summarized as follows:

1. Detect corresponding feature points over the two

images by a conventional method.

2. Compute the residual

^

J by Eq. (5).

3. Compute the residual

^

J

1

by Eq. (8), and judge
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Fig. 3 Real stereo images.

Fig. 4 Reconstructed planar and non-planar shapes.

that the object is located in�nitely far away if K

1

< 1.

4. Compute the surface parameters f
^
n; dg of an op-

timally �tted plane by renormalization [8].

5. Compute the residual

^

J

�

by Eq. (11), and judge

that the object is planar if K

�

< 1.

9. Examples

Figure 3 shows real stereo images. By using the cor-

ners of the windows as feature points, we can judge

that the object is not in�nitely far away (K

1

= 3.09)

but has a planar shape (K

�

= 0.86). The 3-D shapes

reconstructed by using the general model and the pla-

nar surface model are superimposed in Fig. 4. The

processing time for the planarity test and the in�nity

test was 0.7 seconds and 0.3 seconds, respectively, on

JCC JS5/70 (SUN SPARC station 5 compatible).

Placing a planar grid in front of the �rst camera,

we simulated a stereo system by translating and rotat-

ing the second camera in such a way that the grid was

always viewed in the center of the frame (Fig. 5). Gaus-

sian random noise of standard deviation � pixels was

added to the x and y coordinates of each grid point in-

dependently and conducted the in�nity test 100 times,

each time using di�erent noise. Figure 6 shows the per-

centage of the instances for which the grid is judged to

be in�nitely far away. We can see that the threshold of

the judgment is automatically adjusted to the noise.

Next, we �xed the baseline and de�ned two pla-

nar grids hinged together with angle �� � (Fig. 7). We

conducted the planarity test 100 times for each angle �,

adding random noise in the same way. Figure 8 shows

the percentage of the instances for which the grid is

h

Fig. 5 In�nity test

Fig. 6 Percentage of the instances judged to be in�nitely far

away.

judged to be planar. Again, the threshold is automati-

cally adjusted to the noise.

Figure 9 shows one example of noisy stereo im-

ages for � = 20

�

and � = 1 pixel, and the object was

judged to be planar (K

�

= 0.94). Figures 10(a) and

(b) show the reconstructed shapes by the usual method;

Figures 10(c) and (d) show the reconstructed shapes by

our method.

10. Concluding Remarks

Introducing a mathematical model of noise in stereo im-

ages, we have proposed a new criterion for intelligent

statistical inference about the scene we are viewing by

using the geometric information criterion (geometric

AIC ). Using synthetic and real-image experiments, we

have demonstrated that a robot can test whether or

not the object is located very far away or the object is

a planar surface without using any knowledge about the

noise magnitude or any empirically adjustable thresh-

olds.

In this paper, we have considered only the in�nitely

far away model and the planar surface model as alterna-

tives to the general model, but we can consider various

other models such as a quadratic surface model and a

polyhedron model.

The principle described here can be applied to ac-

tive stereo vision for automatically adjusting the base-

line length so that the resulting disparity is su�cient

for reliable 3-D reconstruction. It can also be applied to

automatic singularity detection in motion analysis [6],

intelligent CAD interface [12], segmentation of curves

and surfaces, and many other problems where geomet-
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Fig. 7 Planarity test.

Fig. 8 Percentage of the instances judged to be planar.

ric inference is involved.
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