
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 16, NO. 5, MAY 1994 543 

algorithm always converges to consistent unambiguous labelings [ 11, 
[51. 

IV. CONCLUSION 

In this correspondence, we analyzed the automata algorithm for 
relaxation labeling [ 11 for the case of symmetric compatibility func- 
tions. It is proved that starting with any initial label probabilities, 
the algorithm always converges to a consistent labeling. Further, all 
consistent unambiguous labelings are locally asymptotically stable. 
The algorithm analyzed in this correspondence has been employed 
successfully in computer vision problems such as stereopsis and 
object recognition [ 5 ] .  
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Analysis of 3-D Rotation Fitting 

Kenichi Kanatani 

Abstmct-Computational techniques for fitting a 3-D rotation to 3-D 
data are recapitulated in a refined form as minimization over proper 
rotations, extending three existing methods-the method of singular value 
decomposition, the method of polar decomposition, and the method of 
quaternion representation. Then, we describe the problem of 3-D motion 
estimation in this new light. Finally, we define the covariance matrix of 
a rotation and analyze the statistical behavior of errors in 3-D rotation 
fitting. 

Index Terms-3-D rotation, singular value decomposition, polar decom- 
position, quaternion representation, essential matrix, covariance matrix. 

I. INTRODUCTION 

In robotics applications, we often encounter the problem of com- 
puting a 3-D rigid motion that maps a set of 3-D points to another 
set. This problem typically occurs when 3-D data are obtained by 
stereo, range sensing, tactile sensing, etc. If we compute the centroid 
of each set and translate them in space so that their centroids come 
to the coordinate origin, the remaining problem is to determine the 
3-D rotation that maps the first set of orientations to the second set. 
Thus, all we need to do is fit a 3-D rotation to the rotated data, say 
by least squares. 

The first analytical technique for 3-D rotation fitting was reported 
by Hom [2], who used the quaternion representation. Equivalent 
techniques were presented by Arun et al .  [l], using singular value 
decomposition, and by Hom et al .  [3], using polar decomposition. 
However, their techniques dealt with minimization over orthogonal 
matrixes. As a result, improper rotations (i.e., rotations of determinant 
- 1) can be predicted for noisy data. Umeyama [ 131 made a correction 
to the method of Arun et al .  [l], but his derivation, based on a 
variational principle and Lagrange multipliers, is very complicated 
and lengthy. 

In this paper, we first recapitulate these techniques in a refined 
manner as minimization over proper rotations. Then we formulate the 
problem of optimal resolution of a degenerate rotation and show how 
this solves the problem of 3-D motion estimation from two images 
succinctly. Finally, we define the covariance matrix of rotation fitting 
and analyze the statistical behavior of errors. 

11. OPnMAL ESTIMATION OF 3-D ROTATION 
Consider the problem of computing a 3-D rigid motion that maps 

a set of 3-D points { ( P ~ ,  ya, z ~ ) ) ,  a = 1 ,  - . ., N, to another set 
( (xu‘, ye’. z ~ ‘ ) } ,  a = 1, .. -, N .  If we compute the centroids (E, 1, Z )  
and (Z’, g’, 2’ ) of the two sets and translate them in space so that their 
centroids come to the coordinate origin 0, the remaining problem is 
to determine the 3-D rotation that maps the first set of orientations 
to the second set [2]. 

Consider the following problem: 
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Problem 1: Given two sets of vectors {ma}  and (mb,), a = 1, 
..., N, compute a rotation R such that 

N 

Wa((ma - RmblJ’ + min. ( 1 )  

Here, W, is a positive weight for the cvth datum. The weights 
should be determined so that reliable data are given large weights 
whereas unreliable data are given small weights (we will discuss this 
later). 

We use parentheses (., .) for vector inner product, superscript T for 
vector and matrix transpose, and t r (  . ) for matrix trace. The left-hand 
side of (1) is expanded in the form 

C t = l  

N / N  \ N 

Hence, if the correlation matrix K between { m, } and { mb, 1, 01 = 
1, . . -, N ,  is defined by 

N 

K = Cw,m,mbT, (3) 
U = l  

Problem 1 is restated as follows: 

such that 
Problem 2: Given a correlation matrix K ,  compute a rotation R 

t r ( R T K )  ---f max. (4) 

The following two lemmas are fundamental: 
Lemma I :  If S is a semipositive definite symmetric matrix, 

t r ( R S )  is maximized over all rotations by R = I. The solution 
is unique if ranks  > 1. 

Proof: If S is semipositive definite symmetric, it has nonneg- 
ative eigenvalues u1 2 u2 >_ u3 (2 0), and the corresponding 
eigenvectors u1, UZ, and u3 can be chosen to be mutually orthogonal 
unit vectors. Hence, S is expressed in the following form (the spectral 
decomposition [9]): 

Then, 
3 3 

By the Schwartz inequality (Ru,, U , )  5 (IRu,II . I(u,I( = 1,  we see 
that 

3 

tr(RS) 5 x u ,  = trS. (7) 

If S is nonsingular (i.e., ranks  = 3), all eigenvalues are positive, so 
the equality holds if and only if Rut = U,,  i = 1, 2, 3. Since ( uz 1 
is an orthonormal system, this is true if and only if R = I. If ranks  
= 2, then ul >_ uz > 0 and u3 = 0. Hence, the equality holds if and 
only if Ru, = ut,  i = 1, 2. Since {U, ] is an orthonormal system 
and R is a rotation, Ru3 is necessarily u3. Thus, R = I. If ranks  
= 1, then u1 > 0 and up  = u3 = 0, so the equality holds as long as 
Rul = u1. In other words, any rotation around u1 gives a solution. 

0 
The above proof is the same as that given by Arun et a f .  [l]. The 

, = I  

If ranks  = 0, then S = 0; any rotation is a solution. 

following lemma is equivalent to the result of Umeyama [ 131. 

Lemma 2:  If S is a semipositive definite symmetric matrix, 

(8) 

where U, is the unit eigenvector of S for the smallest eigenvalue. 
The solution is unique if ranks  > 1 and the smallest eigenvalue of 
S is a simple root. 

Proof: As in Lemma 1, let u1 2 uz 2 u3 be the eigenvalues 
of S, and { U I ,  u p ,  u3) an orthonormal system of the corresponding 
eigenvectors. If US = 0, the proof of Lemma 1 shows that tr(R‘S) is 
maximized by a (proper or improper) rotation R’ such that R’ul = U] 

and R‘UZ = u p .  Since R’ is improper, we automatically have R’u3 
= -u3. This means that R’ is diagonal with diagonal elements { 1 ,  1, 
-1) withrespect to basis ( U I ,  u p .  us). Since uluT+upu~+u3uj 

= I (the unit matrix), we obtain 

(9) 

So, assume that S is nonsingular. If R‘ attains the maximum of 
tr(R’S), superimposition on R‘ of an infinitesimally small rotation 
in the form of (I+EW+O(E~))R’ yields zero perturbation to a first 
approximation in E, where W is an arbitrary antisymmetric matrix. 
Since 

t r (  (I+ EW + O( c2))R’S) = t r (  R‘S ) + c t r  (WR’S ) + O( E’), ( 10) 

the term tr(W(R’S)) must vanish for any antisymmetric matrix W. 
This occurs if and only if R’S is a symmetric matrix, namely R‘S 
= (R‘S)T = SR‘-’. Hence, 

tr(R”S) = tr(R’(R’S)) = tr(R‘SR’-’) = tr(R‘-’R‘S) = trS.  
(11) 

Since S is nonsingular and R2 is proper, Lemma 1 implies that 
this holds if and only if R‘’ = I, i.e., R’ = R’-’. Hence, R’S = 
SR‘-l = SR’, i.e., R’ commutes with S .  This means that R’ and 
S are diagonalized at the same time; the orthonormal system (up  ) 
of eigenvectors of S can be chosen to be the eigenvectors of R’ 
as well. Since R’ is orthogonal, its real eigenvalues are Itl. Hence, 
R’u, = f u , ,  i = 1.2 ,3 ,  but R’ is improper, so the three eigenvalues 
cannot be all 1 .  Since u1 2 up 2 u3 > 0, (6) implies that the 
maximum of tr(R’S) is attained when (R’ul, u1) = (R’uz, u3) = 
1 and ( R ’ ~ 3 . u ~ )  = -1, i.e., Rrul = ul,  R’up = UZ, and R ’ u ~  
= -us. Thus, R‘ is diagonal with diagonal elements [ 1, 1, -1) 
with respect to basis { u1, u p ,  u3 ) and hence is given by (9). The 
uniqueness condition is obtained in the say way as in Lemma 1. U 

The first procedure for solving Problem 2 is to decompose the 
correlation matrix K into the form 

tr(R’S) is maximized over all improper rotations for 

R‘ = I - 2u,u;, 

R’ = U i U T  + UZU,’ - U ~ U :  = I - 2U3U;. 

K = V A U T ,  A =  r1 uz u3). u1 2 u 2  2 u3? 0. 

(12) 
where V and U are orthogonal matrixes. This decomposition is called 
the singular value decomposition, and ul, u2, and u3 the singular 
values. The number of nonzero singular values is the rank of K, 
which is equal to the number of linearly independent columns (or 
rows) of K. The following theorem is mathematically equivalent to 
Umeyama’s extension [I31 of the method of Arun et al. [ l ] .  

Theorem I :  If K = V A U T  is the singular value decomposition, 
tr(RTK) is maximized over all rotations by 

R = V [  1 d e t ( V U T )  )UT. (13) 

The solution is unique if rankK > 1 and d e t ( V U T )  = 1, or if 
rankK > 1 and the minimum singular value is a simple root. 
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Pro08 If K = VAUT, we have 

tr(RTK) = tr(RTVAUT) = tr((UTRTV)A). (14) 

Since V and UT are orthogonal matrixes, det(VUT) is either 1 or 
-1. If it is 1,  the matrix UTRTV ranges over all proper rotations 
as R ranges over all rotations. Since A is a semipositive definite 
symmetric matrix, Lemma 1 implies that (14) attains its maximum 
when UTRTV = I or R = VUT. If det(VUT) = -1, the matrix 
UTRTV ranges over all improper rotations as R ranges over all 
rotations. By Lemma 2, the maximum is attained when UTRTV = 
A' or R = VA'UT, where A' is the diagonal matrix with diagonal 
elements { 1, 1,  -1 in this order. The uniqueness condition also 
follows from Lemmas 1 and 2. 0 

The second procedure for solving Problem 2 is to decompose the 
correlation matrix K into the form 

K = VS = S'V, (15) 

where V is an orthogonal matrix, while S and S' are semipositive 
definite symmetric matrixes. This decomposition is known as the 
polar decomposition. The following theorem is an extension of the 
method of Horn et al .  [3]. 

Theorem2: If K = VS = S'V is the polar decomposition, 
tr(RTK) is maximized over all rotations by 

R = V(I+(detV-l)u,uL) = (I+(detV-l)v, , ,v~)V. (16) 

where U,,, and v, are the unit eigenvectors of S and S ' ,  respectively, 
for the smallest eigenvalue. The solution is unique if rankK > 1 and 
det V = 1, or if rankK > 1 and the smallest eigenvalue of S (and 
of S') is a simple root. 

Proof: If K = VS, we have 

tr(RTK) = tr((RTV)S). (17) 

Since V is an orthogonal matrix, det V = &l. If det V = 1, the 
matrix RTV ranges over all proper rotations as R ranges over all 
rotations. By Lemma 1, (17) attains its maximum when RTV = I or 
R = V. If det V = - 1, the matrix RTV ranges over all improper 
rotations as R ranges over all rotations. By Lemma 2, the maximum 
is attained when RTV = I - 2u-u; or R = V(I - 2u,uL). The 
same argument holds for K = S'V. The uniqueness condition also 
follows from Lemmas 1 and 2. 0 

The third method is based on the well-known fact that for any 
rotation matrix R, there exist four numbers 40, 91, q 2 ,  and 4 3  such 
that 402 + q: + q: + q," = 1 and (18), shown at the bottom of the 
page, applies. Conversely, any four numbers QO, q1, QZ, and q3 such 
that qg + q: + 42" + q: = 1 define a rotation by this equation. This 
fact is known as the quatemion representation of 3-D rotation [5] .  
The following theorem summarizes the method of Hom [2].  

Theorem 3:  Given correlation matrix K, define a four-dimensional 
symmetric matrix as shown in (19) at the bottom of the page. Let q be 
the four-dimensional unit eigenvector of K for the largest eigenvalue. 
Then, tr(RTK) is maximized by the rotation represented by q. The 
solution is unique if the largest eigenvalue of K is a simple root. 

Proof: Recall the relationship tr(RTK) = 

the quatemion representation (18), the ith component of vector 
Rm; is written as 

(RmbIl = mb(,)qi  + 2 2 cz,km:,(kywa 

C,"=,Wm(mm,Rmb) for K = C,"=lW-mmmma / T  . From 

j , k = l  
P 

where m&,) is the ith component of vector mi,  and the symbol t z j k  

denotes the Eddington epsilon, taking the value 1 if ( i j k )  is an even 
permutation of (123), -1 if ( i j k )  is an odd permutation of (123), 
and 0 otherwise. Then, it is easy to see that 

N 3 

W, (me, Rmb,) = q: K~~ + 2q0 
a=l t=1 2 = 1  

3 / 3 \  

If we define a four-dimensional symmetric ma!rix K by (19), 
(20) is rewritten in the form tr(RTK) = (q,Kq),  where q = 
( q 0 .  q1, q z .  ~ 3 ) ~  is a four-dimensional unit vector. Hence, tr(RTK) 
is maximized by the unit eigenvector q of K for the largest 
eigenvalue. 0 

111. ORTHOGONALITY RECONSTRUCTION FROM PROJECTION 

The orthogonal projection of vector a onto the plane with unit 

(22) 

surface normal h is given by Pha, where 

Ph = 1 - hhT. 

(See. Fig. I(a).) Let us consider the following problem (Fig. l(b)): 

right-handed orthonormal system (1-1, rz, 1-31 such that 
Problem 3:  Given three coplanar vectors [ t 1 ,  tz, t3 1, compute a 

t t  = Phlz. (23) 

where h is the unit normal to the surface on which Itl 1 lie. 
If we define matrixes R = (rl,rZrr3) and T = ( t l , t ~ , t 3 ) ,  the 

requirement t, = Phrz, i = 1, 2, 3, is equivalent to T = PhR. Let 
us call a matrix T a degenerate rotation if there exists a rotation R 
and a unit vector h such that T = PhR. We call the unit vector h 
the axis of T. 
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h 
t 

Proof: The singular values of -T are also the singular values 
of T, which are 1, 1, and 0. Hence, -T is also a degenerate rotation. 
Changing the sign of T = ( t l ,  t z ,  t3) means changing the sign of 
each t *. Since { t I ) are coplanar, changing their signs means rotating 
them by angle T in the plane on which they lie. Hence, the vectors rz 
to be reconstructed are also rotated by angle 7r around the unit normal 
h to the plane. It is easy to see that I h  is a half-rotation about h ,  
and the resulting rotation is ( I h r l ,  Ihl2,  Ihra) = Ih( r l , rZ , r3)  = 
IhR. 0 

of rotations a twisted pair. It is easy to 
test if a given matrix T is a degenerate rotation because of Proposition 
1. 

Proposition 1 :  A matrix T is a degenerate rotation if and only if 

(28) 

Let us call a pair [ R, 

det T = 0,  IlTll = IJTTTI) = fi. 

Proof: Let X I  2 XZ 2 A3 (2 0) be the eigenvalues of symmetric 
matrix T T ~ .  Then, 

det(TTT) = X1X2X3, tr(TTT) = XI + Xz + Xa, 

(b) 

Fig. 1. 
an orthonormal frame. 

(a) Orthogonal projection of a vector. (b) Orthogonal projection of 

Theorem 4: A matrix T is a degenerate rotation if and only if it 

Proof: Suppose T is a degenerate rotation. Then, there exist an 
has singular values 1, 1 and 0. 

axis h and a rotation R such that T = P h R ,  so 

TTT = PhRRTPl = Pi = P h  = 1 - hhT. (24) 

If unit vectors U and v are defined so that {U, v, hJ  form an 
orthonormal system, then uuT + wT + hhT = I ,  and hence 

TTT = uuT + vvT + OhhT. (25) 

This means that matrix T has singular values fi, fi, and 4 [9]. 
Conversely, suppose matrix T has singular values 1, 1, and 0. This 

means that matrix TTT has eigenvalues 12, 12, and O2 [9]. If U, v, 
and h are the corresponding eigenvectors so chosen that [U, v, h )  
form an orthonormal system, we can write 

T TT = uuT + wT + OhhT = I - hhT = Pi,. (26) 

This means that matrix T has the polar decomposition T = P h v ,  
where V is some orthogonal matrix. If we define R = (I + (det V - 
l ) h h T ) V ,  it is easy to confirm that this is a rotation. Since Phh  
= 0, we see that 

PhR = ( P h  + (detV - l ) P h h h T ) V  = Phv = T. (27)  

0 
Corollaiy 1: If T is a degenerate rotation, then the projection P h  

and the rotation R such that T = PhR are uniquely determined. 
Proof: If T is a degenerate rotation, it is written as T = PhR 

for some axis h and rotation R. Matrix P h  is symmetric with 
eigenvalues 1, 1, and 0, and hence positive-semi definite, while R 
is orthogonal. This means that T = PhR is the polar decomposition 
of T. This decomposition is unique: Since rankPh = 2 and det R 
= 1, the rotation R is the unique solution that maximizes tr(RTT) 

Corollary 2: If T is a degenerate rotation, so is -T. If T = PhR 
for a rotation R and a unit vector h ,  then -T = P h ( I h R ) ,  where 
I h  = 2hhT - I is a half-rotation about axis h. 

Thus, T is a degenerate rotation. 

(Theorem 2). 0 

tr((TTT)2) = X12 + Xz2  + As2.  (29) 

If T has singular value 1, 1,  and 0, then X I  = A2 = 1’ and X3 = 
O z .  Hence, 

det T = d m  = 0, = d m  = a, 

llTTTII = Jtr((TTT)T(TTT)) = d m  = A. (30) 

Conversely, suppose (28) holds. Since (det T)’ = det(TTT) = 0, 
it follow from (29) that = 0, and the remaining eigenvalues of 
T T ~  satisfy 

X I  + Xz = X I Z  + X Z 2  = 2. (31) 

fi, a, and fi. 0 
This means that XI = A2 = 1. Hence, matrix T has singular values 

In order to obtain a robust method of solving Problem 3, we replace 

Problem 4: Given three arbitrary vectors { t l ,  t 2 ,  t 3  1, find an axis 
it by 

h such that 

1 

x ( t , :  h)’ + min, 
Z = I  

and then find a right-handed orthonormal system (rl, r2, r3 J such 
that 

(33) 

Let us call the above procedure the optimal resolution of matrix T 
= ( t l , t ~ , t 3 )  intoanaxis handaro ta t ionR= (rl ,r l ,r3).I tappears 
that we must first compute the axis h by (32) and then compute (33) 
from the computed axis h. However, these two steps can be carried 
out independently as follows: 

optimaZ-resoZution( T) 
1) Compute the unit eigenvector h of matrix TTT for the smallest 

eigenvalue. 
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2) Compute the rotation matrix determined by 

tr(RTT) + max.  (34) 
Derivation: The left-hand side of (32) is written as 

Hence, the axis h is given by the unit eigenvector (up to sign) of 
matrix TTT for the smallest eigenvalue. Take unit eigenvectors VI 
and v2 for the remaining eigenvalues so that (VI, VZ, h] form an 
orthonormal system. Now, 

3 

IIPhr. - = tr(P2) - 2tr((p1,R)~T) + tr(TTT). (36) 

Since tr((PhR)TT) = tr(RTPLT) = tr(RTPhT), the minimiza- 
tion (33) is equivalent to finding a rotation R such that 

9 = 1  

tr(RTPhT) -+ max. (37) 

The singular value decomposition of T in vector form is 

T = U1v1uT + r 2 ~ 2 ~ ;  + ajhu;, (38) 

where U I  2 uz 1 U S  (2  0) are the singular values of T, and [ui, 
u2, u g ]  are an orthonormal system of the unit eigenvectors of TTT. 
Since v1 and v2 are both orthogonal to h, we see that 

PhT = rlv1uT + u~VZU; = U1vluT + (T~V~U; -I- Ohuz. (39) 

This means that T and PhT have the same singular value decom- 
position except for their singular values. If the method of singular 
value decomposition is applied to solve (37), the singular values 
themselves do not affect the solution (in fact, the solution is R = 
vluT + v~u,' f hu', where an appropriate sign is chosen so that 
det R = 1 (cf. Theorem 1). Hence, (37) can be replaced by (34). 0 

IV. 3-D MOTION ESTIMATION 

Suppose the camera is rotated by R around the center of the lens 
and translated by h. If two images of the same scene before and after 
the motion are given and point-to-point correspondences of multiple 
feature points are detected over the two images, we can compute 
the motion parameters (R, h] and the depth of each of the feature 
points up to scale [7], [lo], [12], [14]. In order to remove the scale 
indeterminacy, it is customary to scale the translation h to a unit 
vector. The core of the problem is summarized as follows: 

Let r1, r2, and r3 be the first, second, and third columns of R, 
respectively. Define the matrix 

G = (h x rl, h x r2, h x r3). (40) 

We abbreviate this matrix as h x R. This matrix is called the essential 
matrix and is directly determined from at least eight point-to-point 
correspondences over the two images. Hence, the problem reduces 
to the following form: 

Problem 5:  For a given matrix G, compute a unit vector h and 
a rotation R such that 

G = h x R .  (41) 

k t  Jh be a quarter-rotation (rotation by angle x / 2 )  about unit 

Proposition 2: 
vector h. We observe the following fact: 

G = Ph(JhR). (42) 

h Ami 
\ 

(a) (b) 
Fig. 2. 
orthononnal frame. 

(a) Vector product and a quarter-rotation. (b) Perturbation of an 

Proof: If a vector a is decomposed into the sum a = a1 + 82, 
where a1 = (h,a)h is parallel to unit vector h and a2 = Pha is 
perpendicular to h, then h x a1 = 0 and h x a2 = Jhaz (see Fig. 
2(a)). Hence, 

h X a = Jhaz = JhPha = PhJha. (43) 

Since this holds for an arbitrary vector, we obtain the operator identity 
hx = PhJh. Applying this to each column of R, we obtain (42).0 

Problem 5 is now restated as follows. 
Problem 6: For a given matrix G, compute a unit vector h and 

a rotation R such that 

G = Phh. (44) 

R = JLR. (45) 

and then compute 

The first step is robustly computed by the optimal resolution 
(Problem 4). The optimization proposed by Weng et al .  [14] is 
essentially the optimal resolution in our terminology. 

We say that a matrix is decomposable if it is decomposed into a 
unit vector and a rotation matrix in the form of (41). The following 
characterization was first proved by Huang and Faugeras [4], but it 
is merely a restatement of Theorem 4: 

Proposition 3: A matrix G is decomposable if and only if its 
singular values are 1, 1, and 0. 

Corollary 3: A matrix G is decomposable if and only if 

Proposition 4: If matrix G is decomposable, it can be decom- 
posed in exactly two ways. If [R, h] and (R', h'] are the two 
decompositions, then 

Proposition 4 corresponds to the well-known fact that the true and 
the spurious rotations form a twisted pair [l l] .  

v. STATISTICS OF ROTATION W I N G  

Let R = (rl. 1 2 ,  r3) be a rotation matrix. The three columns (rl, 
r2, r3 ] form an orthonormal system. If R is computed from image 
data, it may be perturbed into R' = (r; , r;, r$). However, the three 
columns ( r i ,  r:, r$] form an orthonormal system, so the error in 
each element cannot be independent. Since the transformation from 
R to R' is a rotation, the error is also a rotation of some angle A 0  
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around some axis 1. As is well known (e.g., [5]) ,  if we define A1 
= ARl, we have 

r: = r, + A1 x rl + O(Al)’, i = 1,2,3,  (48) 

where O(A1)2 denotes a term of order 2 or higher in the components 
of Al. In matrix form, 

R’ = R + A1 x R + O(A1)’. (49) 

Regarding A1 as a vector random variable, we define the covariance 
matrix of rotation R by 

V[R] = EIAIAIT], (50) 

where E [  . ]  denotes expectation. The eigenvector of V[R] for the 
largest eigenvalue indicates the axis of the error rotation that is most 
likely to occur, and the corresponding eigenvalue indicates the mean 
square of the angle of rotation around it. 

Consider the problem of fitting an orthonormal frame { r l ,  r2. 1 3  ] 
to three unit vectors { ml , m2, m3 ] by the least-squares criterion 

Here, W, is a weight for the ith datum. If we define matrix R = 
( r l ,  rz, r3) , the condition that {r, 1, i = 1, 2, 3, be a right-handed 
orthonormal system is equivalent to R being a rotation matrix. Also 
define matrix M = (WIm1, Wzm2, W3m3), which can be viewed as 
the correlation matrix E:=’=, W%m,e:, where e, is the ith coordinate 
basis vector. Then, it is easy to see that (51) is rewritten as 

t r ( R T M )  -+ max. (52) 

Let us call the rotation fitted in this way the bestfitring rotation. If 
{ m l ,  mz, m3} is an orthonormal system from the beginning, we 
obviously obtain rz = m , ,  i = 1,2,3.  In the presence of noise, each 
m ,  is perturbed by A m z  (see Fig. 2(b)). Regarding A m ,  as a vector 
random variable, we define the covariance matrix [8] of unit vector 
m2 by 

V[m,] = E[Am,AmT] .  (53) 

The weight W, should be large for reliable data and small for 
unreliable data. A reasonable choice is to weigh the term 111, - m, 11 by 
the inverse of the root-mean-square error d m  of possible 
error A m , .  This is equivalent to choosing 

constant 
trV[m,] ’ w ,  = ___ (54) 

We assume that no two of W1, W2, and W3 are simultaneously 0 
and adjust the constant so that E:=l W, = 1. 

If each m ,  is perturbed by noise into m: = m, + A m z  indepen- 
dently, the fitted vectors rz also change into r: = rl + Ar,  . However, 
[ m: ) are not necessarily an orthonormal system, and hence each Ar, 
is not necessarily equal to each A m ,  (see Fig. 2(b)). Let 18, b, cI (= 
(a x b, c )  = (b x c ,  a) = (c x a. b)) be the scalar triple product of 
vectors a, b, and c. The perturbation of R is determined as follows: 

Lemma3: A perturbation A m ,  of m , ,  i = 1, 2, 3, causes the 
best fitting rotation R to undergo a perturbation by 

(b) 

(a) A real image of a rectangular box. (b) Detected edges. Fig. 3. 

Proofi According to (51), Ar, are determined so that 

3 

J = W,llAr, - Am,1I2 
*=1 
3 

= W, (llAr,1Iz - 2(Ar , ,Am,)  + llAm11’) + min. (56) 
1=1 

From (48), we can write J in terms of A1 as 

3 

J = x W , ( l l A l  x rt112 - 21Al,rz ,Am21 + IIAm/jz). (57) 
Z = 1  

If A1 attains the minimum of J ,  an arbitrary perturbation A1 + 

A1 + bAl causes zero first variation of J in Sal. To a first 
approximation in 6A1, 

bJ = 2(bA1, 
3 

Wc(Al  - (rl, Al)r,  - rl x A m , ) ) ,  (58) 
1=1 

which must vanish for arbitrary 6Al. Hence, 

1 3 1 W,(Al - ( r l ,A l ) r , )  = Wtr,  x Am, .  (59) 
Z = 1  ,=1 

If we define matrix 
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the left-hand side of (59) is written as LAl. Since 
and E:=’=, W, = 1, we can write 

r,rT = I 

3 3 3 3 

L = W, c r , r ;  - WzrtrT = c ( 1 -  Wz)rzrT. (61) 
, = 1  ,=1  t=l ,=l 

Its inverse is given by 

,=1 

Since no two of [ W, ] a n  simultaneously 0, we have W, # 1. From 
59), we obtain 

1 (63) 

which is rewritten as (55). 0 
From this, it is easy to see that the covariance matrix V[R] = 

EIAIAIT] is given as follows: 
Theorem 5: If each m, is independent and has covariance matrix 

V[m,], the covariance matrix V[R] of the best fitting rotation R to 
( m2 ), i = 1, 2, 3, is given by 

W,rI(rz,rJ x Am,) 
1 - w, A l =  

*,,=1 

Example: Fig. 3(a) is a real image (270 x 300 pixels) of a 
rectangular box, and Fig. 3(b) shows detected edges. The focal length 
is estimated to be f = 1750 (pixels). The unit vectors that point to 
the three vanishing points are estimated by least squares as follows: 

0.244 0.300 -0.914 
ml = -0.792 mz = 0.636 ( 0.559 ) ’ (0.711) ’ m3 = ( ::::! ) ’ 

(65) 
(The X-axis extends upward, the Y-axis rightward, and the Z-axis 
away from the viewer.) These indicate the three 3-D orientations of 
the edges [6]. If the image resolution K is assumed to be unity, their 
covariance matrixes can be evaluated theoretically as follows [8]: 

0.402 -1.114 -1.755 

-1.755 5.857 9.070 

0.887 1.681 -1.878 
1.681 3.505 -3.845 

-1.878 -3.845 4.231 

1.241 0.019 2.794 
V[m3] = 0.019 0.023 0.041 ) . (66) ( 2.794 0.041 6.292 

The best fitting rotation matrix is 

0.239 0.320 -0.917 
R = -0.780 0.626 0.015 ) . (67) ( 0.578 0.712 0.399 

The discrepancies of ml, mz, and m3 from the corresponding 
orientations are 1.35”, 1.25”, and 0.97”, respectively. By evaluating 
the covariance matrix V[R] given by (U), we can see that the root- 
mean-square error A 0  of the angle of error rotation (from the true 
frame, which we do not know) is 0.49’. 

VI. CONCLUDING REMARKS 
In this paper, we first recapitulated methods of fitting a 3-D rotation 

to 3-D data in a refined form as optimization over proper rotations, 
extending three existing m e t h o d d e  method of singular value 
decomposition, the method of polar decomposition, and the method of 
quaternion representation. As an application of these three methods, 
we formulated the problem of optimal resolution of a degenerute 
rotation and showed how this solves the problem of 3-D motion 
estimation from two images in a succinct way. Finally, we defined 
the covariance matrix of rotation fitting and analyzed the statistical 
behavior of error of the fit in terms of the covariance matrixes of 
the data. 
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