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Comments on “Nonparametric
Segmentation of Curves Into Various

Representations”

Kenichi Kanatani, Senior Member, IEEE

Abstract —I point out the existence of a theoretical difficulty that
underlies the curve segmentation problem studied by Rosin and West
and present a possible solution to it.

Index Terms —Curve segmentation, line fitting, conic fitting, pattern
recognition, geometric AIC.

————————   ✦   ————————

1 INTRODUCTION

ROSIN and West [8] presented an algorithm (let me call it the RW
algorithm) for automatically transforming a curve into straight-line
segments and higher-order features, such as circular arcs, conic
segments, and splines. Here, I point out the existence of a theoreti-
cal difficulty that underlies this problem and present a possible
solution to it. This does not mean that there is something wrong
with the RW algorithm; the difficulty is of a purely theoretical
nature, and the RW algorithm avoids it by heuristics.

2 SEGMENTATION INTO FEATURES OF DIFFERENT TYPES

The problem is that segmenting a curve into features of the same
type is one thing, and segmenting it into features of different types
is quite another. This is because different features have inclusion
relations among themselves: A line segment is a kind of circular arc
(with an infinite radius), which is a kind of conic segment, which
is a kind of higher order feature, and so on. The goodness of a
feature is evaluated by some distance measure between the se-
lected feature and the data. The RW algorithm adopted the maxi-
mum deviation (l

�
-distance) divided by the length of the feature,

which Rosin and West called the significance measure, but other
measures, such as the average absolute deviation (l1-distance) and
the square average deviation (l2-deviation), could also serve the
same purpose.

The RW algorithm first transforms a curve into line segments.
Suppose we want to check if they can be replaced by a single fea-
ture. If they are replaced by a single line segment that connects the
endpoints, the distance measure is uniquely determined. If they
are to be replaced by a circular arc that connects the endpoints,
one degree of freedom remains, so the one with the smallest dis-
tance measure is chosen. If a conic segment that connects the end-
points is to be fitted, there remain three degrees of freedom, with
respect to which the distance measure is minimized. Hence, a
higher-order feature with a larger degree of freedom always has a
smaller distance measure. It follows that any algorithm for seg-
menting a curve into features of different types is faced with the
problem of how to suppress higher order features, or how not to
adopt the “optimal” solution.

The strategy of the RW algorithm is to (arbitrarily) fix the order
of construction, search, and merge. For example, consider the first
stage of polygonal approximation. If we want to divide a curve
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into N segments with the endpoints fixed, the N ��1 break points
can theoretically be anywhere on the curve, and we can minimize,
say, the sum of the distance measures of the resulting N segments
by adjusting the N ��1 degrees of freedom. Evidently, this process
would be costly, so the RW algorithm takes the recursive subdivi-
sion approach: The curve is divided into two segments by choos-
ing the point of maximum deviation as the break point (there is no
guarantee that the significance measures of the resulting segments
are lowered), and this process is recursively applied to the result-
ing segments, thereby avoiding an exhaustive search.

3 CLASS SELECTION BY GEOMETRIC AIC
Let me state the problem in general terms. The task is to find an
optimal class for a given input pattern. It appears that we need to
choose only the one that is the “closest” to the input by introduc-
ing some distance measure. This is the basic discipline of pattern
recognition. However, it is tacitly assumed in pattern recognition
that the classes into which the input is to be classified are disjoint.
If class A is included in class B, class A is never chosen, because the
distance to class A is always not smaller than that to class B (Fig. 1).
Thus, higher-order features are always favored over lower-order
ones (the RW algorithm does not exactly fit in this framework,
though).

Fig. 1. Class A is never chosen, whatever distance measure is used.

In order to give every class a fair chance, we must introduce
another criterion that favors classes that are included in others. A
similar problem appears in statistics, and the AIC (Akaike Informa-
tion Criterion) gives one solution [1]. However, the AIC is formu-
lated for a statistical inference formalized as estimating the pa-
rameter of a statistical distribution from multiple samples chosen
from it. As a result, the AIC cannot be applied to geometric inference
in its original form in general; it can be applied to curve and sur-
face segmentation only when the problem has a special form
called (linear/nonlinear) regression [2]. However, if we go back to
the principle that gives rise to the AIC, we can obtain a similar
criterion, called the geometric AIC [4], applicable to geometric in-
ference in general.

The principle underlying the geometric AIC is the robustness to
perturbation. As an illustration, consider curve approximation.
Suppose curve l is approximated by the best feature a chosen from
class A. Consider a hypothetical curve l� obtained by perturbing
the curve l. Suppose l� is approximated by the best feature a� also
chosen from class A. Intuitively, feature a is “robust” when if a and
a� are close, then a is also a good approximation to l�. It follows that if
class A is included in class B, a fit from class A is always more
robust than one from class B, because the set A� of features in class
A that are within a distance from the best feature in A is smaller
than the set B� of features in class B that are within the same dis-
tance from the best feature in B. In other words, the set of curves
that are approximated by the features in B� are larger than the set
of curves that are approximated by the features in A�.

Skipping the derivation (see [4] for the details), it is concluded

as follows. Suppose a curve is divided into N segments, and we
want to find the best feature that passes through the endpoints.
Let us adopt the sum of the squared distances of the N ��1 break
points from the fitted feature as the distance measure. Let a ° A be
the best feature in class A, and let b ° B be the best feature in class
B. Let Da and Db be their distance measures. Suppose class A is
included in class B: A ® B. Let fA and fB be the degrees of freedom
of classes A and B, respectively, that remain under the constraint
that features should pass through the endpoints. According to the
geometric AIC, class A is preferred to class B if
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For example, a line segment is preferred to a circular arc for N > 2 if
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and a circular arc is preferred to a conic segment for N > 4 if
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In order to apply such criteria, we need to compute an optimal fit
that minimizes the sum of the squared distances from the break
points and its minimum value efficiently. For line fitting, this is
easily done by the usual least-squares method or its modification
[6]. For conic fitting, this is achieved by a technique called renor-
malization [7], a prototype of which was given by Kanatani [3].

4 CONCLUDING REMARKS

The kind of reasoning stated above is expected to play a crucial
role for not only curve segmentation but also many other prob-
lems where model selection is involved [5], [9], [10].
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