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Statistical Bias of Conic Fitting and Renormalization 

Kenichi Kanatani i i P  

Abstract-Introducing a statistical model of noise in terms of the 
covariance matrix of the N-vector, we point out that the least-squares 
conic fitting is statistically biased. We present a new fitting scheme called 
renormalization for computing an unbiased estimate by automatically 
adjusting to noise. Relationships to existing methods are discussed, and 
our method is tested using real and synthetic data. 

Index Terms-Conic, ellipse, curve fitting, error analysis, renormaliza- 
tion. 

I. INTRODUCTION 
If a robot is to operate in an industrial environment (say, in 

a nuclear power station), it must recognize gauges, meters, dials, 
and handles, most of which are circular; circles are perspectively 
projected into ellipses. Hence ellipses, or conics in general, are widely 
recognized in the study of computer vision as one of the most 
fundamental features. Detected conics provide more than clues to 
object recognition; if conics in an image are known to be perspective 
projections of conics in the scene of known shapes, their 3-D 
geometry can be computed analytically 171, 1121, [171, 1191, 1201. 

In order to do such analysis, image conics must be mathematically 
represented by curve fitting, and many studies of conic fitting have 
been done in the past [1]-[6], [8], [13]-[16], [18], [21]. The goal 
of such a study has customarily been thought of as finding a conic 
that passes near observed datu points as closely as possible. We will 
point out in this correspondence that this is not so; the goal is to find a 
conic that passes through the (unknown) true data points from which 
observed data points are deviated. These two goals are identical for 
line fitting but not so for conics, due to the nonlinearity of the conic 
equation. Essentially, conic fitting is a statistical inference of infemng 
the locations of the true data points. 

In this correspondence, we introduce a statistical model of noise 
and point out that the least-squares fit is statistically biased even if the 
weights are optimally chosen. We present a new fitting scheme called 
renormalization for computing an unbiased estimate by automatically 
adjusting to noise; we need not know noise characteristics. We will 
also discuss relationships to existing methods and test our method 
using real and synthetic data [15]. 

11. LEAST-SQUARES CONIC FITTING 
A conic is a quadratic curve on an xy plane expressed in the form 

(1) 

Define a Z-axis perpendicular to the image passing through the image 
coordinate origin o. Let 0 be the point on the Z-axis at distance f 
from the image origin, and define X -  and Y-axes at 0 in such a 
way that they are, respectively, parallel to the z- and y-axes (see Fig. 
1). We call the origin 0 the viewpoint and the constant f the focal 
length on the analogy of the ideal camera model, though this model 
is hypothetical and adopted for the convenience of analysis. 

Ax2 + 2 B x y  + Cy2 + 2( D z  + Ey) + F = 0. 
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Fig. 1 The N-vector representing a point in the image. 

With this setup, a point (z, y) in the image is uniquely represented 
by the unit vector m, starting from the viewpoint 0 and pointing 
toward it. It is easy to see that 

where N [  . ]  denotes normalization into a unit vector. Let us call 
the vector m the hi-vector of point (s, y) [9]. Representing points 
by their N-vectors is equivalent to using (normalized) homogeneous 
coordinates. If we define matrix 

A B O f f  
Q =  ( B  C Elf). (3) 

D l f  E l f  F l f 2  

( m ,  &. m )  = 0, 

(1) is written in terms of the N-vector (2) in the form 

(4) 

where (., .) denotes the inner product of vectors. We call the conic 
represented by matrix Q simply “conic C).” Since any multiple of G, 
by a constant defines the same conic, we can adopt the normalization 

1 1 & 1 1  = 1, ( 5 )  

where denotes the Euclidean matrix norm: 1 1 & 1 1 2  = cT,,=l Q t J 2 .  

Let { P m } ,  (L = 1,. . . , N ,  be given data points, to which a conic 
is to be fitted. Let m, be their N-vectors. Consider the least-squares 
optimization in the form 

h‘ 

J ( Q )  = ~ t ~ ( m , , ~ m , ) ~  -, min, (6) 
U = l  

where W’, is the weight of the a th  datum. Define the moment tensor 
= ( 1 1 4 t ~ k l )  by 

N 

MZJ k l  = i v w  mw( A )  m w (  J ) mw( k )  U (  I )  (7) 
r w = l  

where m,(2) is the ith component of mCu. Tensor ,U determines 
a linear mapping from a matrix to a matrix: MC) is the matrix 
whose ( i j )  element is E”,,,=, h ! f t J k l ( 2 k l .  If the matrix inner product 
is defined by ( A ,  B )  = E:,,=, A,,B,,, the minimization (6) with 
the normalization (5) reads 

J ( Q )  = ( Q , M O )  -+ min, I l Q l l  = 1. (8) 

Since Q is a symmetric matrix, it can be identified with a six- 
dimensional vector 

( Q i i ,  f i Q i 2 , Q ~ ,  f i O ~ i ,  f i C 2 2 i , Q 3 1 ) T .  (9) 
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Then, can be. viewed as either the matrix norm of matrix Q 
or the vector norm of vector Q. If tensor M is identified with the 
six-dimensional matrix at the bottom of this page, ( Q ,  M Q )  can be 
viewed as either the matrix inner product between matrixes Q and 
M Q  or the vector inner product between vector Q and vector MQ, 
the latter being regarded as vector Q multiplied by matrix M .  

If Q and M are identified with a vector and a matrix, respectively, 
the minimum of (8) is attained by the unit eigenvector Q of matrix 
M for the smallest eigenvalue. Alternatively, we can say that the 
minimum is attained by the unit “eigenmatrix” Q of tensor M for 
the smallest eigenvalue, where we mean by a unit “eigenmatrix” of 
tensor M for eigenvalue X a matrix Q of norm 1 (IIQII = 1) such 
that M Q  = XQ. 

111. STATISTICAL MODEL OF NOISE AND OFTIMAL WEIGHTS 
Let R be the N-vector of a point in the image when there is no 

noise. In the presence of noise, a perturbed N-vector m = m + A m  is 
observed, where we regard inaccuracy of N-vectors computed from 
image data as caused by noise. We treat the noise Am as a random 
variable. Consider the covariance matrix 

V [ m ]  = E[AmAmT], (11) 

where T denotes transpose and E[ . ]  denotes the expectation over the 
statistical ensemble. We adopt the following model of noise: “Noise 
occurs at each data point P, independently in the image and is equally 
likely in all orientations with the same root mean square e.’’ We call 
E (measured in pixels) the image accuracy. If the size of the image 
is small compared with the focal length f, which can be chosen 
arbitrarily since the perspective camera model is hypothetical, the 
covariance matrix I’[m,,] of the N-vector m,, has the form 

(12) 
F2 
2 

where I is the unit matrix and i = JE[llAm,,I12] = c/f [ l l ] .  
It can be shown [ 101 that the most reasonable choice of the weights 

W, of the least-squares estimation (2) in the sense of maximum 
likelihood estimation is 

I7m,] = -(I - fi,R,T), 

Multiplication by a constant does not affect the solution, so we adopt 
the scaling E:=’=, W, = 1. Let us call the weights thus defined the 
optimal weights. 

The optimal weights (13) convert the “algebraic distance” 
I(mcr, Qm,)l of the cvth point to the conic Q into the “statistical 
distance” in the noise space, which can be identified with the 
“geometric distance” in the image to a first approximation according 
to our statistical model. The use of the weights of (13) corresponds 
to the methods discussed by Sampson [21], Bolle and Vemuri [2], 
and Safaee-Rad et al. [18]. The method proposed by Bookstein 
[3] corresponds to the use of uniform weights. He argues that the 
normalization IlQll = 1 is inappropriate because invariance under 
image translation is not assured. However, this argument is valid 

only when the algebraic distance is used; if the optimal weights are 
used, the choice of normalization becomes irrelevant. 

Iv. STATISTICAL BIAS AND UNBIASED ESTIMATION 
Let us denote the exact conic by Q to distinguish it from variable 

Q. The exact conic Q minimizes the unperturbed function J ( Q )  
= (Q,&fQ) ,  where &l is the moment tensor for the exact data 
[ Ij=L, }, but the actual fitting minimizes the perturbed function J ( Q )  
= (Q ,MQ) ,  and Q does not necessarily minimize J ( & ) .  

For the perturbed moment tensor M = M + A M ,  we obtain the 
following proposition [lo], where 6,, is the Kronecker delta and fi4 
= E[llAm,114]: 

Proposition 1 : 

+ 6 Z k m m ( J ) f i , ( / )  + 6 Z f m m ( k ) m C V ( J )  

+ 6 j k * e ( z ) m m ( f )  + f i j / * m ( z ) f i w ( k )  

+ 6 k r f i t , ( t ) f i , ( J ) )  

(14) 

Suppose J ( Q )  is minimized by Q = Q + AQ. Since Q is the 
eigenmatrix of ,U = + AM for the smallest eigenvalue, the 
perturbation theorem tells us that the error AQ is linear in AM. 
This means that E[AQ] is linear in E [ A M ] .  Hence, Q is statistically 
biased. According to the perturbation theorem, the statistical bias can 
be expressed explicitly. Let { Q(“) }, ri = 0,. . ..5, be the orthonormal 
system of eigenmatrices of A for eigenvalues A, (A, = 0, A, > 
0, K = 1 , + . . , 5 ) .  Let , ! !  = W a ~ , ~ L .  Then, we obtain the 
following theorem [lo]: 

Proposition 2: To a first approximation, the optimally fitted conic 
Q is statistically biased by 

fi4 
+ 8 ( 6 Z J 6 k /  + 6 t k 6 J f  + 6 Z / b J k ) ) .  

(4 i2  - jl4)X, + fi4 U‘“’Q EPQI = - 2 ( 8X, ,=l  

We now consider how to remove the above statistical bias. It 
appears that all we need to do is subtract from the computed conic the 
above bias. However, the bias theoretically derived above is expressed 
in terms of the “exact” N-vectors { fi, ] and the “exact” conic &; 
replacing them by perturbed m, and Q would introduce another 
source of bias. It can be shown that the bias is removed by the 
following procedure [IO]. 

Proposition 3: The unit eigenmatrix 6 for the smallest eigenvalue 
of tensor M = (i<fzJkl) defined by 
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Fig. 2. Point P' is more likely to be observed than point P. 

. ( h z ] h k /  -t h z k h j l  + h r l 6 3 k ) )  (16) 

is an unbiased estimate of Q to a first approximation. 
What we have shown above is intuitively easy to understand in 

terms of the original equations (1) and (3). Matrix Q can be regarded 
as a vector consisting of A, f i B ,  C ,  \/zD/ f ,  d E /  f ,  and F/  f '. 
If { ( x C y ,  y,) J are the data points, the quadratic form ( Q ,  MQ) can 
be identified with 
N c WCv(A.rm' + 2Bx,,y, +Cy,' + 2(Dx, + Ey,) + F ) * ,  (17) 

which is a fourth-degree polynomial in xU and y,. Consider the 
term .re2, for example. If x ,  is a random variable with mean Z, and 
variance a', we have E[x, ' ]  = S,' $0'. What we have pointed out 
is equivalent to asserting that the term T,', etc., in (17) should be 
replaced by .r,' - CT', etc., so that their expectations coincide with 
the exact S,,', etc. 

This is a consequence of the fact that the curve is nonlinear. Many 
authors considered the (normal) distance to the curve to be a good 
measure of fit [2], [13], [18], [21], but this "geometric distance" does 
not completely agree with the "statistical distance." Consider Fig. 2, 
for example. Points P and P' are at the same distance from the curve. 
However, the fit of P is much worse than that of P'. The reason 
is as follows. Since the curve extends away from point P in both 
directions, it is unlikely that a point that was originally somewhere 
on the curve is displaced into the position of P by noise. On the other 
hand, it is much more likely that a point somewhere on the curve is 
displaced into the position of P', since the curve surrounds it. Thus, 
the geometric distance is not a good measure; we must consider the 
overall statistical effect of noise very carefully. 

U = l  

V. RENORMALIZATION 
In order to compute an unbiased estimate using Proposition 3, we 

must know noise characteristics-the second and fourth moments 
i' and fi4, in particular. However, noise characteristics are different 
from image to image; they are difficult to predict a priori in real 
environments. In the following, we present an iteration scheme that 
automatically adjusts to noise: we need not know noise characteristics. 
We call this scheme renormalization. 

Renormalization( { ni ,?} ) : 

1) Let c = 0 and Q = - I f d .  
2) Compute 

Retum Q if the update has converged; else go back to Step 2. 
ExampIe: Fig. 3(a) is an edge image obtained from a 300 x 200- 

pixel real image (f is set to loo0 pixels). Fig. 3(b) shows conic 
fitting to five ellipses by least squares with optimal weights. Fig. 
3(c) is the result obtained by applying renormalization. We see that 
renormalization produces somewhat better fits, but the differences 
are small. In order to magnify the differences, the original image is 
cut in half (see Fig. 4(a)). Fig. 4(b) shows the fits obtained by least 
squares with optimal weights; Fig. 4(b) shows the fits obtained by 
renormalization. The fits are less accurate than those in Fig. 4(a). This 
is inevitable: All conic fitting schemes are bound to fail when obtained 
edge segments cover only a small portion of the entire conic. Yet, 
as we see, renormalization produces better results than the optimal 
least-squares scheme. 

Fig. 5(a) shows 19 points on the upper half of .r' + 4y' = 1. 
Each point is independently displaced by random noise obeying a 
two-dimensional Gaussian distribution with variance CT in .r and y 
orientations, and we set f = 10. The fourth-order moment i4 can be 
expressed in terms of CT [ 101. Fig. 5(b) shows the theoretical expecta- 
tion of the conic predicted by Proposition 2 for D = 0.01,0.02,0.03. 
The exact conic is indicated by a broken line. We can see that 
conics fitted to such points are predicted to be flattened with larger 
eccentricities. 

Fig. 6(a) shows 10 randomly chosen samples for (T = 0.02 without 
renormalization. We can clearly observe the statistical bias predicted 
by Proposition 2. Fig. 6(b) shows 100 samples plotted with respect 
to the area S and the eccentricity e (the broken lines indicate the 
exact values S = 1.571 and e = 0.866). The sample average is 
(S, e )  = (1.367,0.894). Fig. 7 shows the corresponding result with 
renormalization. It is clearly seen that the statistical bias has been 
removed. The sample average is (3, P )  = (1.608,0.860). 

In all the above examples, renormalization converges after three 
or four iterations. 

VI. CONVERGENCE OF RENORMALIZATION 
The renormalization procedure described in the preceding section 

was obtained by the following reasoning. Ignoring the fourth-order 
quantities F4 and i4, and putting c = i2, we can express the moment 
tensor &I = ( . l f t J k l )  in the form 
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Fig. 3. (a) An edge image. (b) Least-squares fitting. (c) Renormalization. 

Ideally, the constant c should be determined so that E [ h ]  = A?, but 
this is impossible unless sjatistical noise characteristics are known. 
On the other hand, if E [ M ]  = E[,Gf], we can prove the following 
[IO]: 

E[(C?. kQ)] = (a, E[,GI]Q) 
- 4  i2 

2 
= ( 1  - -)(1 - 3 ( i 2  - %))(Q,,GfQ) 

= 0. (23) 

Note that from (6) J = (Q ,  .U&) takes its absolute minimum 0 for 
the exact solution 0 in the absence of noise. Hence, it is reasonable 
to choose c so that (&. M Q )  = 0 in each iteration step. Since- the 
constant multiplier 1 - F/2 does not affect the eigenmatrix of M, it 
can be dropped from the above definition. Renaming ( c / 2 ) / (  1-c/2) 
as c / 2 ,  we obtain from (22) 

( Q 9 M Q )  = (Q,,UQ) - c ( Q r ( M Q )  + 2 ( M Q Z ) )  (24) 

where- AI is the moment matrix of ( m ,  1 defined by ( 5 ) .  Hence, if 
( & . M & )  # 0 for the current estimates c and Q, then 

(25) ( ~ , . 2 ; t ~ )  - r’(Q(nlQ) + ~ ( M Q ’ ) )  = o 
for 

Note that (Q,kQ) is the smallest eigenvalue of .G. From this 
observation, we obtain the procedure for renormalization given in 
the preceding section. 

The procedure for renormalization can be expressed in an abstract 
form as follows. What we want to compute is the unit eigenvector U,, 
of a positive semidefinite matrix A for eigenvalue 0. The exact value 
of ,i is unknown, but from a statistical error analysis we know that 

iI = E [ A  - CBI. (27) 

where A and B are symmetric matrixes we can compute from image 
data while c is an unknown constant characterizing the behavior of 

image noise. Matrixes 4 and B are random variables since they are 
computed from data, while c has a definite value determined by the 
statistical model of noise. Hence, if we put 

A = A - cB, (28) 

and if we can choose c such that E[A]  = 2, the unit eigenvector 
U ,  of A for the smallest eigenvalue IS an unbiased estimate of U,. 
However, we cannot do this unless we know the noise characteristics. 
On the other hand, if E[A]  = 2, then 

E[(Ci,,Afi,)] = (Ci , ,E[ i ]U, )  = (Um,,A.iiwL) = 0. (29) 

So, we attempt to compute a unit vector uTrL such that (um, AuT,&) = 
0 in each iteration step. If ( U , ,  ,&L,,~) # 0 for the current estimate 
U ,  and e, we define 

(30) 

Then, (u,,A’u,) = 0. Note that ( u l r L , A r u I R )  equals the smallest 
eigenvalue A, of A. 

If U, and c are the converged values, we have A,, = U,,, Au,) 
= 0. This does not necessarily ensure that U,,% coincides with U w L .  
In other words, ( U,, Au, ) is not necessarily 0, because the current 
image data may not necessarily be typical (i.e., may not be a good 
representative of the statistical ensemble). However, we can expect 
that um is a good approximation with a high probability. 

Let us examine the speed of convergence of renormalization. If U,, ,  

is the unit eigenvector of the current A for the smallest eigenvalue 
A,, matrix A is updated at the next step to 

A I =  - (Urn .AurdB.  
(Ib?~,BU,,!)  

-~ 
A ’ =  A -  B. (31) 

( U r n  3 Bum ) 

According to the perturbation theorem, the smallest eigenvalue Ai,, 
of A’ is 
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Fig. 4. alization. 
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(a) Points on the upper half of a conic. (b) Theoretically predicted 
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Fig. 6.  
(b) 100 samples of the area S and the eccentricity e. 

where O ( .  . .)* denotes terms of order 2 or higher in . . e. This means 
that A, converges to 0 quadratically. 

Let AI and ?Z be, respectively, the largest and second largest 
eigenvalues of A, and u1 and uz  the corresponding unit eigenvectors. 
According to the perturbation theorem, the unit eigenvector U;, of 
A’ at the next step for the smallest eigenvalue A& is 

Conic fitting without renormalization. (a) 10 samples of fitted conics. 

I ?-*. t I I * *  

0 .71  
1 1 . 5 7  S 3 . 5  

(b) 

Fig. 7. 
(b) 100 samples of the area S and the eccentricity e. 

Conic fitting with renormalization. (a) 10 samples of fitted conics. 

If A, converges to 0 quadratically, the convergence of U ,  is also 
quadratic. If the optimal weights Lira are computed by using the 
current eigenvector um,  the convergence of the is no longer 
quadratic. However, the convergence is very rapid, and three or four 
iterations are sufficient for most cases. 

Although convergence of renormalization is very rapid, it should 
be emphasized that the converged values are not necessarily the exact 
values, because the noise is random and unpredictable. The purpose of 
renormalization is to remove statistical bias (not completely, though). 
It can be generally proved [ 101 that if each datum has an independent 
error of root-mean-square magnitude U and if the number of data 
is AT, the optimal unbiased estimate has an error of root-mean- 
square magnitude O ( v / O ) ,  which is the lowest bound that can 
be achieved. 

VII. CONCLUSION 
In this correspondence, we pointed out that the least-squares fit is 

statistically biased even if the weights are optimally chosen. We then 
presented a new fitting scheme called renormalization for computing 
an unbiased estimate without knowing noise characteristics. We also 
discussed relationships to existing methods. 

As we have pointed out, conic fitting is essentially a process 
of statistical inference for inferring the locations of the true data 
points. The Kalman filtering [6], [15] is also an effective method 
of statistical inference. It is a linearized update rule for optimally 
modifying the current estimate by a linear operation (orthogonal 
projection, to be precise) each time a new data point is added. 
Hence, as many iterations as the number of the data points are 
necessary. In contrast, renormalization is a nonlinear update rule 
(computing eigenvectors and eigenvalues) for all data points. Hence, 
the number of iterations is independent of the number of data points; 
usually, three or four iterations are sufficient. For this advantage, 
renormalization is expected to become a standard tool for conic fitting 
in computer vision applications. 
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