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Abstract—A principle of converting a discrete system of grid frameworks to an equivalent micropolar
continuum model is given with the degree of approximation taken into consideration. A micropolar continuum
is then defined in the form of higher order extension. In order to supplement defects of previous theories, a
complex-valued micropolar continuum model is constructed for grid frameworks vibrating with an arbitrary
frequency by means of the variational principle related to the average energy of the system. An analysis of
wave propagation reveals the existence of high frequency waves. The accuracy of solutions is also investigated.

I. INTRODUCTION

IN FRAME analysis, the displacements and the rotations of joints are taken as unknown variables,
and the equations of equilibrium are solved to determine them. Usually, electronic computers are
used, but the calculation becomes expensive, if the structure is large. Hence, a suitable technique
for approximation is desired. For this purpose, continuous approximation has been frequently
used. In the beginning, finite difference equations governing the structure were directly replaced by
corresponding differential equations by means of Taylor expansion (Renton[1, 2]). Then, the fact
that such continuous approximation means nothing but defining new continua was recognized,
and study of the underlying continua as a new physical entity began in connection with recent
development of the so-called mechanics of generalized or structured continua[3]. Kanatani[4], for
example, studied mechanics of continua with projective microstructure as a continuous model for
a truss. On the other hand, Banks and Sokolowski[5] and Askar and Cakmak[6] found that the
micropolar continuum of Eringen[7] was suitable as a continuous model for grid frameworks.
Later, some inadequacy in their works was pointed out by BaZant and Christensen [8], who gave a
consistent formulation of the problem on the basis of continuum mechanics.

In order to convert a discrete system to an equivalent continuum model, Taylor expansions of
the relative displacements and rotations of joints, with only a few beginning terms retained, were
used in [5, 6, 8]. This procedure, however, does not lead to adequate equations, unless the degree of
approximation is properly taken into consideration. In this paper, we shall first give a suitable
principle of continuous approximation and define the order of approximation. The equations of
equilibrium are then derived by means of the variational principle of virtual work. The micropolar
continuum thus defined is not in the usual form but in the form of higher order extension.

Continuous approximation is effective especially in dynamic problems, because the exact
calculation is more difficult in dynamic cases than in static ones. It is shown by Sun and Yang([9]
that the micropolar continuum model can be employed in dynamic problems with great ease.
However, their model cannot describe such an important phenomenon as resonance, because they
made an implicit assumption that static characteristics of member beams are valid even when they
are in motion. It can be shown that general equations of motion of an equivalent continuum cannot
be obtained without this assumption. In this paper, we shall circumvent this difficulty by restricting
our attention to vibration alone. We shall give a complex-valued micropolar continuum model for
vibrating grid frameworks applicable to vibrations of any frequencies. The equations of vibration
are derived by means of the variational principle related to the average energy of the system. Wave
propagation is analyzed, and the existence of high frequency waves, which were missing in the
analysis in [9], is shown. Sun and Yang[9] showed that their analysis was in good agreement with
several sample solutions calculated by the finite element method in the range of low frequency. We
shall show that our result is in fairly good agreement with the exact solution in a wide range of
frequency, if the order of continuous approximation is properly taken.

2. THE ORDER OF CONTINUOUS APPROXIMATION AND HIGHER ORDER
MICROPOLAR CONTINUA

In continuum mechanics, the form of potential energy expressed in terms of field variables is of
fundamental importance. Given the potential energy form, we can derive the equations of
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equilibrium by means of the principle of virtual work. In a grid framework, potential energy is stor-
ed in each of the member beams by elongation, bending and twisting. Deformation of a beam is
completely specified by the displacements and rotations of its both ends. Let u;(I,J, K) and
&i(1, J, K) be the displacement and the rotation of the joint labeled as (1, J, K), respectively. The
rotation ¢; is an skewsymmetric tensor, and we, henceforth, adopt the rule of summation
convention. The coordinate system is always Cartesian, so that we do not make any distinction
between covariant and contravariant components of vectors and tensors. The total potential
energy of the system is expressed in the form

U= I%c e(Aju;, dyiy Didhi)s 1

where A; denotes the finite difference operator in the j-direction (see Fig. 1). An equivalent
continuum model is obtained by replacing the finite difference terms by their Taylor series
expansions

1

2 h}afu, +...,

A,u, = h,a,u, +
1 )
Ay = hdedy +3 hidtdi+...,

where h; is the length of beams lying in the i-direction, and 3; denotes 3/ax’. Only the first terms
of (2) are retained in [5, 6]. This is, however, not an adequate approximation, because the form
of e in (1) is quadratic in its arguments. The validity of omitting succeeding terms comes from
the fact that they are quantities of higher order smallness. Then the square (h.xd;)’, for
example, is of the second order smallness, and it is comparable with the omitted term
(1/2)h}d3¢y multiplied by the zeroth order term ¢y To avoid this inconsistency, we adopt the
following procedure; substitute formally the infinite series (2) into (1) and omit those terms whose
orders are higher than N. Let us call this approximation the N'th order continuous approximation,
and that used in[5, 6] the simple approximation. Both the second order approximation and the
simple approximation lead to second order differential equations, but several terms in those of the
former are missing in those of the latter. BaZant and Christensen[8] noticed this fact and gave a
complete set of equations, taking account of those terms. A consistent principle is now given by the
above stated method of approximation.

Now, we can derive field equations by the principle of virtual work. After the above mentioned
procedure, the total potential energy of the system is approximated by the continuous form.

U= I e(a,u,, ol . . ., &, i, ... )dV. 3)

In the second approximation the increment 8U of the energy for virtual displacement 8u; and
virtual rotation 8¢; becomes

U = f [a“&,&w + 0“‘31‘3;8“1 +‘% r"a¢,; + ’;' [Lkﬁak8¢,-,' +% w'*i‘a,ak8¢,,-] dv, ()]

Fig. 1. Deformed and undeformed configurations of a member beam.
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where o = 3¢/ 3(3;u;), etc. The principle of objectivity [10] demands that the increment of potential
energy should vanish for virtual rigid rotation 8¢; = d;6uy. (The brackets [ ] denote the
skewsymmetric part of components. The symmetric par is denoted by ( ).) Hence, we conclude
that

Sl ==t (5)

The virtual work done by external forces is
W = f b'su; dV +§ [t"au.- + % m""5¢,-,-] ds, ©)

“where b’ is the force acting on joints per unit volume, and t' and m” are, respectively, the
surface traction and the surface moment per unit area. Then the principle of virtual work
8U = 8W yields, upon integration of (4) by parts, equations of equilibrium

30" — 980" + b =0,

I — aym™ + 2411 = 0,

)

with boundary conditions

ti = n,o"" - 2n(ka,)0"” + nkn,-a,.ok"" - (2"&",' 2 I/Ra - ; lia)lga)lRa)okﬁ,

| ®
m = et~ 2™+ s, 0% ~ (2mm, 3 R, = 3 UOUIR, ),

nk"iokﬁ =0, n,nk‘n'"‘” =0,

where n; is the unit normal to the boundary surface, I{*)(« = 1, 2) is the principal direction of the
surface, and 1/R, is the corresponding principal curvature. Differentiation along n; is denoted by
.. The constitutive equations are given by

1
"' = kihoyu, 0'z=:—':(51u2‘¢12)—§ hyd112,

| 3
p“2=?(¢|2—3|u2+5h|a|¢12)’ u123=”—2“-h13;¢23, (9)

V12

o2 = _"7!2 b2, 1;"'2=Th¥¢|2, etc.,

K= E|A|/ V, V= ]2E|I]2I V, M= 2G|J|I V, V= h|h2h3,

where E;A; and GJ; (not summed) are respectively the longitudinal and the torsional stiffnesses of
a beam lying in the i-direction, while Ej; (not summed) is the bending stiffness of a beam lying in
the j-direction bent in the j-i plane. The other components are obtained by permutation of indices.
Terms like 6% and 7™ do not appear in the usual theory of micropolar continua[7], and these
correspond to the terms of which BaZant and Christensen (8] took special account. Equations (7)
are considered to define a micropolar continuum in the form of higher order extension.

In the case of higher order approximation, we can similarly obtain the field equations as follows.
The increment U of potential energy becomes, upon integration by parts,

8U = f [(8U/8u;)6u; + (8U]5¢;:)8¢;1 d V + § [surface terms] dS (10)

where 8U/8u; and 8U|8¢;; are the functional derivatives defined by

8Ul6u; = —3/(3¢l 3(3u;)) + 9x9;(3el 3(dudui)) — - - -, 8UI8¢y; = del oy — (9l 3(ary)) + - - -,
' (1n
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respectively. Then, the equations of equilibrium are
SUISU,' = bi, 8UI8¢;, =0. (12)

The boundary conditions are given by the surface integral terms.

3. EQUATIONS OF MOTION OF GRID FRAMEWORKS
Consider a moving beam as shown in Fig. 1. The kinetic energy of the beam is

% j ' PALX(s): + y(s)* + 2(s)*) ds, - (13)
0

where pA is the line density and * denotes d/dt. In an equivalent continuum, the kinetic energy of a
beam must be expressed only in terms of the variables at the both ends. Sun and Yang (9] implicitly
assumed static bending and expressed (13) in terms of v;, Av;, w; and Awg, where v; = &; and o = 43,-,-.
Using their result and following our procedure of continuous approximation, we can express the
total kinetic energy of the system in the form

K= %I k(v vy -+« Wiy IkWjis - - ) dv. (14)

Differentiating this by the time, and integrating it by parts, we obtain the following form.

dK ) ' 1. .
F = I[p'(v;, INVjy .o oy wki,alwkiy Lot ‘i l"(vk, Ok, - « +y Wiks O Wiks » + .)wii] dv

+ § [surface terms] dSS. (15)

The linear forms p’ and I are the equivalent momentum density and the equivalent angular
momentum density respectively. According to D’ Alembert’s principle, the equations of motion are
obtained by adding the inertia force —p’ and the inertia torque — [ to the equations of equilibrium.
Hamilton’s principle is used in [9], but it is equivalent to our procedure. We call the continuum
model thus obtained the quasistatic model, for it is valid only for slow motion. In the first order
approximation, we obtain the equations of motion as follows

6,0-” +bi= pY; — ‘yiﬂid)i;,

i i (16)

™ + 20" = [y, + Jiaw, — T,
where
0'"=0; |2__1;1_I]2¢12’etc’
p'®=0, ﬂmz%zﬂsn,ett‘-,
. 17
- : 23 a2
p=2MIV, ¥ =15 MhllV,
I = (Mp2+ MDY, T =33 Mayv,
i 210 .

and M; is the mass of beams lying in the i-direction.
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4. THE VIBRATION FIELD OF GRID FRAMEWORKS
In the previous section it was shown that, without assuming static bending the kinetic energy
couldn’t be expressed in terms of the variables at joints. Hence, such an important phenomenon as
resonance cannot be described by the quasistatic continuum model. We shall now circumvent this
difficulty by restricting our attention to vibration alone. Then we can make use of the variational
principle related to the average energy of the system to obtain a complex-valued micropolar

continuum model for vibrating grid frameworks.
Let x* («=1,2,3,..., n) be the generalized coordinate of a linear mechanical system. The

equation of motion has the form
Mgai® + kgux® + daeiP = Qo (18)

where mg,, kg, and dg, are the mass matrix, the stiffness matrix and the damping matrix of the
system respectively, while Q, is the force acting against the generalized coordinate x°. In vibration
analysis, the harmonic mode x°, Q, « e (i = v/-1) is investigated. The equation of vibration of

the system is
— 0’ MgexP + kgax®? + iwdp.x? = Q. 19)

Now x* and Q* are complex quantities. We now give a kind of variational principle which leads
directly to the complex expression (19). Consider the time average of the kinetic energy K, the
potential energy U and the dissipation function F. We obtain the Hermitian forms

2 . —_ 2 —_
(KY=2 mooxe®, (V)= hput®®,  (F)=" dpox?, (20)
where x° is the complete conjugate of x°. Then the equation of vibration is given by

B 0. . s=quy- &) +GiwXF)). Q1)
x" 4

The number n of independent variables is irrelevant in this formulation, so that this relation must
also hold in the limit. of continuum, in which partial derivatives must be replaced by functional
derivatives with respect to field variables.

Consider a vibrating beam shown in Fig. 2, where u, Au, v, Av, ¢ and A¢ may be complex.
If the longitudinal vibration of the beam is neglected, we can put

x(s) = (u + -‘;— Au) e, (22)
and y(s) is determined by
Ely™(s) + ny(s) + pAj(s) =0, (23)
y
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Fig. 2. Vibration of a member beam.
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where 7 is the damping coefficient. Putting y « ¢, we have
y"(s)=A%(s), A=vVI(pAw’—iwn)/EI). (29)
The boundary conditions are

y0)=ve™, y'(0)=¢e™,

) . (25
y()=(v+Av)e™, y'()=(¢+Ap)e™.
The solution is determined in the following linear form in v, Av, ¢ and A¢.
y(8) = (vin(s) + Av(S) + Idifs(s) + [APp(s)) €. (26)

Here ¢.’s are complex-valued non-dimensional functions of s (see Appendix). If the strain
energy due to elongation and twisting is neglected, the average strain energy of bending is

fl
1 ] - -
)= || By ds=ZL ol aolt , AN CaulAD) 7 @7
Ad .
* where Cg, is the following non-dimensional real symmetric matrix.
4 pl —_—
Cea(Al) = lill-l—jo Ys)ba(s)ds (o, 8=1,2,3,4). (28)

The average kinetic energy (K) and the average dissipation function (F) are determined in the
same manner. They are also Hermitian forms in u, Au, v, Av, ¢ and Ag.

S o MP,, . . [1 1R[[l
&)= [ pateixGy+ y()3 ds= Mt auin [, P[]

ol
2 2 T
+22E ol ol 6,6 Mp 00 5. 29)
Ad
il
2 pl - 3 2 A -
(F)= fo ny(s)y(s)ds=Zz&(v/l,Av/l,@Ad;)[Mpa(M)] f}-,/_' : : 30)
Ad

{ S
Ma)=1 [ 4l ds  (a,8=1,2,3,4) eD

Consider a 3-dimensional vibrating grid framework. Summing the above expressions for beams
in all directions, we obtain the average kinetic energy density (k), the average potential energy
density (e) and the average dissipation function density (f) in Hermitian forms. Put

(€)= (k) + (i X1)). (32)

s=

al—

After the continuous approximation in accordance with our principle, this quantity becomes a
function of the field variables and their complex conjugates. Put

S= f s(uy, @y, dxutj, iy, . - ., b ‘;kb ..)dv. 33)



A micropolar continuum model for vibrating grid frameworks ' 415
Taking functional derivatives with respect to the complex conjugate field variables, we obtain
the following equations of vibration.
(815u; = )as|ou; — 3(3s18(du)) + . . .= b,

— — —_ (34
(85184 = )asld¢n; — a1(3sl (i) + ... = 0.

Here, we have put the force per unit volume acting on the joints to be bie™, The boundary
conditions are given by the surface integral terms.

We can regard the above process as a definition of a complex-valued micropolar continuum.
Put

v=1[@av. k=3[wav. F=[nav. 35)

and consider the following variations.
WUy WU+ S, G b b+ 06y (36)

The corresponding incfement of U, K and F are
oU = f (68U 52,)6 + (3UIS5)5851 AV + f [surface terms] dS,
5K = f [(6K/ 55w + (K1 565)6851 dV + f [surface terms] dS,
8F = f ((5F15u;)8u; + (5F15¢)8¢:1dV + f (surface terms] dS. 37

The functional derivatives §U/u;, etc. are all complex linear forms in uj, du;, . . ., dyj, iy - . .. We
can interpret these forms as follows: 8U/bu;, the complex internal force density; 5U/éu;, the
complex internal torque density; 8K/6u;, the complex momentum density; 6K/8¢;, the complex
angular momentum density; 8F/8u;, the complex dissipative force density; 6F18¢;;, the complex
- dissipative torque density.

5. WAVE PROPAGATION AND ACCURACY OF SOLUTION

Consider shearing vibration of a 2-dimensional grid framework of infinite extent. The grid is
assumed to be composed of identical members of length /, stiffness EI and line density pA. We
adopt the natural units; we measure all length in terms of /, all masses in terms of pAl, and the time

in terms of 1>V (pA/EI). Let us seek a I-dimensional solution in the form ;= (0, v(x)) ™,
¢ = ¢(x)e™ for b’ = (0, b(x)) ™. In the second order approximation, eqns. (34) are reduced to

A+ A" +Co'=b, —Cv'+Bid+Brp"=0, (38)
where

A= -0} (M + 1)+ Cyy + ionM)y,,
A= -0 (M~ Mp)+(Ciy— Cp) + ion(My2 ~ M),
By = —2w*M33+2Cs; + 2ionMas, 39
By = — 0’ (M3s~ Mug) + (Csa— Cuaa) + im(Mss — Myy),
= — w0 (Mys— M)+ (Cis— C3) + iwn(Mys— My3).
Consider M;,, for example. It plays the role of the equivalent mass density of the vibrating grid

framework and depends on @ and n as shown in Fig. 3. The angular frequency w,=
22.37V/(EllpAll?) is the first characteristic angular frequency of member beams. Similarly Mi;
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0 10 20 wo 30 40 50
wI([ETIgAII?)
Fig. 3. Virtual mass M, of a vibrating member beam.

plays the role of the equivalent moment of inertia density (Fig. 4). If all Cg,’s and Mp,’s in (39) are
replaced by their values at » = 0 then eqns (38) are reduced to those of quasistatic model (see
Appendix).

Since continuum models are obtained by the neglect of higher order derivatives, solutions
are fairly accurate for low order modes of vibration. A systematic investigation of accuracy is
possible, if we study the problem of wave propagation, for the wavelength then plays the role
of the mode of vibration. Let v(x) and ¢(x) in (38) be proportional to ¢ ™™ Then, we obtain a set of
linear algebraic equations. Wave propagation is possible only. when the determinant of the
equations vanishes. Figure 5 shows the angular frequency of the wave of wave number &, including
also those obtained by the first, the third and the fourth order approximations. The exact solution 1
is indicated by the thick solid curves in Fig. 5. We can conclude from thiis result that the second
order approximation is accurate enough for kIl < 1. Due to the regularity of the grid, kl = =
corresponds to the shortest possible wavelength. The situation is similar to the Brillouin zone in
crystal physics. We should note here that the high frequency waves shown in Kig. 5 cannot be
obtained by the quasistatic continuum model, although they are very important, especially when
the structure is given a strong shock containing high frequency Fourier components.

2
=
0.02
NieA=0
nleA=10
2/eA =100
0.01
0 0 20 0 40 50

WHJ/ETIgAI1)
Fig. 4. Virtual moment of inertia M, of a vibrating member beam.
tSun and Yang[9] calculated the wave frequency by the quasistatic model of the simple approximation in the range of low

frequency and compared the result with several numerical examples calculated by the finite element method. However, the
exact solution can be obtained also by the variational principle of average energy.
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Fig. 5. Angular frequencies of traveling plane waves in the Nth order continuous approximation compared
with exact solutions (5 = 0).

6. CONCLUDING REMARK

We have presented a principle to convert a system of grid frameworks to an equivalent
continuum model, taking the degree of approximation into consideration. As a result, a micropolar
continuum is defined in the form of higher order extension. To supplement the defect of the
quasistatic continuum model, we have established a complex-valued micropolar continuum model
for vibrating grid frameworks. Equations of vibration are derived by means of the variational
principle related to the average energy of the system. Wave propagation is analyzed, and the
existence of high frequency waves is shown. The accuracy of the wave solutions is also
investigated.
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APPENDIX
(s) = ay(Al)(cos As — cosh As)+ ax(Al)(sin As — sinh As) + cosh As
Yr(s) = a3(Al){cos As — cos As) + a(Al)sin As — sinh As)

U(s)= a,(Al)(c&s As —cosh As) + ag(Al)(sin As — sinh As) + A_ll sin As

Pu(s) = az(Al)(cos As — cosh As) + ag(Al)(sin As — sinh As)
ay(AD) = (cos Al - cosh Al + sin Al sinh Al — cos Al cosh Al + 1)/ D(Al)
ay(Al) = (sin Al + sinh Al — cos Al sinh Al - sin Al cosh Al)/ D(A)
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a3(Al) = (cos Al = cosh Al)/D(A)

a(Al) = (sin Al + sinh Al)/D(A)

as(Al) = (—sin Al + sinh Al + sinh Al cosh Al - cos Al sin A)JAID(A])
ag(Al) = (cos Al — cosh Al - cos Al cosh Al — sin Al sinh Al + 1)/AID(AD)
a3(Ml) = (—sin Al + sinh ADJAID(AD

ag(Al) = (cos Al — cosh Al)/AD(Al)

D(AD) =2(1 - cos Al cosh Al)
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