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line. 3) Images more complicated then a single line and background 
noise can be handled by similar methods. 4) Since the problem is 
related to a mixture of two Gaussians, an analytical solution may 
be possible. One can also associate directions with the points, as 
in [l]. 
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3D Euclidean Versus 2D Non-Euclidean: Two 
Approaches to 3D Recovery from Images 

KEN-ICHI KANATANI 

Abstract-Methods of 3D recovery in computer vision for computing 
the shape and motion of an object from projected images when an ob- 
ject model is available are classified into two types: the “3D Euclidean 
approach” based on geometrical constraints in 3D Euclidean space and 
the “2D non-Euclidean approach” based on analysis on the image plane 
viewed as a 2D non-Euclidean space. Implications of these two ap- 
proaches are discussed, and some illustrating examples are presented. 

Index Terms-computer vision, image analysis, image understand- 
ing, 3D reconstruction, 3D recovery, shape from . . . 

I. IMAGE UNDERSTANDING A N D  3D RECOVERY 
When we talk about “image understanding,” the term “under- 

standing” usually implies modeling of the objects because recon- 
structions of 3D raw data-called 30 images-by such direct mea- 
surements as laser or ultrasonic ranging, stereo, and computer 
tomography (CT)-cannot be called ‘‘understanding”; a 3D image 
is only a collection of data in a three-dimensional array, just as a 
2D image is a collection of data in a two-dimensional array. It is 
not until a model is fitted that we can say something about the 
object. 

A model is specified by a small number of parameters. For ex- 
ample, an object can be modeled by a line, a plane, a quadric sur- 
face, a sphere, a cylinder, a cone, or a combination of these (e.g., 
a polyhedron). A line is specified by a point and the unit vector 
along it, a plane by a point and the unit normal, a quadric surface 
by the coefficients of the defining equation, a sphere by its center 
and radius. The 3D position of an object is specified by the position 
vector. The 3D orientation of an object is specified by three mu- 
tually orthogonal vectors starting from a fixed point on the object 
(or rotation matrix, Euler angles, quaternion, etc.). If the object is 
in motion, its 3D motion is specified by a translation velocity at a 
reference point and a rotation velocity (given by, say, an axis and 
an angular velocity) around it. Let us call these parameters which 
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specifying the object shape, position, orientation, and motion ob- 
ject parameters. ’ 

On the other hand, let us call the numerical data characterizing 
the observed image image characteristics.2 They may reflect the 
gray-levels of the image, the texture of the object surface image, 
the object contour, the intensity of light reflection, or the optical 
flow if the object is in motion. Stated in this way, the 3D recovery 
problem is viewed as estimation of the object parameters from the 
image characteristics. This problem is often referred to as shape 
from . . . according to the source of the image characteristics- 
shape from texture, shape from shading, and shape from motion, 
for example. Therefore, the 3D recovery problem can be solved if 
equations relating the object parameters and the image character- 
istics are obtained. Let us call such equations 3 0  recovery equa- 
tions. It is desirable that the 3D recovery equations have simple 
forms, hopefully yielding analytical solutions. Otherwise, solu- 
tions must be computed numerically, which often results in diffi- 
culties-multiple solutions may exist, iterations may not converge, 
or computation time may be too long. Therefore, it is very impor- 
tant to obtain good 3D recovery equations. All subsequent pro- 
cesses are affected by the choice of the 3D recovery equations. 

11. THE 3D EUCLIDEAN APPROACH 
One approach to obtain 3D recovery equations is to treat all 

quantities in 3 0  space. First, an image itself is regarded as a 3D 
object by setting the image plane in the scene according to the cam- 
era model. Next, the image is backprojected into the scene by in- 
troducing unknown parameters (Fig. 1) .  For example, a point P on 
the image plane is backprojected into the point whose position vec- 
tor is r@ where 0 is the viewpoint and r is an unknown depth 
parameter. Similarly, a line 1 on the image plane is backprojected 
onto a line lying somewhere on the plane defined by the viewpoint 
0 and the line l . 3  In this way, starting from observed data, we can 
construct a family of injinitely many candidates of the object shape 
in such a way that all of them yield the same image data after per- 
spective projection. Then, one solution is selected. The selection 
is done according to the constraints on the object. We select, from 
among the infinitely many backprojected candidates, the one which 
possesses properties that the object model is required to satisfy. 

Object constraints are usually expressed in terms of the 3D Eu- 
clidean metric-a particular line segment of object must have a fixed 
length, two line segments must make a fixed angle or intersect per- 
pendicularly, some line segments must be coplanar, or all lengths 
and angles are preserved during a rigid motion, for example. This 
means that the object constraints themselves play the role of 3D 
recovery equations. We call this approach the 30 Euclidean ap- 
proach because 3D recovery equations have geometrical meanings 
in 30 Euclidean space; they may specify conditions concerning 
lengths, angles, parallelism, orthogonality, planarity, rigidity, etc. 
They are usually expressed as 3D vector and matrix equations, and 
subsequent analyses are done in terms of vector calculus and matrix 
algebra. 

A great majority of past research on 3D recovery has been done 
with this approach, since it is very natural to ask what family of 
objects can be projected onto the observed image, and then choose 
the one that best fits our prior knowledge about the object. In fact, 
this viewpoint has long been adopted by psychologists in the study 
of human visual perception (e.g., Gibson [3]), and although psy- 

‘In the literature, they are called by many other names-structure and 
motion parameters, for example. 

*Some authors call such data image features, image properries, or ob- 
servables. 

‘However, such backprojection is possible only if the point P or the line 
I corresponds to a point or a line in the scene. This is one of the difficulties 
of this approach, as we will discuss later. 
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Fig. 1. Backprojection. A family of infinitely many object shapes are con- 
structed such that they all yield the same image after projection. Then, 
the one which satisfies the required constraints is selected. 

chologists are not so very interested in the computational aspects, 
their approaches have exerted a great influence over studies of 
computer vision (e.g., Ullman [22], Marr [13]). 

A major disadvantage of this approach is that the resulting 3D 
recovery equations become very complicated. Often, analytical so- 
lutions are difficult to obtain. One reason is that image character- 
istics and object parameters are often chosen so as to make the 
backprojection easy. For example, backprojection is easy if the 
image data have straightforward meanings like positions, orienta- 
tions, lengths, and angles, but it is difficult to backproject global 
quantities such as sums and averages. The object parameters, on 
the other hand, also tend to be quantities describing the object rel- 
ative to the imageplane, such as its distance from the image plane. 
Hence, they may not necessarily indicate properties inherent to the 
object such as the surface gradient and surface curvature. 

Another point to note is that this approach results in 3D vector 
and matrix equations, which are easy to analyze ifthe X - ,  Y-, and 
Z-axes play interchangeable roles.4 In the 3D recovery problem, 
however, the Z-axis, taken to coincide with the camera optical axis, 
plays a special role. This means that the three components do not 
have the same geometrical meaning; they only have a symmetry 
with respect to the X -  and Y-components. Is there any way to ex- 
ploit this fact explicitly? 

111. THE 2D NON-EUCLIDEAN APPROACH 
The 3D Euclidean approach starts with an observed 2D image 

and ends with constraints on the 3D object model. An alternative 
approach is to start with a parameterized 3 0  object model. Since 
the imaging geometry is simple, it is easy to compute the expected 
projection image. This process, called projection as opposed to 
backprojection, defines a parameterized family of infinitely many 
images (Fig. 2). These images are regarded as 2 0  quantities; their 
3D origins can be ignored. 

Once a family of 2D images is defined, the next step is to define 
image characteristics. Since the images are parameterized, the im- 
age characteristics thus defined are functions of object parameters. 
Then, we turn to the observed image. The 3D recovery equations 
are obtained by measuring the corresponding image characteristics 
on the observed image and equating their values with their theo- 
retically predicted expressions. 

Since we start with an object model, we can choose object pa- 
rameters in such a way that they have desirable properties. It is 
desirable that the parameters have geometrical meanings inherent 
to the object itself and independent of the choice of the coordinate 
~ y s t e m . ~  The ease of subsequent analysis is affected by the choice 

41f we define an image sphere surrounding the viewpoint ana project the 
scene onto it, each point has the same role. However, an xy-image plane 
is the most convenient for many practical treatments. Thus, as long as we 
use an xy-image plane, we must take into account its special geometry. 

’For example, a plane in the scene is specified either by the 3D coor- 
dinates of three points on it or the pair of its surface gradient and depth. 
Evidently, the latter choice catches the essential meaning of the plane. 

Fig. 2.  A parameterized 3D object model is projected onto the image plane, 
resulting in a parameterized family of infinitely many images. Then, the 
one which best matches the observed image is selected. The matching is 
done by comparing a small number of image characteristics. 

of these parameters.6 Thus, this approach allows more freedom and 
flexibility than the 3D Euclidean approach where the choice of ob- 
ject parameters is virtually dictated by the convenience of backpro- 
jection. 

After the object parameters are chosen, there is still another 
choice to make. We must define good image characteristics which 
are capable of distinguishing images with different object parame- 
ter values. Since no coordinate system is inherent to the images, 
the image x- and y-axes must play interchangeable roles. Further- 
more, if another x’y’-coordinate system is taken by rotating the 
original xy-coordinate system around the image origin, these two 
must play equivalent roles. Hence, the image characteristics should 
be symmetric with respect to the x- and y-coordinates and have the 
same geometrical meaning if the coordinate system is rotated. In 
this sense, 3 0  recovery is possible if and only if the image char- 
acteristics have coordinate rotation invariance 161. The fact that 
the image characteristics are defined, as opposed to given as for the 
3D Euclidean approach, provides great freedom and flexibility in 
analyzing 3D recovery problems. In particular, image character- 
istics defined as linear functionals (e.g., weighted sums or aver- 
ages of image data) play important roles in practical applications. 

A line in the scene is projected onto a line on the image plane, 
but projections of parallel or orthogonal lines are generally no 
longer parallel or orthogonal on the image plane ifmeasured in the 
2 0  Euclidean metric of the image plane. Also, the length of a line 
segment in the scene is not preserved by projection ifmeasured in 
the 2 0  Euclidean metric of the image plane. The distortion due to 
projection differs from position to position if measured in the 2 0  
Euclidean metric of the image plane. However, if we assume an 
object model, we can define parallelism and orthogonality on the 
image plane which reflect parallelism or orthogonality in the scene 
by introducing an appropriate 2 0  non-Euclidean metric. It is pos- 
sible to define a 2D non-Euclidean metric on the image plane in 
such a way that the lengths and angles measured in that metric have 
a geometrical meaning in the original 3D space. Thus, the image 
plane can be regarded as a 2 0  non-Euclidean space. For example, 
if the object is modeled as a plane, the Euclidean geometry on it is 
converted into 2 0  projective geometry on the image plane. From 
these observations, let us call the approach described in this section 
the 2 0  non-Euclidean approach. 

IV. 3D EUCLIDEAN VERSUS 2D NON-EUCLIDEAN 
The 3D Euclidean approach begins with image characteristics 

on the image plane, backprqiects them into the scene, and applies 
object constraints expressed in terms of 3D Euclidean geometry. 

6For example, the shape of a comer defined by three faces is specified 
by either the surface gradients of the three faces (the gradient spare rep- 
resentation) or the 3D orientations of the three edges. The latter choice is 
more convenient for 3D recovery from angle clues of project images [8]. 
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The mathematical tools are 3D vector calculus and matrix algebra. 
In contrast, the 2D non-Euclidean approach begins with object 
modeling, then projects the model onto the image plane, and de- 
j n e s  image characteristics in terms of the 2D non-Euclidean ge- 
ometry resulting from the assumed object model. As a result, var- 
ious mathematical tools become available-diflerential geometry 
and tensor calculus, for example. Moreover, the 2D non-Euclidean 
approach can exploit various invariance properties over some 
groups of transformations. The geometrical interpretation of image 
characteristics should be invariant to coordinate rotations [6], and 
the information contained in an image is preserved by the camera 
rotation [7]-[9]. 

If the object satisfies some constraints (e.g., collinearity, co- 
planarity, parallelism, and orthogonality), they give rise to con- 
sistency conditions that the projected object image must satisfy. If 
a given image does not satisfy the consistency conditions, that im- 
age is a false image, i .e. ,  it cannot be obtained by projecting a real 
object. Due to the existence of noise, however, real images often 
do not exactly satisfy the consistency conditions even if they are 
projections of real objects. As a result, if we try to backproject 
them, the candidates to be constructed in the 3D scene may be 
empty or may not contain the true solution. This inconsistency can 
be easily overcome by the 2D non-Euclidean approach because es- 
sentially what it does is matching on the image plane. Moreover, 
we need not seek an exact match; we can seek only for the best 
match. 

The 2D non-Euclidean approach does not directly match images; 
matching is done at the level of the image characteristics, and other 
image properties are ignored. In other words, our choice of image 
characteristics defines the matching, and the 3D recovery equations 
are viewed as the matching conditions. Robustness to noise can be 
increased if we choose, as image characteristics, global quantities 
such as sums or averages of a large number of measured values. It 
is very difficult to backproject such global quantities meaningfully. 

Another advantage of the 2D non-Euclidean approach is that we 
need not identify the three-dimensional meanings of the image 
characteristics; the image characteristics are defined as purely 2D 
properties of the image (e.g., the average intensity, the area inside 
the object contour, etc.). If the object is in motion, its 3D motion 
can be determined without detecting point-to-point correspon- 
dences, i.e., without requiring knowledge of which point corre- 
sponds to which between two image frames. 

However, the distinction between the 3D Euclidean and the 2D 
non-Euclidean approaches is sometimes not so clear-cut.' There 
also exist hybrid approaches to mix the two approaches. Note that 
the distinction between the two approaches lies in the interpretation 
of whether the 3D recovery equations are regarded as 3 0  con- 
straints or 2 0  matching conditions. 

v. EXAMPLES AND CONCLUDING REMARKS 
A typical problem for which the distinction is very clear is the 

detection of 3D motion from image motion (i .e. ,  shape f rom mo- 
tion). Suppose we observe a motion of n points on the image plane. 
Let (x, , y, ), i = 1 ,  - * , n ,  be the positions of the n points on the 
image plane, and let ( X I ,  yi), i = 1, * . . , n ,  be their image ve- 
locities. We want to know where these points are located in the 
scene and how they are moving three dimensionally. Let us as- 
sume, for simplicity, that the projection is orthographic. 

First, let us try the 3D Euclidean approach. If we introduce, as 
unknowns, the depth zi and the velocity component 2, along the z- 
axis for each point, we can describe the 3D motion of these points 
in the scene in terms of image characteristics x, , yi , Xi, yi , i = 1 ,  
. . . , n .  Namely, we obtain a backprojected 30  description that a 
point (x, , yi ,  z ,  ) is moving with velocity (Xi, y l ,  ii ), i = 1, 

'The distinction between the two approaches is less clear for ortho- 
graphic projection than for perspective projection because many 2D quan- 
tities under orthographic projection are at the same time thought of as 3D 
quantities. 

Fig. 3 .  The observed motion of points on the image plane is backprojected 
into the scene and regarded as a 3D motion if the depth z ,  and the velocity 
2, along the Z-axis are introduced for each point. These unknown param- 
eters are determined by the constraint that the resulting 3D motion should 
be rigid. 

, n. In order to determine the unknowns z , ,  z, ,  i = 1, . . . , 
n,  we need constraints. Suppose the only knowledge we have IS 
that they are moving rigidly. This constraint is written as (x, - 
x, )* + ( y, - y, )* + ( z ,  - z, )* = const. for i # j .  Differentiating 
this. we have 

. . .  

for i # j (Fig. 3). These equations are the only equations con- 
straining the unknowns, z ,  , z ,  , i = 1, . . . , n. It can be shown 
that numerical solutions are obtained if we introduce three indeter- 
minate parameters. This is the approach taken by Sugihara and 
Sugie [ 181. 

However, this approach produces only a numerical algorithm of 
computing zi, it, i = 1 ,  . . . , n ,  for given values of the indeter- 
minate parameters; no closed-form analytical solution is available, 
and hence no theoretical properties and behaviors of the solution 
are obtained. Moreover, it turns out that the solutions computed by 
this approach contain a false solution. Namely, although (1) must 
hold for any rigid motion, it also holds for some nonrigid motions. 
As a result, the numerical solutions computed from ( 1 )  also contain 
a nonrigid motion solution. 

Let us try a 2D non-Euclidean approach. In contrast to the pre- 
vious approach, we start with the 3D description that n points are 
moving in the scene. Consider three points among them. A plane 
orplanarpatch is defined by the three points. A plane rigidly mov- 
ing in the scene induces an op t i ca l jow  on the image plane (Fig. 
4). It is easy to prove that the flow is described by linear equations 
in the form 

. 

x = a  + A x  + By, y = b + Cx + Dy. (2)  

The form of these equations is invariant to rotations of the image 
xy-coordinate system because, however the coordinate system is 
taken, we are still viewing a rigid motion of a plane. Hence, if the 
xy-coordinate system is rotated, (2) is again obtained with different 
values of the coefficients a ,  b ,  A ,  B ,  C. D. From this fact, we can 
construct invariants from these coefficients,* and obtain a closed- 
form solution in terms of them. Thus, we only need to measure the 
six coefficients (i.e., the image characteristics) a ,  b ,  A ,  B, C ,  D 
on the image plane. 

At this very last stage, we consider how to estimate (or match) 
the six image characteristics from the given data (x, , yi ), (xi, y, ), 
i = 1, . . . , n. From (2), we see that if the velocity components 
x, y are given at three points which define a planar patch, the six 
image characteristics a ,  b ,  A, B, C ,  D are determined simply by 
solving a set of six simultaneous linear equations. This process is 
applied to the rest of the planar patches by choosing appropriate 
three points repeatedly. This is the approach of Kanatani [4], and 

'An invariant does not necessarily have a constant value, i.e., i t  need 
not be an absolute invariant. It can change its value as long as the change 
depends on its own value but not on other quantities, i.e., i t  can be a rel- 
ative invariant [6], [7], [9]. 
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Fig. 4. The opiicaljow on the image plane resulting from a planar surface 
motion is analyzed, and the object motion is determined in such a way 
that the expected flow is compatible with the actually observed motion 
of points. 

he deduced many interesting properties and behaviors of the solu- 
tion. 

The problem can be extended to perspective projection, and 
many researchers have obtained solutions for finite motions under 
various conditions. Most of them used the 3D Euclidean approach, 
describing and analyzing the problem in terms of 3D vector and 
matrix calculus in 3D Euclidean space [ 1 11, [ 141, [20]. For instan- 
taneous motions, however, the 2D non-Euclidean approach has 
been used more effectively 151, 1121, [ 191. 

Motion detection is closely related to 3D recovery of object po- 
sition and orientation. According to the 3D Euclidean approach, 
the position and orientation of an object whose 3D shape is known 
are computed from a projected image by first backprojecting the 
image edges into the scene, and then applying the constraint that 
the resulting 3D shape should coincide with a known shape [16]. 
According to the 2D non-Euclidean approach, on the other hand, 
an object model is first placed in the scene, and then its 2D image 
projected onto the image plane is analyzed. The object position and 
orientation are estimated by matching image characteristics (or fea-  
tures, observables, etc.) [ l ]  [IO]. Since these quantities are defined 
globally over the object image, no knowledge of the correspon- 
dence between the vertices and edges of the image and those of the 
object model is required. 

Another problem for which the two approaches can be contrasted 
is the recovery of 3D road geometry from images for purposes of 
navigating autonomous land vehicles (ALV’s). A typical 3D Eu- 
clidean approach was presented by DeMenthon [2], who backpro- 
jected the observed road boundary image into the scene and 
searched for the solution that satisfies the constraints the real roads 
are supposed to obey. In contrast, Thorpe et al. [19] first assumed 
a parameterized straight and horizontal road and then determined 
the parameters by matching the resulting projection image and the 
actually observed image. Sakurai et al. [15] used curved and non- 
horizontal road models with a similar approach. Turk ef al. [21] 
called the 3D Euclidean approach and the 2D non-Euclidean ap- 
proach the forward geometry and the backward geometry,  respec- 
t i v e ~ ~ . ~  

Other topics of 3D recovery where mathematics is involved in- 
clude computation of angles in the scene from angles observed on 
the image plane, and computation of surface gradient from ob- 
served texture density (i.e.,  shape f r o m  texture). Although it is 
difficult to say which author used which approach, some authors 
clearly followed the reasoning based on the 3D Euclidean ap- 
proach, while others seemed to be strongly influenced by the think- 
ing of the 2D non-Euclidean approach. In this paper, the signifi- 
cance of the 2D non-Euclidean approach has been emphasized, but 
of course, the choice depends on the problem to be solved; the 3D 
Euclidean approach may be very useful for some problems, and a 

’Other approaches include detection of vanishing points [23], which is 
difficult to classify into either of them. 

hybrid approach may be fruitful for other problems. In any case, 
we can understand various approaches better if we always keep in 
mind the contrast of the two typical approaches of 3D recovery. 
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