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Unbiased Estimation and Statistical Analysis 
of 3-D Rigid Motion from Two Views 

Kenichi Kanatani 

Abstract-The problem of estimating 3-D rigid motion from 
point correspondences over two views is formulated as nonlinear 
least-squares optimization, and the statistical behaviors of the 
errors in the solution are analyzed by introducing a realistic 
model of noise described in terms of the covariance matrices of 
“N-vectors.” It is shown that the least-squares solution based on 
the epipolar constraint is statistically biased. The geometry of 
this bias is described in both quantitative and qualitative terms. 
Finally, an unbiased estimation scheme is presented, and random 
number simulations are conducted to observe its effectiveness. 

Index Terms-Error analysis, estimation, model of noise, sta- 
tistical bias, 3-D motion, unbiased estimation. 

1. INTRODUCTION 
ATHEMATICAL analysis of 3-D rigid motion estima- M tion known as shape (or structure) from motion was 

initiated by Ullman [32], who presented a basic mathemat- 
ical framework that had a long lasting influence over the 
subsequent computer vision research. Roach and Aggarwal 
[28] applied this framework to real images and obtained the 
solution by numerical search. Nagel [24] presented a semi- 
analytical formulation, reducing the problem to solving a 
single nonlinear equation. A complete analytical solution for 
eight feature points was independently given by Longuet- 
Higgins [21] and Tsai and Huang [31]. The solution of 
Longuet-Higgins was based on elementary vector calculus, 
whereas the solution of Tsai and Huang involved singular 
value decomposition. Zhuang et al. [37] combined them into 
a simplified eight-point algorithm. Zhuang [36] also discussed 
the uniqueness issue. All these algorithms first compute the 
essential matrix from the so-called epipolar equation and then 
compute the motion parameters from it. 

Since the essential matrix has five degrees of freedom, 3-D 
interpretations can be determined in principle from five feature 
points. Using a numerical technique called the homotopy 
method, Netravali et al. [25] showed the existence of, at 
most, ten solutions. Arguing from the standpoint of projective 
geometry, Faugeras and Maybank [7] also showed that, at 
most, ten solutions can be obtained from five feature points. 
They reduced the problem to solving an algebraic equation of 
degree ten and solved it by symbolic algebra software. Using 
the quaternion representation of 3-D rotation, Jerian and Jain 
[ll] reduced the problem to solving the resultant of degree 
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16 of a pair of polynomials of degree 4 in two variables and 
computed the solution by symbolic algebra software. Jerian 
and Jain [12] also reviewed known algorithms exhaustively 
and compared their performances for noisy data. 

However, all these algorithms are constructed on the as- 
sumption that all data are exact. Hence, they are all fragile 
in the sense that inconsistencies arise in the presence of noise 
(e.g., the solution becomes different, depending on which of 
the theoretically equivalent relationships are used). A noise 
robust algorithm was presented by Weng et al. [34]. They 
estimated the essential matrix from the epipolar equation by 
least squares and then computed the motion parameters by 
least squares. Spetsakis and Aloimonos [29], on the other hand, 
applied direct optimization to the epipolar equation without 
computing the essential matrix. Spetsakis and Aloimonos [30] 
also considered optimization over more than two frames. 

In order to apply 3 -0  motion analysis to real systems, 
statistical analysis of error behaviors becomes a key issue 
since noise is inevitable for real systems. Even if errors are 
inevitable, the knowledge of how reliable each computation 
is is indispensable in guaranteeing achievable performance of 
the systems that use such computations. In addition, statistical 
reliability estimation becomes vital when using multiple sen- 
sors and fusing the data (sensor fusion) because in order to 
fuse multiple data, they must be weighted so that reliable date 
contribute more than unreliable data. 

The statistical approach to image processing and computer 
vision problems is not new. The best known among them 
is the Kalman filter, which is essentially linearized iterative 
optimization. Each time new data is added, the solution is 
modified linearly under Gaussian approximation so that it is 
optimal over the data observed thus far. The Kalman filter was 
originally invented for linear dynamic systems, but its various 
variations and related ideas have been extended and applied to 
many types of computer vision problems involving a sequence 
of image data [3]-[6], [20], [23], [27], [35]. 

However, the main emphasis in such studies is the “tech- 
niques” for computing robust and accurate solutions; there has 
not been much systematic study of statistical error behaviors. 
Although error analyses have been given to 3-D motion 
analysis by several researchers. most of the studies were 
empirical and qualitative, e.g., estimating approximate orders 
of errors and conducting simulations with noisy data [19], 
(261. A notable exception is Weng et al. [34], who analyzed 
the perturbation of the essential matrix and the resulting 
motion parameters in detail. However, the method involving 
the essential matrix is not optimal in the presence of noise. 
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E/ 
I ?  

(a) (b) 

Fig. 1. Camera motion { R ,  b} relative to a point P: (a) Description with 
respect to the camera coordinate system; (b) description with respect to the 
scene coordinate system. 

The fact that the least-squares solution based on the epipolar 
equation are statistically biased has also been recognized [l] ,  
[29]. In this paper, we give a rigorous statistical analysis of 
direct optimization that does not involve the essential matrix. 

We first establish a statistical model of noise in terms 
of the covariance matrix of the N-vector. This formulation 
is based on the theoretical framework Kanatani [17] called 
computational projective geometry. Then, the statistical bias 
of the solution is evaluated in quantitative terms, and the 
geometry of this bias is described in both qualitative and 
qualitative terms. Finally, an unbiased estimation scheme is 
presented, and random number simulations are conducted to 
observe its effectiveness. 

11. GENERAL FORMULATION OF 3-D MOTION ESTIMATION 

Let {P,}, (Y = 1, . . . , N be feature points, such as special 
markings and corner vertices, that can be clearly distinguished 
from other points. Let {m,} be unit vectors starting from 
the center of projection 0 (or the center of the lens of the 
camera), which we call the viewpoint. We call these vectors 
the N-vectors of the feature points. The image coordinates of 
the feature points play no role in obtaining 3-D interpretation 
other than in determining the N-vectors. Mathematically, the 
use of N-vectors is equivalent to considering a hypothetical 
spherical image surface of radius 1 centered at the viewpoint. 

Since the 3-D motion of an object relative to a fixed camera 
is equivalent to the opposite 3-D motion of the camera relative 
to the object, we henceforth assume that the object we are 
viewing is fixed in the scene, relative to which the camera 
is rotated by R and translated by h (Fig. 1). Hence, the 3-D 
motion of the camera is specified by the motion parameters 

If the camera is moved, feature points move into other 
positions on the image plane. Let {m&} be their N-vectors 
viewed from the camera coordinate system after the motion 
(Fig. l(a)). Viewed from the scene coordinate system, which 
we identify with the first camera coordinate system, they are 
Rm, because the second camera coordinate system is rotated 
by R relative to the first one (Fig. l(b)). Hence, if r, and r& 
are the depths (i.e., the distances from the viewpoint 0) of 

{R, h).  

From this, we immediately observe the following: 
The translation h and the depths r, and r& are determined 
only up to scale. Namely, if r,, rk and {R, h} are a 
solution, so are kr,, krk and {R, kh} for any nonzero 
k .  This means that a large motion far from the viewer is 
indistinguishable from a small motion near the viewer. In 
order to eliminate this scale indeterminacy, we adopt the 
scaling llhll = 1 whenever h # 0. 
It is easy to check if h # 0. If h = 0, the motion is a 
pure 3-D rotation, and all N-vectors undergo the “camera 
rotation transformation” [ 131-[16]: 

m, = Rmk. (2) 

Such a rotation R is determined by the least-squares 
optimization 

N 

W,llm, - Rm&1I2 + min, (3) 
a=l 

where W, are positive weights. The solution is obtained 
by the method of singular value decomposition [2], [33], 
the method of polar decomposition [9], or the method of 
quaternion representation [8] (Appendix A). The residual 
of (3) measures the “goodness of fit,” according to which 
a decision is made as to whether or not h = 0. Assuming 
that h # 0 has already been confirmed, we henceforth 
adopt the scaling llhll = 1. 
There still remains indeterminacy of sign. Namely, if 
r,, r& and {R,  h}  are a solution, so are -re,  -rk 
and {R,  -h} .  Depths r ,  and -r, define a “mirror 
image pair.” The correct sign is chosen by imposing the 
constraint that all feature points are “visible.” Namely, 
the solution is signed so that r,  > 0 and r& > 0. 
The number of unknowns is three for R (3-D rotation 
is parameterized by three numbers [16]), two for h (unit 
vector), and 2N for r, and r&, totaling 2N + 5. Since 
the equations in (1) provide N vector equations, they 
assign 3N constraints; therefore, N must be such that 
2N+5  5 3N or N 2 5. Thus, the problem can be solved 
in principle if at least five feature points are observed, 
although multiple solutions may exist [7], [ l l ] ,  [25]. 

111. THE EPIPOLAR EQUATION 

In this paper, (a,b) denotes the inner product of vectors a 
and b, and (a,b,cl(= (a x b,c)  = ( b  x c ,a )  = (c  x a ,b ) ) ,  
which is the scalar triple product of vectors a, b, and c. 

Theorem 1: Two sets of unit vectors {m,} and {m&}, 
a = 1,. . . , N ,  can be interpreted as resulting from a camera 
motion of motion parameters {R, h}  if and only if 

feature point P, before and after the motion, respectively, all Ih,m,,RmkI = 0 .  (4) 
we need to do is solve the following problem: 

Problem 1: Given two sets of unit vectors {m,} and 
{mk}, a = 1, .  , . , N ,  compute the depths r, and r& and the 

Proof: Equation (1) states that vector h is expressed as a 
linear combination of unit vectors Rm& and m,. The depths 
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r,  and r& that satisfy this equation exist if and only if the three 
vectors h, m,, and Rm& are coplanar for each Q = 1,. . . , N .  

We can also see from the above argument that the depths 
r,  and r& are unique (for a particular choice of the sign of h) 
if and only if m, and Rm& are nonparallel, or equivalently 
(m,,Rm&l2 # 1. 

Equation (4) is identical to the epipolar constraint of con- 
verging stereo if the translation h is identified with the 
base-line vector. Hence, it makes sense to call (4) the epipolar 
equation. The epipolar equation (4) provides N constraints 
for five unknowns (two for h and three for R). So again, the 
problem is solved if N 2 5.  

If the motion parameters { R , h }  are obtained, the depths 
F ,  and r& are computed from (1). However, (1) is an over- 
specification, giving three equations for depths r,  and .&. 
Hence, there exist infinitely many ways to express the depths 
r ,  and r& in terms of the motion parameters { R ,  h} .  A robust 
approach is the least-squares optimization 

Jlr,m, - r&Rm& - hJI2 .+ min. ( 5 )  

Differentiating the left-hand side with respect to r ,  and r& 
and setting the result to 0, we obtain 

(6) 
(m,,Rmb,)(h,m,) - (h,Rm&) 

1 - (m,l,Rmb,)2 
rk = 

The sign of the translation h is determined so that the depths re 
and r& become positive. If this is not possible in the presence 
of noise, a reasonable policy is to ask for the “majority vote”: c,=l(r, + F & )  > 0. If (m,,Rm&)2 = 1, the depths are 
indeterminate. 

N 

IV. LEAST-SQUARES OPTIMIZATION 

In order to assure robustness of computation, we must apply 
some kind of optimization. The direct optimization based on 
the epipolar equation (4) is stated as follows: 

Problem 2: Given two sets of unit vectors {m,}  and 
{m&},  Q = 1,. . . , N ,  compute a rotation R and a unit vector 
h (up to sign) such that 

N 

WaIh,m,,Rm&l’ -+ min.  (7) 
,=l 

The sum of squares is rewritten as 

N 

W, (ma x Rm&, h)’ 
,=l 

N 

= (h,  W,(m, x Rmb,)(m, x Rm&)Th) (8) 

where T denotes transpose. This is a quadratic form in unit 
vector h. Hence, Problem 2 reduces to the following form: 

,=l 

Problem 3: Given two sets of unit vectors {m,}  and 
{m&},  Q = 1,. . . , N ,  compute a rotation R that minimizes 
the smallest eigenvalue of the matrix 

N 

A(R)  = W,(m, x Rm&)(m, x Rm&)T (9) 
,=l 

and compute the corresponding unit eigenvector h. 
This is a nonlinear optimization problem; therefore, we must 

resort to numerical search. In order to do iterations, we need 
to compute the gradient of the cost function. By means of 
the quaternion representation of 3-D rotation (Appendix A), 
any rotation R is expressed in terms of four real numbers 40, 

q1, qz ,  and q3 such that qo2 + q12 + 42’ + 43’ = 1. Hence, 
the matrix A(R) can be regarded as a function of 4-D unit 
vector q = (qo ,q1 ,  q z ,  q3)T.  Its smallest eigenvalue A, is also 
regarded as a function of q. 

By applying the well known perturbation theorem, the 
gradient of A, with respect to q is obtained in the following 
form (Appendix B): 

Here, h is the unit eigenvector of A(R) for the smallest 
eigenvalue A, and 

N 

,=l 

+ (m, x Rm&)(m, x ~ , m & ) ~ ]  (11) 

where D ,  = dR/dq,, K = 0,1 ,2 ,3 ,  (Appendix B). 
Numerical search may be trapped into a local minimum if 

the initial guess is not close to the true solution. Fortunately, 
the problem can be solved analytically if all data are exact 
[21], [31], [34], [36], [37]. The analytic solution is obtained 
by first computing the essential matrix and then computing 
the motion parameters (the procedure of Weng et al. [34] is 
summarized in Appendix C). Although this solution is not 
optimal in the presence of noise, it can be used as the starting 
value of the optimization search. In the following, we analyze 
how the resulting optimal solution is affected if the original 
data {m,} and {m&}, Q = 1, . . . , N are perturbed by noise. 

v. STATISTICAL MODEL OF NOISE 
We extend the meaning of the term “noise.” A digital image 

consists of discrete pixels, and the noise in the strict sense 
affects the electric signal that carries information about the 
gray levels of the pixels. The signal is then quantized and 
stored as image data. As a result, point and line data detected 
by applying image operations are not accurate. Consequently, 
N-vectors computed from them are not exact. Here, we regard 
such errors as caused by “noise.” This means that the noise 
behavior is characterized not only by the camera and the 
memory frame system but also by the image operations 
involved-edge operators, thinning algorithms, etc. 

Let m be the N-vector of a point in the image when there 
is no noise. In the presence of noise, a perturbed N-vector 
m’ = m + Am is observed. We regard the “noise” Am 
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Fig. 2. Model of noise 

as a random variable. Namely, each observation is regarded 
as a “sample” from a “statistical ensemble.” Consider the 
covariance matrix 

V[m] = E[AmAmT] (12) 

where E [  ‘ 1  denotes the expectation over the statistical en- 
semble. Assume that noise Am is sufficiently small compared 
with m itself. Since m is a unit vector, noise Am is always 
orthogonal to m to a first approximation; m’ = m + Am is 
again a unit vector to a first approximation. We immediately 
observe the following (Appendix D): 

The covariance matrix V[m] is symmetric and positive 
semi-definite. 
The covariance matrix V[m] is singular with m itself as 
the unit eigenvector for eigenvalue 0: V[m]m = 0. 
If al2, a2*, and 0 (01 2 0 2  > 0) are the three eigenvalues 
and if { U .  U. m} is the corresponding orthonormal system 
of eigenvectors, the covariance matrix V[m] has the 
following spectral decomposition [18]: 

V[m] = cr12uuT + cr2*vvT(+0mmT). (13) 

The root mean square of the orthogonal projection of 
noise Am onto orientation I (unit vector) takes its maxi- 
mum for I = U and its minimum for I = U .  The maximum 
and minimum values are 01 and 0 2 ,  respectively. 
The root-mean-square magnitude of Am is d m  = 

In intuitive terms, noise Am is most likely to occur in 
orientation U (which is the unit eigenvector of V[m] for the 
largest eigenvalue .I2) and least likely to occur in orientation 
v (which is the unit eigenvector of V[m] for the second largest 
eigenvalue 0 2 ~ ) .  The magnitude ( (Am((  is cr1 in orientation U 

and cr2 in orientation v in the sense of root mean square. 
We adopt the following model of noise: “Noise (in our 

extended sense) occurs at each point on the image plane placed 
at distance f from the viewpoint 0 and is equally likely in all 
orientations with the same root mean square F” (Fig. 2 ) .  We 
call the constant f the focal length and t (measured in pixels) 
the image accuracy. Let k = (0.0, l)T. Our model implies 
the following: 

Proposition 1: The covariance matrix V[m] of the N- 
vector of a point at distance T from the image origin is given 

d?TG. 

by 

where 

U = f J 1 +  r2m f 2  x k. v = f u  x m. (15) 

Proof: Let m be the N-vector of point P. The eigen- 
vector U for the largest eigenvalue is orthogonal to the plane 
defined by m and k (Fig. 2). Hence, U = f N [ m  x k] = 
f m  x klsin8, where 0 is the angle between m and k. The 
eigenvector v for the second largest eigenvalue is orthogonal to 
both m and U and, hence, is given by v = f u  x m. According 
to our model, noise is isotropic in the image, and the root mean 
square of the image error €1 in orientation U is equal to the 
root mean square € 2  in the orientation perpendicular to it. Since 
the image accuracy is E = Jm, it follows that €1 = 
€ 2  = c / f i .  Noise c / f i  at point P in orientation U causes 
a perturbation of m by t/filOPI, whereas in the orientation 
perpendicular to it, the perturbation is €COS f ? / f i ( o P I .  This 
means that the covariance matrix V[m] is given by 

€ 2  € 2  cos2 e 
uuT + ___ V[m] =- 

210P/2 2 /0P /*  vVT 

Substituting cos8 = l / d m ,  sin8 = 1 / d m ,  
If the size of the image is small as compared with the focal 

length f ,  we can assume that T << f ,  and hence, 1/(1 + 
T ‘ /  f 2 ,  FZ 1, which we call the small image approximation. 
In this approximation, the covariance matrix V[m] of (14) 
reduces to (c2/f2)(uuT + vvT)/2. If we put 

and /OP(  = f d m ,  we obtain (14). 

t = v “  (17) 

then F2 = trV[m] = t2 / f2 .  Since {u,v.m} is an orthonormal 
system, we have uuT + vuT + mmT = I (the unit matrix). 
Hence, we have the following: 

Corollary 1: In the small image approximation, the co- 
variance matrix V[m] is given by 

(18) 
i2 

V [ m ]  = - ( I  - “T). 
2 

In our model, the true position of a point coincides with its 
expected position to a first approximation. This does not hold 
if higher order effects are considered. According to our model 
(Fig. 2), the image coordinates (z.y) and the corresponding 
N-vector m = (ml.  m2. m3)T are related in the form 

Conversely, the N-vector of a point ( 2 ,  y) on the image plane 
is given by 

= N [(;)I 
where N[.] denotes normalization into a unit vector. If noise 
Am occurs, it can be shown (Appendix E) that 
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E [ f  m2 + Am2 
m3 + Am3 

+ 0 ( ~ ~ ) 3 )  (21) which we simply write as U x A x U. 

where (and hereafter) O( . . . )“  denotes a term of order n in VI. STATISTICAL ANALYSIS OF 3-D MOTION I I /  

.... This means that the expected image coordinates do not 
agree with their unperturbed values. One way to remove this 
statistical bias is to define the N-vector m by not (20) but 

where 

In Problem 2, it is reasonable to measure the reliability 
of each N-vector m, by the mean squares E[llAma\l] = 
trV[m,] and E[llAmhII] = trV[m&]; therefore, we can 
choose the weight 

const. 
trV[m,] trV[m&] ’ 

w, = 

(23) 

We call this f̂  the effective focal length. The following can 
be confirmed: 

= 5 + O(Am)3% 1 m l  + Am1 
m3 + Am, 

Reliable data have small covariance matrices and are thereby 
assigned large weights, whereas unreliable data have large 
covariance matrices and are thereby assigned small weights. 
Since multiplication of WO by a constant does not affect the 
solution, we adopt the scaling C,“=, WL = 1. Define the 
moment matrices of {m,}  and { m i }  by 

Hence, all we need to do is treat the correspondence between 
points in the image and their N-vectors unsymmetrically. 
When we define the N-vector of a “data point” (x. y), we use 
(22); when we interpret a “computed” N-vector m, we use 
(19). The intuitive meaning of the effective focal length is as 
follows. If we define m by (20), the error model of Proposition 
1 defines an error distribution symmetric with respect to the 

Consider Problem 3. In the presence of noise, the matrix 
A(R)  is perturbed into 

N 

A(R) = W,((m, + Amrr) x R(mL + Am;)) 
,=l 
((m, + am,) x R(m; + Am’,))T. (30) 

axes defined by U and U. This means that when projected 

the image origin than it. Our unsymmetric treatment 
effectively displaces data points toward the image origin to 
cancel this bias. However, this bias is a second-order effect 

onto the image, noise is more likely to occur away from the ’Ina1’ image approximation and assumin& that 
the data are statistically independent, we now show that this 
perturbation is biased. 

Lemma 

and is extremely small. If t x 1 N 10 (pixels) for f = 1000 
(pixels), then i2 x N lop4, which can be negligible as 
compared with 1. 

We introduce the following notations. Let U and ‘U be 
vectors, and let A be a matrix. We define u x  A to be the matrix 
constructed by the vector product of U and each “column” of 
A and A x ‘U as the matrix constructed by the vector product 
of each “row” and U. To be precise, we define for vectors U 

= (ut) ,  v = ( v i ) ,  and matrix A = ( A z 3 )  

A X V =  

E[A(R)]  =(1- - )2A(R)  2 
2 

e 2  <2 

2 2 - -(1 - - ) ( M  + RM’RT) + izI. (31) 

Proof: If m, and mh are perturbed by Am, and 
Am’,, respectively, we have E[Am,] = E[Amh] = 0, 
E[Am,Am>’] = E[Am;Am;] = 0 ,  and 

where ba:j is the Kronecker delta. Hence, the expectation of 
A(R) is 

It can be easily shown (Appendix F) that 
Using the identities U x (abT) x v = (U x ~ ) ( b  x v ) ~  and 
U x I x U = U U ~  - I for unit vectors U ,  v, Q, and b (Appendix (U x A) x v = U  x (A x v) (27) 
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F), we obtain Proof: To a first approximation, the bias of the rotation 
R and the bias of the translation h can be estimated inde- 
pendently. Hence, we can assume that the translation h has its 
true value h. According to the perturbaticn theorem (Appendix 
B), the smallest eigenvalue of A(R)  is X,(R) = (h,A(R)h) 
to _a first approximation. From Lemma 1, its expectation 
E[X,(R)] = (6, E[A(R)]h) is 

E[(Am, x Rm&)(Am, x R T ~ ' , ) ~ ]  
= -Rm& x E[Am,Am:] x Rm& 
= -Rm& x V[m,] x Rm& 

= --Rm& x ( I  - m,m:) x Rm& 
2 

E2 
= - ( I  - (Rm&)(Rm&)T- 2 - 
(ma x Rm&)(m, x Rm&)T). 

Similarly 

E[(m, x RAm&)(m, x 
= -ma x R E [ A T ~ & A ~ & ~ ] R '  x m& 
= -ma x RV[m&]RT x m& 

22 
= --ma x R(I - m',mLT)RT x m& 

= - ( I  - m,m,' - (ma x ~ m & ) ( m ,  x ~ m & ) ~ ) .  (35) 

2 
22 

2 

c2 
E[X,(R)] = (1 - T)2(h ,A(R)h)  

22 ;2 
- -(1 - T ) ( h ,  ( M  + RM'RT)h) + E2I. (39) 2 

(34) 

On the other hand, we have (36), which is at the bottom of this 
page, where (35) is used. Substituting (34)-(36) into (33), we 
obtain 

Let R be the true rotation that minimizes the smallest eigen- 
value of A(R), and put R = R + AR. Since (h ,A(R  + 
AR)h) = O(AR)2, we have 

E[X,(R + AR)] 
22 22 

2 2 
= C21 - -(1 - - ) (h ,  (M + RM'RT)h) 

+ O(AR)2. (40) 

;2 ;2 

2 2 
- -(1- - ) (h ,  (ARM'RT + W ' A R T ) h )  

Since R + AR is a rotation matrix, there exists a vector A1 
such that AR = A1 x R to a first approximation. Hence 

22 N (h, (ARM'RT + RM'ART)h) = 2 ( h ,  ARM'RTh) 

2 
E[A(R)] = (1 - - )2  W,(m, x Rm&)(m, x Rm&)T = 2(h, A1 x RM'RTh) = -2(Al, h x RM'RTh). (41) 

,=l 

N 

RT)+t21  (37) 

from which follows (31). H 
Theorem 2: Computation of the rotation R is statistically 

biased by a small positive angle about axis 

1 M -N[h x RM'RTh]. (38) 

Consequently 

22 22 
E[X,(R + AR)] = E21 - -(I - - ) (h ,  (M + RM'RT)h) 

+ g2(1 - - ) (Al ,h  x W'RTh) + O(AR)2. 

2 2 

(42) 
22 

2 

This is minimized most steeply by 

A1 = -ch x RM'RTh (43) 

where c is a sufficiently small positive const_ant. In other words, 
the rotation that minimizes the perturbed L ( R )  is biased by 
a small rotation about N[Al] = - N [ h  x m ' R T h ] .  Omitting 

W the bars, we obtain (38). 
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Theorem 3: Computation of the translation h is statisti- 

Ah x C ( ( M  + RM’RT)h - (h,  ( M  + RM’RT)h)h) 

cally biased by 

(44) 
where C is a small positive constant. 

Proof: This time, we can assume that the rotation R has 
its true value R. Let h be the true translation. If A(R) is 
perturbed into A(R) and if h + Ah is the unit eigenvector for 
its smallest eigenvalue, the smallest eigenvalue is 

im(B)  = ( h  + Ah,A(R)(h + Ah)). 

E[A,(R)] = --(1- - ) (h,  ( M +  RM’RT)h) + 21 

(45) 

From Lemma 1 and (h,A(R)h) = 0, its expectation is 

22 g2 

2 2 

- c2(1 - :)(Ah, ( M  + RM’RT)h) + O(Ah)’. (46) 

Proof: From (47) and (49), we have 
h 

(M + RM’RT)h x (a, h)m + (f i, h)(m - 7) .  (52) 

Substituting this into (44) and renaming 2C as C, we obtain 
(51). 

From Propositions 2 and 3, we observe the following: 
The computed rotation R is biased by a small rotation 
about an axis approximately perpendicular to both the 
translation h and the viewing orientation m. 
The bias of the rotation is such that the viewing orien- 
tation f i  is rotated closer to h if the camera approaches 
the object and away from h if the camera recedes from 
the object. 
The computed translation h is biased toward the viewing 
orientation f i . 
The biases of the rotation R and the translation h are 
both minimum when the camera moves in the viewing 
orientation or perpendicular to it. 

This is most steeply minimized if Ah is in the direction of 

the orientation of the steepest descent is the projection of 
( M  + m‘RT)h onto the plane perpendicular to h. Omitting 
the bar, we obtain (44). 

( M  + m R T ) & ,  but since + Ah must be a unit vector, VIII. UNBIASED ESTIMATION OF MOTION PARAMETERS 

From Lemma 1, we can construct a scheme for estimating 

Theorem 4: Given two sets of N vectors {m,} and {mh}, 
unbiased motion parameters. 

the rotation R that minimizes the smallest eigenvalue of 

VII. SMALL OBJECT APPROXIMATION 
If the object we are viewing is small and if all the feature 

points are concentrated in a small region of depth T >> 
/lh$/(= l), we can approximate m, by rfi. Since mly = 
R N[r,m, - h] (see (l)), we can also approximate m; by 
RTN[Ffi  - h].  Hence 

RM‘RT x N[Fm - h]N[Fm - hIT (47) M M ~ % 6 ~ ,  

which we call the small object approximation. 

1 of the statistical bias of the computed rotation R is 
Proposition 2: In the small object approximation, the axis 

I x sgn((m, h ) ) N [ f i  x h].  (48) 

N 

A(R) = W,(m, x Rm&) 
,=l 

E2 
2 

is an u!biased estimate of R. The corresponding unit eigen- 
vector h is an unbiased estimate of h. 

Proof: If there is no noise (Z = 0), the matrix A(R) 
reduces to A(R) .  In the presence of noise, A(R) becomes 

(m, x Rm:,)T + - ( M  + RM’RT) - g21 (53) 

A(R) + ?(&f 2 + Rli/i’RT) - Z21 (54) 

where A(R) is the matrix given by (30). Matrices fi and &‘ 
are given by 

Proof: Since [IF* - h[l2 = F2 - 2F(rTa, h)  + 1 and T >> 1, N 

the second equation in (47) implies & = W,(m, + AmO)(ma + AmO)T, 
C Y = l  

A.’ 

&’ = W,(m& + Am&)(m& + Am&)T. (55) h R M ‘ R ~ h  (Fa - h)(Fa - h)T 
F2 - 2 F ( f i ,  h) + 1 

0=l 
- - F ( f i ,  h) - 1 ( ~ m  - h) N, -(-- (fi h) - h).  (49) We can easily see that F2 - 2 F ( f i ,  h) + 1 

N 

E[&] = W,(m,m; + E[Am,AmL]) Hence 

,=l 
(50) N h x RM’RTh M (m, h)h x ria. 

From Theorem 2, we obtain (48). 
Proposition 3: In the small object approximation, the sta- 

tistical bias Ah of the computed translation h is 

Ah x C(rfi, h)(m - (a, h)h). (51) 

= M + W,V[m,] 
,=l 

where C is a positive constant. 
2 22 

= (1 - - ) M +  --I. 
2 2 
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.. 

(a) (b) 
Fig. 3. Simulated 512 x 512-pixel images of 100 feature points randomly 

generated inside a cube before and after a small camera motion. 

Similarly (a) (b) 
Fig. 4. (a) Projected errors of rotation and (b) projected errors of translation 
for 100 trials. The solid line in (b) indicates the predicted orientation of the (57) 

i 2  2 E[M'] = (1 - - )Mi  + --I. 
2 2 bias. 

From Lemma 1 and (56) and (57), the expectation of (54) is 
22 ;2 

- -(I - -) 
2 2 

(1 - , ) 2 ~ ( ~ )  E2 

( M  + RM'RT) + t21 

IX. RANDOM NUMBER SIMULATIONS 

Fig. 3(a) and (b) are simulated 512 x 512-pixel images of 
100 feature points randomly generated inside a cube before and 
after a small camera motion. The focal length is set to f = 500 
(pixels). A random noise obeying a normal distribution of 
standard deviation E = 1.0 (pixel) is added to the x and y 
coordinates of all the feature points independently before and 
after the motion. 

The discrepancy between the computed rotation R and the 
true rotation R is measured by vector A1 = ARI', where AR 
and I' (unit vector) are, respectively, the angle and axis of 
relative rotation R R ~  (i.e., R = R + ~1 x R + o ( A I ) ~ ) .  
Fig. 4(a) shows orthogonal projections of A1 onto the plane 
perpendicular to the axis 1 predicted by Theorem 2 for 100 
trials, each time using different noise. Vector 1 points upward. 
White circles indicate upward orientations, and black circles 
indicate downward orientations. The large circle indicates the 
magnitude 0.5'. We see that the error of rotation is biased 
around the axis Z. Fig. 4(b) shows orthogonal projections of the 
computed translation h onto the plane perpendicular to the true 
translation h. The solid line indicates the orientation predicted 
by Theorem 3, and the large circle indicates the magnitude 0.2. 
We see that the error of translation is biased in the orientation 
predicted by Theorem 3. Fig. 5(a) is the histogram of the error 
AR (in degrees), and Fig. 5(b) is the histogram of the angle 
Ad = cos-'(h, h) (in degrees). The root mean squares of AR 
and Ab' are 3.73" and 4.83', respectively. 

Fig. 6(a) and (b), which, respectively, correspond to Fig. 
4(a) and (b), are obtained by applying the unbiased scheme 

Fig. 6.  (a) Projected errors of rotation and (b) projected errors of translation 
for 100 trials of unbiased estimates. 

of Theorem 4. It is clearly seen that the error A1 is almost 
uniformly distributed in all directions. Fig. 6(b) also shows that 
the bias is removed and the magnitude of the error is reduced 
as well. Fig. 7(a) is the histogram of the error AR (in degrees), 
and Fig. 7(b) is the histogram of the angle Ad = cos-'(h, h) 
(in degrees). The magnitude of error is drastically reduced for 
both rotation and translation. The root mean squares of AR 
and Ad are 0.47 and 0.68', respectively. In all experiments, 
the effects of the effective focal length discussed in Section V 
are negligibly small, as expected. 

X. CONCLUDING REMARKS 

In this paper, the problem of estimating 3-D rigid motion 
from two views was formulated as nonlinear optimization, 
and the statistical behaviors of the errors in the solution were 
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L 
0 5 deg o 5 

Problem A.2: Given a correlation matrix K, compute a 
rotation R such that 

t r ( R T K )  -+ max.  (61) 

Analytical procedures to solve this problem were proposed 
independently by Horn [8], using the “quaternion represen- 
tation” of 3-D rotation by Arun et al. [ 2 ] ,  using “singular 

P value decomposition,” and by Horn et al. [9], using “polar 
deg 10 decomposition.” The methods of Arun et al. [21 and Horn 

Fig. 7. (a) Histogram of errors of rotation and (b) histogram of errors of 
translation of unbiased estimates. 

analyzed by introducing a realistic model of noise. It has been 
shown that the optimal solution based on the epipolar equation 
is “statistically biased.” The expected bias was evaluated in 
analytical terms, and its geometry was described in both quan- 
titative and qualitative terms by employing the small object 
approximation. Finally, an unbiased estimation scheme was 
presented, and random number simulations were conducted to 
observe its effectiveness. 

In order to apply the unbiased scheme, the statistical behav- 
iors of noise-in particular, the root mean square of the error 
in each feature point-must be known. Many approaches are 
conceivable for estimating them. For example, we can use 
an “a posteriori estimation”-we guess the error magnitude 
and compute a 3-D interpretation, according to the feature 
points that are matched on the image plane. Then, the amount 
of average mismatch is regarded as the magnitude of noise. 
This process can be iterated if necessary. Alternately, we can 
guess the magnitude of noise from the residual of the least- 
squares optimization. Detailed studies and comparisons of such 
error estimating techniques are beyond the scope of this paper 
and left to future research. The purpose of this paper it to 
establish the fact that accuracy can be greatly increased by 
correctly estimating the magnitude of noise and to present 
a new mathematical framework suitable for statistical error 
analysis. 

APPENDIX A 
3-D ROTATION FITTING 

Consider the following problem: 
Problem A.l: Given two sets of vectors {m,} and {mk},  

cy. = 1,. . . , N ,  compute a rotation R such that 

5 Wallma - RmL112 .+ min (59) 
a=l 

where W, are nonnegative weights. 

defined by 
If the correlation matrix K between {m,} and {m&} is 

N 

K = Wam,mkT (60) 
a=l 

Problem A.l  is restated as follows: 

_ -  
et al. [9] carry out minimization over orthogonal matrices. 
Umeyama [33] modified their methods so that minimization 
is carried out over rotations. We state these results in a more 
refined form without proofs (see [18] for the details). 

The first method is to decompose the correlation matrix K 
into the form 

where V and U are orthogonal matrices. This decomposition 
is called the singular value decomposition, and 01, a2, and 
0 3  are the singular values, where the number of nonzero 
singular values are the rank of K .  The following theorem 
is mathematically equivalent to Umeyama’s extension [33] of 
the method of Arun et al. [2]. 

Theorem A.l: If K = VAU’ is the singular value de- 
composition, t r (RT K) is maximized over all rotations if 

The solution is unique i f rankK > 1 and det (VUT)  = 1 or if 
rankK > 1 and the minimum singular value is a simple root. 

The second method to solve Problem A.2 is to decompose 
the correlation matrix K into the form 

K = V S  = S‘V (64) 

where V is an orthogonal matrix, and S and S’ are semi- 
positive definite symmetric matrices. This decomposition is 
known as the polar decomposition. The following theorem is 
an extension to the method of Horn et al. [9]. 

Theorem A.2: If K = V S  = S’V is the polar decompo- 
sition, t r ( R T K )  is maximized over all rotations if 

R = V ( I  + (det V - l)u,u;) 
= ( I  + (det V - l )vmvL)V (65) 

where U, and v, are the unit eigenvectors of S and SI, 
respectively, for the smallest eigenvalue. The solution is unique 
if rankK > 1 and det V = 1, or if rankK > 1, and the 
smallest eigenvalue of S(and of SI) is a simple root. 

The third method is based on the well-known fact that for 
any rotation matrix R, there exist four numbers 40, q1, q2, and 
q3 such that qg + 412 + qg + q$ = 1 and (66), which is shown at 
the bottom of the next page. Conversely, any four numbers 90, 
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q1,q2, and 43 such that qi+qf+qz+qz = 1 define a rotation by 
this equation. This is known as the quaternion representation 
of 3-D rotation (see [16]). The following theorem summarizes 
the method of Horn [8]. 

Theorem A.3: Given correlation matrix K ,  define a 
4-0 symmetric matrix, which is shown in (67) at the bpttom 
of this page. Let q be the 4-0 unit eigenvector of K for 
the largest eigenvalue. Then, tr(RTK) is maximized by the 
rotation represented by q. The solution is unique if the largest 
eigenvalue of K is a simple root. 

APPENDIX B 
PERTURBATION THEOREM 

The following is the well-known perturbation theorem. We 
omit the proof (see [18] for the details). 

Proposition B.l: Let A be an n-dimensional symmetric 
matrix having eigenvalues XI, .  . . ,A, with (111,. . . ,U,} the 
corresponding eigenvectors forming an orthonormal system. I f  
matrix A is perturbed into 

A‘ = A + S A  

X i  = X i  + ( ~ i ,  SAU~)  + O(SA)’. 

(68) 

each eigenvalue X i  is perturbed into 

(69) 

If eigenvalue X i  is a simple root, the corresponding eigenvector 
ui is perturbed into 

If the “quaternion representation” of 3-D rotation (Appendix 
A) is used, every rotation R is expressed in terms of a 4-D 
unit vector q = (q0,ql,q2,q3)T in the form of (66). If each 
q, is perturbed into 

4: = q K  + s q K  (71) 

the rotation R of (66) is perturbed by 
3 

SR = DKSqK (72) 
K = O  

where D, = dR/dq,, rc = 0 , 1 , 2 , 3 ,  are given by 

40 -43 

-42 41 

-40 q3 -42 
-43 -40 41 

(73) 

This perturbation of R in turn causes a perturbation of A of 
(9) to a first approximation by 

(m, x SRm&)(m, x RmL)T 
a = l  

+ (m, x RmL)(m, x ~5R.m:)~ 

.? n 

= 2 W, ((m, x D,mh)(m, x RmL)T 
K=l 

+ (m, x ~ m & ) ( m ,  x D , R ~ ; ) ~  ) . (74) 

Hence, if T,, K = 0 , 1 , 2 , 3 ,  is defined by ( l l ) ,  the perturbation 
theorem implies that the smallest eigenvalue A, of A(R) is 
perturbed to a first approximation by 

3 

= C(h, T , h ) k  (75) 
K=O 

where h is the unit eigenvector of A(R) for the smallest 
eigenvalue A,. This means that the gradient of A, with 
respect to qK is given by (10). 

APPENDIX C 
ANALYTICAL SOLUTION OF 3-D MOTION 

For motion parameters {R ,  h}, define the essential matrix 
G by 

(76) G = h x R .  

(See (25) for the definition of this multiplication operation.) 
It can easily been shown that IlGll = a, where IlGll = 

It is easy to see that Problem 2 is split into 
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Problem C.l: Given unit vectors {m,} and {mk},  cy = 
1,. . . , N ,  compute a matrix G (up to sign) such that 

N 
~ ~ ( m , , ~ m ’ , ) ~  -+ min, I I G I I  = Jz. (77) 

Problem C.2: For a given matrix G, compute a unit vector 

a=l 

h and a rotation R such that 

JIG - h x R(I2 --t min .  (78) 

A matrix G is said to be decomposable if it is expressed 
in the form of (76) for a unit vector h and a rotation matrix 
R. The minimization (77) should be carried out under the 
constraint that G be decomposable. With a small compromise, 
we carry out the minimization (77) without the constraint of 
(76). The resulting solution is expected to be an approximation 
to the true solution, or at least as a good initial guess for the 
optimization search. The following summarizes the procedure 
of Weng et al. [34]. 

Problem C.1 is easy. If ma(z) and m&(i) are the ith 
components of vectors m, and m:, respectively, the sum of 
squares of (77) is written in elements as 

iv 

Wa(m0, Gm’,)2 = 
0=l 

If tensor M = (Mijkl) is defined by 
N 

,=l 

the minimization (77) is written in the form 
? 

(G,MG) = c 
a , j , k , l = l  

(81) 
Define a 9-D vector G = (G,) by renaming indices (ij) of 
Gij as K = 3(i - 1) + j : (11) 4 1, (12) 4 2, .  . . , (33) -+ 9. 
Similarly, define a 9-D matrix k = ( M K x )  by renaming two 
pairs of indices (z j )  and ( k l )  of M i j k l  as (.A) = (3(2 - 1) f 

(99). The above minimization now reads 
j ,3(k-1)+1):  (1111) + (ll), (1112) -+ (12), . . . , (3333) + 

9 9 

K , X = l  K C = l  

(82) 
The minimym is attained by the 9-D eigenvector of norm fi 
of matrix $4 for the smallest eigenvalue. The computed 9- 
D vector G = (G,) is then rearranged into a 3-D matrix 
G = (Gij)  by renaming the index K : i = ( K  - l)div3 + 1 and 
j = ( K  - 1) (mod 3) + 1, where “div” indicates the integer 
part of the quotient and “mod” the remainder. 

Problem C.2 is easy to solve analytically if the strict 
minimum over the h and R is not sought for (see [18] for 
a rigorous treatment). Since GTh = 0 in the absence of 
noise, we determine h so that IIGThl12 = (h,GGTh) --t min. 

The solution is given by the unit eigenvector of GGT for the 
smallest eigenvalue. Then, Problem C.2 reduces to 

tr(RTK) -+ max (83) 

where 

K = -h x G. (84) 

This problem is solved by the method of singular value decom- 
position (Theorem A. l), the method of polar decomposition 
(Theorem A.2), or the method of quaternion representation 
(Theorem A.3), as shown in Appendix A. 

The above procedure determines the translation h only up 
to sign. The sign of h compatible with the (arbitrarily chosen) 
sign of G is easily determined from the following fact (we 
omit the proof). 

Proposition C.l: If h is notparallel to m,, then 

Ih,m,,GmkI > 0. (85) 

The following is the result of Huang and Faugeras [lo] and 

Proposition C.2: A matrix G is decomposable if and only 

Corollary: A matrix G is decomposable if and only if 

Faugeras and Maybank [7] (we omit the proof): 

if its singular values are 1, 1, and 0. 

det G = 0,  I(G(( = ((GGT(( = &. (86) 

Corollary: If matrix G is decomposable, it can be decom- 
posed in exactly two ways. If {R, h}  and {RI, U’} are the two 
decompositions, then 

h’ = -h, R’ = IhR (87) 

where I h  = 2hhT - I is a half-rotation about h. 

[22]. We observe the following: 
Thus, the true and the spurious rotations form a twisted pair 

The number of unknowns for the essential matrix G is 
eight (since the scale is indeterminate); therefore, at least 
eight terms of the form (ma, Gmh)2 must be minimized 
to solve Problem C.l. This means that the number N of 
the feature points to be observed must be N 2 8. 
The essential matrix G admits exactly two decomposi- 
tions: 

G = h X R = (-h) X (IhR). (88) 

However, the sign of the essential matrix G computed 
by Problem C.l is indeterminate, and matrix -G also 
admits two decompositions 

-G = (-h) X R = h X (IhR). (89) 

Hence, four decompositions are obtained. 
Proposition C.l reduces these four solutions to two if 
{R ,  U} is the true solution; the other is {R ,  -h} .  Thus, 
the translation h is determined up to sign, and the rotation 
R is determined uniquely. 
Finally, the sign of h is determined so that the depths 
and r& given by (6) are positive. 
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Thus, the motion parameters {R ,  h}  are uniquely deter- 
mined. This algorithm works for N 2 8 unless the eight feature 
points are in a special configuration (i.e., unless they are on a 
critical surface; see [18] for the details), 

APPENDIX D 
COVARIANCE MATRICES 

Proposition D.l: 
1. 

2. 

3. 

4. 

5. 

If m is a unit vector, then m + Am is a unit vector to 
a first approximation if and only if Am is orthogonal to 
m : (m.Am) = 0. 
The covariance matrix V[m] is symmetric and positive 
semi-definite. 
The covariance matrix V[m] is singular with m as the 
unit eigenvector for eigenvalue 0 : V[m]m = 0. 
If a:, a;, and 0 (cl 2 c 2  >) are the eigenvalues of 
V[m] and if { U .  v,  m} is the corresponding orthonormal 
system of eigenvectors, the root mean square of the 
orthogonal projection of noise Am onto orientation 1 
(unit vector) takes its maximum when I = U and its 
minimum when I = v, and the maximum and the 
minimum values are given, respectively, by 01 and c2. 
The root-mean-square magnitude of Am is d m .  

Proof: 
1. The assertion is obvious from 

2. The covariance matrix V[m] is obviously symmetric: 

V[mIT = E[AmAmTIT = E[AmAmT] = V[m].  (91) 

Let a be an arbitrary vector. Then 

(a.  V[m]a) = (a3  E[AmAmT]a) = E[(a .  Am)2] 2 0 

meaning that V[m] is positive semi-definite. 
(92) 

3. Since (m,Am) = 0, we see that 

V[m]m = E[AmAmT]m = E [ ( m ,  Am)Am] = 0. (93) 

4. If I is a unit vector, then 

E[([ ,  Am)’] = ITEIAmAmT]I = ( I ,  V[m]I). (94) 

This is maximized (or minimized) by the unit eigenvec- 
tor for the largest (or smallest) eigenvalue of V[m]. The 
maximum (or minimum) value is the largest (or smallest) 
eigenvalue. 

5. From the definition of the covariance matrix V[m] ,  

E[\lAm112] = E[(Am,  Am)] = trE[AmAmT] = trV[m]. 
(95) 

This proves the assertion. 

APPENDIX E 
EFFECTIVE FOCAL LENGTH 

Proposition E.l: 

= x  1+---+(- Am3)2 ( ml m3 m3 

its expectation is 

I + Am1 
my + Am3 

(98) 

If we put k = (0.0. l)T and i = (1.0, O)T, we have m3 = 
(m, k )  and ml = (m, i). Hence, E [ A v L ~ ~ ]  = (k, V[m]k)  and 
E[AmlAms] = (i ,V[m]k).  Since U is orthogonal to the 2 
axis, we have ( U ,  k )  = 0. From (14), we have 

(99) 

where we put F = e l f .  In (15), the signs of U and v are 
irrelevant; therefore, we can choose U = J m m  x k 
and v = U x m. From Fig. 2, we observe that 

Hence 

( v . k ) = ( u x m . k ) = ( m x  k.u) 

= / q ( m  x k.m x k )  

(v , i )  = (U x m , i )  = (m x i , U )  

= /q(m x i , m  x k) 

- - - m ( m . k l ( 7 n . i )  = --m1. f (102) 
r / f  
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Thus 

E2m1m3 
(E, V[m]k)  = - 

2( 1 + r 2 /  f 2)2  

Hence 

2212 + O(Am)3). (104) 
l + r 2 / f 2  

x ( 1 +  
E [ f  m1+ Am1 

m3 + Am,] = 

The expression of E [  f (m2 + Amz)/(m3 +Am,)] is obtained 
similarly. w 

Proposition E.2: If 

then 

ml + Am1 
m3 + am,] = x + O(Am)3, 

Proof: Proceeding in exactly the same way as in the 
proof of Proposition E.l, we obtain 

The expression for y is obtained similarly. To be strict, the 
expression 1 +r2/ f in the above equation must be 1 + r 2 /  f 2. 

However, replacing it by l+r2/ f introduces only a difference 
w of O(C4) in the final result. 

APPENDIX E 
VECTOR AND MATRIX IDENTITIES 

Proposition F.l: 
1. For vectors U and v and a matrix A. 

( U X A ) X V = U X  ( A x v ) .  (108) 

2. For vectors U, v, a, and b, 

U x (abT) x v = (U x a)(b x v ) ~ .  (109) 

3. For unit vector U and the identity matrix I ,  

U x I x U = UUT - I .  (110) 

Proof: 
We have 

0 -U3 

u x I =  ( U 3  71”, (111) 
- U 2  

It is easy to see that the matrices U x A and A x U of 
(25) and (26) are written as 

U x A = (U x I ) A ;  A x v = A(v  x I ) .  (112) 

Hence 

(U x A )  x ‘U = U x ( A  x v) = (U x I ) A ( v  x I ) .  

We see that (v x I)T = -(v x I ) .  Hence 

(113) 

u x ( a b T ) x v  

= (U x I )abT(v x I )  
= ( ( U  x I)a)((v x 1 lTblT 
= - ( ( U  x I)a)((v x  IT)^)^ 
= - (U  x a)(. x b)T = (U x a)(b x v ) ~ .  (114) 

We see that 

U x I x U = (U x I ) I ( u  x I )  = (U x I ) 2 .  (115) 

w It is easy to confirm that (U x I ) 2  = wT - I .  
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