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Abstract-This paper deals with a mathematical problem about the 
effect of camera rotation on the description of optical flow generated 
by a planar surface in motion. The transformation law of the param- 
eters is explicitly given by analyzing infinitesimal generators and ir- 
reducibly reducing the induced representation of the 3-D rotation group 
SO(3). The parameter space is decomposed into invariant subspaces, 
and the optical flow resulting from planar surface motion is accord- 
ingly decomposed into two parts, from which an invariant basis is de- 
duced. A procedure is presented to test the equivalence of two optical 
flows and to reconstruct the camera rotation. The relationship with the 
analytical expressions for 3-0 recovery is also discussed. 

Zndex Terms-Camera rotation, Casimir operator, commutator, 
computer vision, infinitesimal generators, invariant basis, irreducible 
representation, Lie algebra, Lie group, optical flow, rotation group, 
3-D recovery 

I. INTRODUCTION 
HIS paper deals with a mathematical problem ex- T tracted from a topic of computer vision. Although the 

result of our analysis is in itself very interesting and has 
some direct applications in computer vision problems, the 
mathematical techniques introduced here and their impli- 
cations have large potential usefulness in a wide range of 
problems. We will introduce results from abstract math- 
ematics such as theories of Lie group, Lie algebra, group 
representation, and invariance, and show how such ab- 
stract concepts can be used in actual computational prob- 
lems of computer vision. 

Traditionally, results of abstract mathematics such as 
Lie group theory often have been confined in books on 
mathematics and physics and read almost exclusively by 
mathematicians and physicists; they are seldom read by a 
wide spectrum of researchers in computer science. One 
reason is that materials in these books are not arranged in 
a way accessible to researchers in engineering science. 
This paper is intended to bridge such a gap and bring use- 
ful mathematical knowledge and computational tech- 
niques into researches of computer vision and related 
studies. 

Specifically, the problem we consider in this paper is 
as follows. Suppose the camera is rotated by a certain an- 
gle around the center of the lens relative to a stationary 
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scene (Fig. 1). As a result, a different image is seen on 
the image plane. However, a point on the image plane 
corresponds to a “ray” of light coming from the scene. 
and the rays coming from a particular object are identical 
no matter how the camera is rotated.’ Hence, the “infor- 
mation content” of the image is not affected, and the orig- 
inal image can be recovered if the angle of camera rota- 
tion is known. Occlusion, for instance, is not affected by 
camera rotation. 

Suppose the image we observe can be characterized by 
a finite number of parameters. This happens when the ob- 
ject we are viewing has a well defined shape and are spec- 
ified by a finite number of parameters, which is often the 
case in computer vision applications. If the camera is ro- 
tated, the image changes so that these parameters also 
change their values. However, as implied by the above 
considerations, the new values must be completely deter- 
mined by the original values and the amount of camera 
rotation. Hence, a rule of parameter transformation as- 
sociated with the camera rotation should be obtained. 
Using this transformation rule of finite number of param- 
eters, we can predict what the image would look like if 
the camera were to be rotated; we need neither actually 
rotate the camera nor generate a new image by computa- 
tion. This technique plays an important role in many real 
problems as well as in theoretical purposes. 

Since the parameters undergo a transformation rule as- 
sociated with the camera rotation, there may exist invari- 
ants, i.e., expressions in the parameters which do not 
change their values. If so, we can test for the equivalence 
of two images; we can check whether or not two given 
images represent one and the same object viewed from 
different camera angles. This is done by measuring the 
invariants; if they take on different values, these two im- 
ages cannot be equivalent. We may choose a complete set 
of invariance, or invariance basis, in such a way that two 
images are necessarily equivalent if they take on the same 
values. 

The above consideration applies not only to stationary 
scenes but to moving objects as well. In this paper, we 
consider optical flows resulting from a planar surface in 
3-D motion. First, we derive the transformation law which 
predicts what optical flow would be obtained if the camera 
had a different orientation. We will show, by using the 
theory of Lie group and Lie algebra, that we can derive 

‘In the following, we ignore the image boundary, assuming that the im- 
age plane is sufficiently large and that the object we are interested in is 
always included in the field of view. 
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Fig. 1. Incoming rays of light are identical however the camera is rotated 
around the center of the lens. Hence, the object image retains the same 
information as it had before the camera rotation (as long as we ignore 
the film boundary.) 

such transformation rules for finite rotations simply by 
studying infinitesimal transformations. 

One of the consequences of our analysis is that the op- 
tical flow is decomposed into two parts, each of which 
has an “invariant” meaning in the sense that each part is 
transformed independently of the other; one part is char- 
acterized by a vector and the other by a tensor. An invari- 
ant basis is obtained by constructing invariants from this 
vector and tensor. These invariants can be used to test for 
equivalence when two optical flows are given. Further- 
more, if the two optical flows are shown to be equivalent, 
representing one and the same moving surface viewed dif- 
ferently, we can compute the relative orientation of the 
two cameras. We will also give a brief discussion on the 
relationship between our analysis and the analytical 3-D 
recovery problem. 

11. CAMERA ROTATION TRANSFORMATION 
The camera imaging geometry can be modeled as per- 

spective projection. Take an XYZ-coordinate system, and 
let the origin 0 be the center of projection and Z = f be 
the image plane. A point P in the scene is projected onto 
the intersection of the image plane with the “ray” con- 
necting the point P and the origin 0 (Fig. 2). The constant 
f is determined by the camera: it corresponds to the dis- 
tance between the center of the lens and the surface of the 
film. If we choose an xy-coordinate system on the image 
plane in such a way that the x-  and y-axes are parallel to 
the X- and Y-axes with origin (0, 0, f ), a point (X, Y, Z )  
in the scene is projected onto (x, y)  on the image plane, 
where 

x = fX/Z, y = fY/Z. 
Suppose the camera is rotated around the center of the 
lens by an orthogonal matrix R. Then, the point ( x ,  y )  
moves to another point ( x ’ ,  y’) as follows.2 

21n this paper, we regard the image plane as a continuous field over 
which continuous values are defined. Namely, we ignore the sampling of 
images into discrete pixels, or quantization of gray levels. 

Z 

X’ 
Fig. 2 .  A point (X, Y,  Z )  is projected onto point ( x ,  y )  on the image plane 

Z = f by perspective projection from viewpoint 0. 

Proposition I: The image transformation induced by 
camera rotation R = ( r U )  is given by 

Proof: A rotation of the XYZ-coordinate system (i.e., 
the camera) by R is equivalent to the rotation of the scene 
in the opposite sense, i.e.,  by R-’  = RT. (“T” denotes 
matrix transpose. ) Then, point (X, Y, Z ) in the scene 
moves to 

(See Fig. 3.) This point is projected onto (x’, y’) on the 
image plane by x’  = f X / Z ’ ,  y‘ = fY’/Z’. Combination 
of this with (2.1) results in (2.2). 

We call the transformation (2.2) the camera rotation 
tran~formation.~ It should be emphasized that this image 
transformation does not require any “knowledge” about 
the scene. This transformation has its inverse, which is 
obtained by interchanging R and RT.  This means that the 
“information content” is not altered, since we can freely 
move between two images by computation. 

If the camera rotation is infinitesimal, the camera ro- 
tation transformation becomes x’  = x + 6x, y’ = y + 6y, 
where 

1 
6x = - f l 2  + Q3y + - (-Q2x + Q1y)x + 0 ( Q 2 ) ,  f 

’The same transformation is mentioned as the “gaze transformation” or 
“perspectivity” in [19], [22]. The transformations of the form of (2.2) 
form a subgroup of the 2 - 0  projective transformation group. 
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7 
Fig. 3.  Geometrical relationship of the camera rotation. A point on the 

image plane Z = f the  intersection of the corresponding ray with the new 
image plane Z’ = f. 

X’  
Fig. 4. A planar surface whose equation is Z = p X  + qY + r is moving 

with translation velocity ( a ,  b.  c )  at (0 ,  0, r )  and rotation velocity (aI. 
w 2 ,  a3) around it. An optical flow is induced on the image xy-plane by 
perspective projection from the origin 0. 

where Q , ,  Q2, Q3 are, respectively, the rotation angles of 
the XYZ-coordinate system (i.e., the camera) around the 
X-, Y-, and Z-axes screw-wise. The last terms on the right- 
hand sides designate terms of orders equal to or higher 
than 2 in Q , ,  Q2, Q 3 .  Equations (2.4) are obtained by sub- 
stituting r l l  = r,, = r33 = I + o(Q,) ,  r32 = -r23 = Q~ 
+ o(Q*),  r13 -r31 = Q2 + o(Q,), r2, = -r12 = n3 
+ o(n2) into (2.2). 

111. OPTICAL FLOW OF A MOVING PLANAR SURFACE 

Suppose a planar surface whose equation is 2 = pX + 
qY + r is moving rigidly in the scene. The instantaneous 
rigid motion is specified by the velocity ( a ,  b ,  c )  at a 
reference point-which is called the translation ve loc izp  
and the rotation velocity (wl, w 2 ,  w 3 )  screw-wise around 
that reference point. We take the reference point to be (0, 
0, r ) ,  the intersection of the surface with the Z - a ~ i s . ~  (Fig. 

4The choice of the reference point is mathematically arbitrary, and many 
authors take it at the origin, i.e., the center of the lens. However, the choice 
above is desirable from the viewpoint of computational robustness. See the 
discussion in (7). 

4. )  Then, the opticaljow induced on the image plane is 
given as follows.5 

Proposition 2: The optical flow resulting from a mov- 
ing planar surface is given by 

u ( x ,  y )  = uo + Ax + By + ( E x  + FY)x,  

U ( X ,  y )  = UO + CX + Oy + ( E x  + F Y ) ~ ,  (3 .1 )  

where 

f b  
U0 = -, fa 

U 0  = -, 
r r 

The proof is given in Appendix A .  (See also [4], [7], [ 121, 
[151, [191-[231.) 

Thus, we are viewing a very restricted form of image 
motion specified by eight parameters uo, vo, A ,  B ,  C,  D, 
E,  F ;  if these parameters are the same, the motion seems 
identical to the viewer. (This fact has already been pointed 
out by many researchers, e.g., Longuet-Higgins [12], 
Waxman and Ullman [23].) These parameters may be 
computed from a given optical flow by fitting the form of 
(3.1) by the least square method. If the optical flow itself 
is not available, we can also compute them from the time 
changes of some global characteristics such as the surface 
boundary contour [9], [21], [22]. Let us call these param- 
eters $ow parameters. 

Now, what flow would we observe if the camera were 
oriented differently? One thing is certain: we would still 
observe the motion of a planar suvace and hence observe 
an opticaljow which has the form 

U ’  = U ;  + A‘x’  + B’y’ + (Eh’ + F ’ y ’ ) x ’ ,  

U’ = U;, + C’x’ + D‘y’ + (E ’x ’  + F ’ Y ‘ ) ~ ’ .  ( 3 . 3 )  

This is because a planar surface is always a planar surface 
no matter where it is viewed from. Hence, the “form” of 
the optical flow is always the same. Suppose the new cam- 
era orientation is given by rotating the camera by R from 
the original orientation around the viewpoint. The follow- 
ing questions naturally arise. 

1) How are the new flow parameters U ; ,  U ; ,  A ‘ ,  B’, C ’ .  

’The term “optical flow” is used with many different meanings de- 
pending on the situation. Image processing techniques to detect “optical 
flow” are supposed to detect small (but finite) displacements of “corre- 
sponding points” between two image frames. However, the correspon- 
dence is often established between “points of the same light intensity” 
which do not necessarily correspond to the same point of the object. Here, 
we use this term to mean the instantaneous velocity field produced on the 
image plane. In [15], [19]-[23], the term “image flow” is used with the 
same meaning. 
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D’, E’, F’ expressed in terms of the original flow param- 
eters uO, uO, A ,  B, C, D,  E, F and the camera rotation R? 

ant with respect to the camera rotation? 
3) Given two optical flows resulting from planar mo- 

tion, how can we test their equivalence? 
4) If equivalence is confirmed, how can we find a ro- 

tation R which would transform one camera orientation 
into the other? 

We can answer these questions simply by analyzing in- 
jinitesimal transformations. In other words, consideration 
of “infinitesimal” camera rotation automatically leads to 
transformation laws for “finite” rotations. To show this 
is one of the main purposes of this paper. 

dimensional matrices under matrix multiplication: 

(4.3) 2) What expressions of the flow parameters are invari- W l )  = T(R2RI). 
The proof is given in Appendix C. 

Lemma 3: The representation T (  R )  is equivalent to the 
direct sum of the irreducible representations Dl and D 2  
of weights 1 and 2, respectively: 

(4 .4)  T ( R )  E Dl o 9 2 .  

The proof is given in Appendix D. 
Lemma 4: If we define a l ,  a2 ,  a3 by 

al  = - l ( u  2 0 / f + f F ) ,  

a2 = ; (uo/ f  + f E ) ,  

a3 = i ( C  - B ) ,  
IV. TRANSFORMATION OF FLOW PARAMETERS 

altered infinitesimally according to (2.4). The transfor- 
If the camera rotation is infinitesimal, the image is also (4 .5)  

they are transformed as a vector, and if we define 

they are transformed as a deviator tensor. Namely, 
mation of the flow parameters is also infinitesimal and 
given as follows. 

Lemma I :  The infinitesimal transformations ul, = u0 + 
6uo, - , F’ = F + 6 F  of the flow parameters uO, uo, 
A ,  B ,  C ,  D, E ,  F a r e  given by 

(4.7) 

6 

Q3 f s 2 2  -m1 
- Q3 

- 2Q2 If Q1 If Q 3  

Ql - Q3 

- Q 2 I f  4 3  

- Q2 If 2Q I / f  - Q 3  

- Q2 If 
- Q2 lf 

The proof is given in Appendix B. 
Lemma 2: The flow parameters uO, uO, A ,  B ,  C ,  D, E ,  

F are transformed linearly by the (finite) camera rotation 
transformation, namely 

and hence define a representation of SO( 3) .  In other 
words, if R I ,  R2 are two 3-D rotations, then we have a 
homomorphism from SO(3)  into the group of eight- 

- 

f l 2  -m 
Q3 2.m2 -@I 

Q3 m 2  

Q3 -”m 
- Q3 f l 2  -2.m 

Q l  If Q3 

QI lf -Q3 

, .  

U0 

A 

B 

C 

D 
E 

F . -  

+ O ( Q 2 ) .  (4 .1)  

The proof is given in Appendix E. 

of the flow parameters as follows. 

C ,  D, E, F, define the 3 X 3 matrix C = ( c V )  by 

Now, we obtain the final result about the transformation 

Proposition 3: Given the flow parameters uO, uO, A ,  B ,  
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Transform this matrix as a tensor: 

cll c12 c13 

Then, the transformed flow parameters are given as fol- 
lows: 

U;, = f 4 3 ,  U;, = f 4 2 ,  

A ’  = c ; I  - ~ 4 3 ,  

C ’  = cS1, 

B’ = ~ ; 2 ,  

D’ = ci2 - cj3, 

The proof is given in Appendix F. 

v. INVARIANT BASIS OF PLANAR OPTICAL FLOW 
From Lemma 4,  we see that an optical flow resulting 

from planar motion is characterized by a (real) vector a 
= ( a i ) ,  and a tensor B = ( b ,  ) which is a (real) traceless 
symmetric matrix. The vector a has only one invariant, 
namely its “length” 11 a 11, or equivalently 

aTa, (5.1) 
while the real symmetric tensor B has three invariants, 
namely its three real principal values ul, u2, u3, or equiv- 
alently any three independent algebraic expressions 
formed from these such as the “fundamental symmetric 
polynomials” : 

(51 + 0 2  + U3, U203 + U ~ U I  + UlU2,  UlU2U3 (5.2) 

(cf. [13], [14], [16]-[18], [24]). Alternatively, we can 
use the following sums of powers: 

U1 + U2 + u3, U: + U; + U:, U: + U; + U;. (5.3) 
This set is computationally convenient, since they are ex- 
pressed in terms of the components of matrix B as 

Tr B(  = 0) ,  Tr B2, Tr B3, (5.4) 
where Tr denotes the trace of a matrix. If the tensor is 
symmetric and traceless, there remain only two invari- 
ants, since the first invariant (trace) vanishes. 

Thus, the vector a has one invariant, and the symmetric 
tensor B has three invariants. However, if we consider a 
set of the vector a and the tensor B, we must have, in 
addition to the invariants of each of them, invariants de- 

135 

(4.9) 

scribing the relative relationship between the vector a and 
the tensor B.  

Geometrically speaking, a vector is thought of as a di- 
rected axis to which its “magnitude” (i.e., the length) is 
attached, while a symmetric tensor is thought of as three 
mutually perpendicular undirected axes (i.e., the princi- 
pal axes) to which their respective “magnitudes” (i.e., 
the principal values) are attached. It is intuitively clear 
that for a vector its length is the only invariant, since the 
orientation of its axis can be changed arbitrarily by a 
3-D rotation. It is also clear that for a symmetric tensor 
the three principal values are the only invariants, since the 
orientations of its principal axes as a whole are changed 
by a 3-D rotation. 

However, if we have a vector and a tensor, there ap- 
pears another invariant aspect which is not changed by a 
3-D rotation of both of them at the same time: namely, 
the orientation of the vector relative to the principal axes 
of the tensor. Since orientation can be specified by two 
parameters (say, the longitude and latitude on a unit 
sphere), we have two additional invariants. The choice is 
not unique, but a computationally convenient one is given 
by the following two (cf. [13], [14], [161-[181). 

aTBa, aTB2a (5.5) 
Now, let us consider the equivalence of two images; 

we say that two images are equivalent if they are obtained 
by projection of the same object for different camera ori- 
entations. Since we have already obtained an invariant ba- 
sis, we can conclude as follows. 

Proposition 4: Two optical flows resulting from planar 
motion are equivalent if and only if invariants 

aTa, Tr B2, Tr B3, aTBa, aTB2a, (5.6) 

take the same values, where a = ( a ; )  and B = (b,) are 
given by (4.5) and (4.6). 

VI. RECONSTRUCTION OF CAMERA ROTATION 
If two optical flows are equivalent,6 we can find a ro- 

tation matrix R which takes one camera orientation into 
the other. This is done as follows. 

Suppose we observe vector a and tensor B from one 
flow, and similarly a’ and B’ from the other. For simplic- 
ity, we assume that none of them is zero. 

‘Of course, in real situations, we must take noise and error into consid- 
eration, and allow a certain tolerance for testing the equivalence by the 
values of the invariants. 
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First, assume that B (hence B’ as well) has three dis- 
tinct principal values U,, u2, us. Let e, ,  e2,  e3 be the mu- 
tually orthogonal unit vectors indicating the correspond- 
ing principal axes of B .  Since they are determined except 
for sign, fix one set such that e,, e2, e3 form a right-hand 
system in that order. Construct a matrix RI  having e , ,  e2 ,  
e3 as its three columns in this order. 

Similarly, let e;, e;, e; be the mutually orthogonal unit 
vectors indicating the corresponding principal axes of B’ 
such that they form a right-hand system in this order. 
Since the signs are arbitrary, there exist four possibilities. 
(The remaining four are left-hand systems.) For each case, 
construct the corresponding matrix RY), i = 1, 2, 3, 4 .  
Then, the camera rotation which transforms B’ to B is 
given by 

i = 1, 2 ,  3, 4. (6.1) ~ ( 1 )  = R ! ’ R ~ ,  

(The proof is given in Appendix G.) Finally, choose 
among these four, the one which transforms a’ to a. 

If B (hence B‘ as well) has only two distinct eigenval- 
ues, (i.e., a single root and a pair of multiple roots), let 
el be the unit eigenvector associated with the single root. 
Suppose a is neither parallel nor perpendicular to e,. Since 
the sign of e, is arbitrary, choose it so that a and e, make 
an acute angle. Then, we can obtain three mutually or- 
thogonal vectors forming a right-hand system by con- 
structing 

We can construct matrices R I ,  R2 as described above, and 
the camera rotation is given by R = R2 RT. 

The remaining cases yield multiple solutions. If a is 
perpendicular to e,, there exist two solutions. If a is par- 
allel to e , ,  or if B (hence B‘ as well) has one eigenvalue, 
i.e.,  B ( =  B ’ )  is a multiple of the unit matrix I ,  the so- 
lution for R is any rotation that maps u’ to a, and we can 
add any rotation around a. 

VII. INVARIANT DECOMPOSITION OF OPTICAL FLOW 

According to Proposition 3 ,  if we define c d ,  i ,  j = 1, 
2, 3, by (4.9), the optical flow equations (3.1) are written 
as 

and c j j ,  i, j = 1, 2, 3, are transformed as a tensor [i.e., 
by (4. lo)] by the camera rotation transformation. 

On the other hand, Lemma 4 asserts that if we define 
ai,  i = I ,  2, 3, by (4.5) and b,, i , j  = 1, 2 ,  3, by (4.6), 
the optical flow equations (3.1) are decomposed into two 

parts U = U, + u b ,  v = U ,  + vh, where 

1 
U, = fa2  - a3y + - (a2x - a ,y )x ,  f 

(7.3) 

This decomposition is unique because a;, i = 1, 2 ,  3, 
and b,, i ,  j = 1 ,  2, 3, are computed from the original 
flow parameters uo,  uo, A ,  B ,  C ,  D, E ,  F by (4.5) and 
(4.6). Moreover, this decomposition is invariant in the 
sense that each flow is transformed by the camera rotation 
transformation independently of the other (4.7), (4.8). At 
the same time, this decomposition is irreducible in the 
sense that no further decomposition is p ~ s s i b l e . ~  Hence, 
they should have separate geometrical meanings indepen- 
dent of the other, cf. [8]. Let us call the flow (ua, U,)  the 
vector part and the flow (ub, U),) the tensor part of the 
original optical flow. 

Suppose the entire scene, including all the objects in it, 
is stationary, and the camera is rotating around the center 
of the lens with rotation velocity ( U , ,  w2,  w 3 ) .  Consider 
what “optical flow” we should observe on the image 
plane. Since the rotation velocity components wI, wz,  w3 
are obtained by dividing infinitesimal camera rotation an- 
gles n,, Q 2 ,  Q 3  by the time 6t  it took, we divide both sides 
of the infinitesimal camera rotation transformation (2.4) 
by 6 t ,  take the limit of 6t  -+ 0, and obtain 

1 
U = -fw* + w3y + - ( - w 2 x  + w , y ) x ,  

f 

Comparing these equations to (7.2), we see that the vector 
part ( u ~ ,  U,)  is the flow we will observe if the camera is 
rotated with rotation velocity ( -a l ,  -a2 ,  - a s )  relative 
to the stationary scene, or equivalently if the planar sur- 
face (or any other object or scene) is orbiting around the 
origin (i.e., the center of the lens), the configuration rel- 
ative to the camera kept fixed, with rotation velocity ( a, , 
a29 as). 

This means that this vector part essentially does not 
contain any information about the 3-D structure and mo- 
tion of the object. We may alternatively call this flow the 
“uninformative part. ” The information about the 3-D 
structure and motion is contained in the tensor part (4, 

’For the transformation rules of (4.7) and (4.8) correspond to irreducible 
representations 9, and D2 of SO( 3 ) ,  cf. Appendix E. 
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ub). The decomposition of the flow into two parts as (7.2) 
and (7.3) is simply the separation of the flow component 
due to the “orbiting” motion from the remaining flow 
components. This observation implies that 3-D recovery 
from optical flow can be performed from the tensor part 
alone. 

The recovery of 3-D shape and motion from optical flow 
has been studied by many researchers. If the object is a 
planar surface, the solution is obtained in an analytically 
closed form [6], [7], [12], [15], [20]. If the result is re- 
written in terms of our a; ,  i = 1, 2,  3,  and b,, i, j = 1 ,  
2, 3 ,  it can be shown that the surface gradient components 
p ,  q are completely determined by tensor ( bij)  alone. In 
other words, suppose we determine the translation veloc- 
ity components (scaled by the depth r )  a / r ,  b / r ,  c / r  (the 
solution is unique) and the rotation velocity components 
U, ,  w2,  w3 (two sets of solution exist),’ assuming that the 
vector part is zero: a; = 0 ,  i = 1, 2,  3. It can be proved 
that addition of a nonzero vector part only modifies the 
solution in the form 

(7.5) a / r  + a / r  + a2, b / r  + b / r  - a , ,  

+ W I  + U , ,  02 + ~2 + ~ 2 ,  wg + a3 + ~ 3 .  (7.6) 

Namely, the vector part simply adds the effect of the “or- 
biting” of the surface around the center of the lens. (The 
proof is given in Appendix H.) 

Finally, note that if the camera is instantaneously ro- 
tating with some angular velocity, the flow (7.4) is su- 
perimposed onto the original optical flow. However, if we 
decompose the flow into its vector and tensor parts, the 
tensor part is not altered at all, since the superimposition 
only adds to the vector part. 

VIII. CONCLUDING REMARKS 
In this paper, we analyzed the optical flow resulting 

from planar motion, and derived the parameter transfor- 
mation rule when the camera is rotated by a$nite amount. 
However, invoking the Lie group theory, we can deduce 
finite transformation properties solely from analysis of in- 
jinitesimal transformations. 

Our results are interesting in its own right from a the- 
oretical point of view. More importantly, however, the 
mathematical tools developed here will provide a power- 
ful means of analysis in a wide range of problems in com- 
puter vision. For example, the same technique can be ap- 
plied to static scenes, characterizing object images in 
terms of “invariant features,” i.e.,  quantities invariant to 
camera rotation. This is done in [9]. 

Another example is the 3-D recovery problem. Since 
perspective distortion of image increases as we go away 

8As pointed out earlier, a rigid motion is specified by the translation 
velocity and the rotation velocity with respect to an arbitrary chosen ref- 
erence point. Our reference point is the intersection of the surface with the 
Z-axis, and in this case the translation velocity (scaled by the depth) is 
uniquely determined, while the rotation velocity has two solution. Some 
authors take it at the coordinate origin, i.e., the viewpoint. Then, their 
“translation velocity” is a linear combination of our translation velocity 
and rotation velocity, and hence the solution is not unique. See also the 
discussion in 171. 

from the image origin, it is convenient first to move the 
image into the center of the image by the camera rotation 
transformation. Then, we analyze the 3-D shape, posi- 
tion, motion, etc. there, and transform the obtained 3-D 
interpretation back into the original configuration. This 
technique is used for the shape-from-texture problem [ 111 
and for the interpretation of length and angle projected 
onto the image plane [lo]. A similar approach is sug- 
gested for the 3-D recovery of curved surfaces from op- 
tical flow [19], [22]. 

In this paper, we did not discuss the 3-D recovery from 
optical flow-its significance and analytical techniques. 
There exist many papers on this issue. A general philos- 
ophy is given by [19], [22], for example. Closed form 
analytical solution is given for planar surface motion [6], 
[7], [ 121, [ 151. The general case of curved surfaces is also 
analyzed, and closed form solution is given [20]-[23]. 
However, accurate detection of optical flow from a se- 
quence of real images is in general a very difficult prob- 
lem. Although many techniques have been proposed and 
tested, we do not refer to them, since the technical issue 
is not the scope of this paper and many papers are cur- 
rently being reported one after another. Analytical tech- 
niques for detecting optical flow or the object motion 
directly from global characteristics, such as the object 
contour, without first detecting the point-to-point corre- 
spondence, have also been proposed and tested [l] ,  [4], 
[51, ~ 1 ,  1221. 

APPENDIX A 
PROOF OF PROPOSITION 2 

If we combine the perspective projection relationship 
(2.1) with the equation Z = pX + qY + r of the planar 
surface, we obtain the following one-to-one correspon- 
dence between the surface and the image plane: 

rx rY X =  , Y =  
f - P X  - 4Y f - P X  - 4Y’ 

r f  
f - P X  - qy‘ 

Z =  

According to the definition of the translation and rotation 
velocities, the velocity of point ( X ,  Y ,  Z ) in the scene is 
given by 

Substituting Z = pX + qY + r into this, we obtain 

x = a + pw2x + (qwz - w3)Y,  

Y = b + (03 - p w l ) X  - p l y ,  

z = c - w,x + w,Y.  (‘4.3) 
Differentiating both sides of (2. l ) ,  we obtain the velocity 
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of the image point as follows: 

. f X  f X Z  f X  x i  
z z2 z z’ x = - - - = - - -  

From (2.1) and (A.3), we obtain 

- fX - f a  
- 7 + PW2X + ( w 2  - w3)y, 

Substituting these into (A.4), and eliminating 2 by using 
the last equation of (A. l ) ,  we obtain the optical flow in 
the form of (3.1) and (3.2). 

APPENDIX B 

Now, we know that the optical flow equations must have 
the form of (3.3) after the infinitesimal camera rotation 
transformation. If we substitute U ’  = U + 6u, U ’  = v + 
6v in the left-hand sides of (3.3), and x ’  = x + 6x, y’  = 
y + 6 y , u t , = u o + 6 u o ,  - . .  , F ‘ = F + h F i n t o t h e r i g h t -  
hand sides, we obtain 

6u = 6 4  + 6Ax + A6x + 6By + B6y + &Ex2 + 2Ex6x 

+ 6Fxy + FySx + FxSy + O (  Q‘) , 

6~ = A V O  + ~ C X  + C ~ X  + 6Dy + D6y + 6Ejry + EY~X 

+ Ex6y + 6Fy2 + 2FySy + O ( Q 2 ) .  (B.3)  
Substituting the infinitesimal camera rotation transfor- 
mation (2.4), we obtain 

6~ = 6 ~ 0  - f (Q2A - QIB) 
+ (6A - Q3B - f (2Q2E - Q1F))x 

+ (6B + Q3A -jTl,F)y 

PROOF OF LEMMA 1 
Velocity components U,  v are transformed under trans- 

formation x -+ x’, y + y’ by 

In other words, the velocity vector is multiplied by the 
“Jacobi matrix. ” If we substitute the infinitesimal camera 
rotation transformation X I  = x + ax, y’ = y + 6y given 
by (2.4), and apply the optical flow equations (3.1), we 
obtain U ’  = U + 6u, U’ = v + 6v, where 

) 

) 

1 
6u = Q7,2/0 + (-7 (2Q2uO - QlUO) + Q3c x 

1 + ( f Q l u o  + Q3D y - - (2Q2A - Q l C ) x 2  

- ( f (Q ,A - 2Q1B + Q,D) + Q3E xy 

> f  

+ (-jQIB 1 + Q3F)y2  - 2 -Q2Ex3 

) 

f 
2 2 

f f 
+ - (QIE - Q;?F)x’Y + - QlFxy2 + O ( Q 2 ) ,  

6v = -&,U0 - ( f Q z u 0  + Q3A x ) 
1 + ( - 7 ( Q 2 u o  - 2Q2,v0) - Q3B y 

- (7 1 Q2C + Q3E)x2 

+ ( - f ( Q 2 A  - 2QlC + Q2D) - Q3E xy ) 
1 2 

f f 
2 2 
f f 

- - (Q2B - 2QlD)y2 - - Q2Ex2y 

+ - (Q1E - Q2F)xy2 + - Q1Fy3 + O ( Q 2 ) .  

(B.2) 

1 
(QIA - Q2B)  + 2Q3E 

2 2 + - (QlE - M2F)x2y + - Q1Fxy2 + O ( Q 2 ) ,  
f f 

6~ = 6 ~ 0  - f(Q2C - Q1D) + (6C - Q3D + Q1E)x 

+ (6D + Q3C -f(Q2E - 2QIF))y  

- ( 7 Q 2 C  1 + Q3E)x2 

) 1 
- (6E + j ( Q I C  - Q2D) - 2n3F xy 

1 1 + 6F + -QID + Q3E y2 

2 
( f  
2 

- - Q2Ex2y + - (QjE - Q2F)xy2 
f f 

+ - n l ~ y 3  + o(Q’). 
f 
2 

Comparing (B.3) and (B.4), we obtain 

6 ~ 0  = Q 3 ~ 0  +jTl2A - m , B  + O ( Q 2 ) ,  

6 ~ 0  = - Q 3 ~ 0  + m 2 C  - m l D  + O ( Q 2 ) ,  

2 1 
6A = -- Q ~ u O  + - Qlvo + Q3B + Q3C 

+ 2 m 2 E  - @ I F  + O(Qz)), 

1 

f f 

6B = - QIuO - Q3A + Q3D + m2F + O(Q2),  
f 

1 
6C = - - Q ~ v O  - Q3A + Q3D - m I E  + O ( Q 2 ) ) ,  

f 
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It is easy to see that they satisfy the following commuta- 
tion re~at ions :~  

+ f l 2 E  - 2 n I F  + O ( Q ’ ) ,  [ A I ,  A21 = -A3, [A27 A31 = -AI,  [A3, A,]  = -A  2 .  

(C.4 1 1 1 
6E = -- Q2A + - QIC + Q3F + O ( Q 2 ) ,  

Here, the commutator [ * ,  ] is defined by [ A ,  B ]  = AB 
f f 

f f 
- BA. 1 1 

6F = -- Q2B + - QID - Q3E + O ( Q 2 ) .  (B.5) 

APPENDIX C 
PROOF OF LEMMA 2 

Equation (4.1) is linear in the flow parameters. Hence, 
it defines a global linear transformation by “integration. ” 
Equation (4.1) is rewritten as 

U 0  

6[:; = (QA + Q2A2 + Q 3 A 3 1 [ ; j  + 0 ( Q 2 ) ,  

(C.1)  
where the injnitesimal generators A I ,  A2, A3 correspond- 
ing to infinitesimal rotations around the X-, Y- and Z-axes 
are given as follows: 

APPENDIX D 
PROOF OF LEMMA 3 

If we compute the Casimir operator 

H = - ( A :  + Ai + A:) (D. 1) 

from the infinitesimal generators A I ,  A2, A3 of (C.3), we 
obtain 

H =  

- - 4 

4 
6 

4 2  

2 4  

.2f2 -2fl 

A2 = 

6 

4 

4 

-f  
-f 

llf -f - 2 l f  
1 lf 

2f 
-f ). 

The characteristic polynomial of matrix H is -2f I 
det ( X I  - H )  = ( A  - q 3 (  X - 6)5, (D.3) 

where I is the unit matrix of dimension 8.  Thus, the ei- 
genvalues of matrix H are 2 with multiplicity 3,  and 6 
with multiplicity 5.  This means that the eight-dimensional 
representation space over which the matrix H acts as a 

I llf 
1 lf 

1 f 

1 
f 

J 

- 2 l f  2 f  
f 

- 1 l f  
- 1 l f  f 

- 1 /f 
- 1 l f  

L 

1 
1 

1 1  
-1 -1 
-1 -1 

-1 -1 
1 

- 1  

linear transformation is resolved into two eigenspaces of 
dimensions 3 and 5, in which the restriction of H acts as 
multiplication by 2 and 6,  respectively. Since 1 ( 1 + 1)  
= 2 , 2  X 1 + 1 = 3 , a n d 2 ( 2  + 1 )  = 6 , 2  X 2 + 1 = 
5 ,  the representation T ( R )  of (7.18) is equivalent to the 
direct sum Dl f~ D2 of the irreducible representations 9, 
of weight 1 and D2 of weight 2.” 

’ 

d 
91t is known that the necessary and sufficient condition that infinitesimal 

transformations associated with infinitesimal rotations define global linear 
transformations, i.e., a representation of SO( 3 ) ,  is that the commutation 
relations (C.4) are satisfied (cf. [2], 131, [24]). They are the integrability 
conditions for the Lie ulgebru of infinitesimal transformations viewed as a 
vector field over the Lie group SO( 3 ) .  However, in the literature, the mi- 
nus signs on the right-hand sides of (C.4) do not appear. This is because 
we define R to be the rotation of the camera or the coordinate system, while 
in the literature R is used for the rotation of the object or scene relative to 
a fixed coordinate system. 

“It is known that a representation of SO( 3 )  is irreducible, i.e., no fur- 
ther reduction to two or more separate representations is possible, if and 
only if the Casimir operator H of (D. l )  is 1 ( 1  + 1 )  times the (21 + 1)- 
dimensional unit matrix: H = [ ( I  + 1 ) I .  Here, I is an integer or half- 
integer, and is called the weight of the resulting irreducible representation, 
which is denoted by a>, (cf. 121). 

. (c.3) 
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APPENDIX E 
PROOF OF LEMMA 4 

A “vector” is a set of three components U , ,  u2, u3, 
which are transformed by the camera rotation R as 

This is a linear mapping, and hence it defines a represen- 
tation of SO ( 3 ) ,  which is called the vector representu- 
tion. If the camera rotation is infinitesimal, the values of 
u l ,  u2, u3 are also changed infinitesimally into ul + 6ul ,  
u2 + 6u2, u3 + 6u3, as follows: 

The infinitesimal generators A , ,  A 2 ,  A3 are given by 

AI = [ - 1  11, A2 = [, -‘1. 

It can immediately be comfirmed that they satisfy the 
commutation relations [ A 2 ,  A3] = -Al ,  [ A 3 ,  A , ]  = -A2,  
[AI ,  A21 = -A3. The Casimir operator H = - ( A :  + 
Ai + A : )  becomes 

Since this is 1 ( 1 + 1 ) times the ( 2  x 1 + 1 )-dimensional 
unit matrix, the vector representation is the irreducible 
representation 9 of weight 1 of SO ( 3 ). 

Consider a traceless symmetric tensor B = ( bv) ,  i, j = 
1, 2, 3 .  The components are transformed by the camera 
rotation R as 

This is a linear mapping from b,, i, j = 1, 2, 3 ,  onto bi;, 
i, j = 1, 2, 3, and hence it defines a representation of 
SO( 3) .  Since tensor B is traceless and symmetric, there 
are only five independent elements. Let us take b l l ,  b22, 
bI2,  b31,  b32. If the rotation is infinitesimal, we obtain 

. [ ]  
b32 

+ O(Q’)  

= (QIAl  + Q2A2 + QJ3) [I 
b32 

+ 0(Q2) .  

(E.6)  

The infinitesimal generators A , ,  A 2 ,  A3 are given by 

-2 

A 2 = [ 2  1 - 1 1 9  

A3 = - i 1 1 

2 

-2 

- 1  1 I (E.7) 
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r 

-f 

-1lf - 
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and it is easy to confirm that these infinitesimal generators 
satisfy the commutation relations [ A 2 ,  A 3 ]  = - A l ,  [ A 3 ,  
A ,  ] = -A2 ,  [ A , ,  A 2 ]  = -A3 .  The Casimir operator H = 
- ( A :  + A: + A i )  becomes 

r 6  1 

L 6 J  

Since this is 2 (2 + 1 ) times the (2  X 2 + 1 )-dimensional 
unit matrix, the representation defined by the traceless 
symmetric tensor is the irreducible representation D2 of 
weight 2 of SO( 3 ) .  

Now, let us go back to (4.1). Take the following set of 
vectors as a basis of the eight-dimensional representation 
space: 

With respect to this basis, the Casimir operator of (D.2) 
is diagonalized as follows: 

6 

6 

I 6 I 

6 1  6 

The vector consisting of the flow parameters u0, , F 
is expressed as the following linear combination of the 
new basis vectors: 

. -  
M O  

U0 

A 

B 

C 

D 

E 

F . -  

B + C  +- 
2 

U o l f  + f E  
2 

+ C - B  +- 
2 

-1 

1 

. .  

r 

2A - D +- 
3 

1 

. -  

2 

1 

. -  

2 0  - A +- 
3 

( E . l l )  
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- -  
a1 

a2 

a3 

b11 
b22 

b13 

b3 1 

-b32- 

Hence, the new components with respect this new basis 
are given by a l ,  a2,  a3 of ( 4 3 ,  and b l l ,  bZ2, b I 2 ,  b3, ,  b32 
of (4.6). In terms of these new components, (4.1) is re- 
written as 

those for a vector (E.3) and those for a tensor (E.7), a l ,  
a2 ,  a3 are transformed as a vector and b,, i, j = 1, 2, 3 ,  
are transformed as a traceless symmetric tensor. 

Q3 -a2 

.Q3 Q l  

Q2 -Ql 

- Q3 

-Q1 

2 Q2 

The coefficient matrix is written as Q,A; + Q2A; + 
Q3Aj,  where the infinitesimal generators A ; ,  A;, Aj  are 
given by 

Q3 

Q2 

-2Q1 

-2Q3 

Q3 

Q2 Q3 

- Q 1  

1 

-1 

A ;  = 

A; = 

A; = 

-1 

1 

1 

1 

-2 

-1 

2 1  

1 

1 r (E.13) 

Since these infinitesimal generators are the direct sums of 

+ O ( Q 2 ) .  (E.12)  

APPENDIX F 
PROOF OF PROPOSITION 3 

Equation (E. 1 )  is also written as the following tensor 
transformation rule for an antisymmetric tensor. 

0 -ai a; 0 -a3 a2 

(F .1)  
Hence, we can define a new tensor C by 

cl1 c12 c13 0 -a3 a2 [ c22 = [ a3 0 -al  

-a2 al 0 c32 c33 

b l l  b12 b13 

+ b21 b22 b23 [ b31 b32 b33 

Thus, we obtain (4.9)-(4.11). 

APPENDIX G 
PROOF OF (6.1) 

Consider the mutually orthogonal unit vectors i = ( 1, 
0, O ) T , j  = ( 0 ,  1, O ) T ,  k = ( 0 ,  0, l ) T a l o n g  theX-, Y-, 
and Z-axes. By the definition of R I ,  if the scene is rotated 
by R I ,  the vectors i, j ,  k move onto vectors e l ,  e2, e3.  
Similarly, if the scene is rotated by R(Ii’T, the vectors i , j ,  
k move onto vectors e ; ,  e;, e;. Hence, if the scene is ro- 
tated by Rt’RT, the vectors e , ,  e2, e3 move onto the vec- 
tors e ; ,  e;, e;. Conversely, if the camera is rotated by 
R2 R I ,  the vectors e ; ,  e;, e; move onto the vectors e , ,  e2, 
e3. 

( i )  T 

APPENDIX H 
PROOF OF (7.5) AND (7.6) 

We follow the formulation of Kanatani [7]. The 3-D 
recovery solution is given in terms of a i ,  i = 1 ,  2, 3, and 
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b,, i ,  j = 1, 2 ,  3 as follows. First, define T,  S ,  L by 

T = b33, S = (b l l  - b22) + 2ibI2, L = b31 + ib32, 

P . 1 )  
where i is the imaginary unit.” Then, the translation ve- 
locity components scaled by the depth r are given by 

a / r  = Re [ L ]  + a2, b / r  = Im [ L ]  - a l ,  c / r  = a, 

( H . 2 )  
where a is the middle of the three real roots of the follow- 
ing cubic equation,I2 and Re and Im denote the real and 
the imaginary parts. 

X 3  - 3TX2 + $(9T2  - \SI2 - 4 ( L I 2 ) X  

+ ;(Re [L2S*] + 3T(L12)  = 0. 03 .3)  

Here, * and [ I denote the complex conjugate and the 
modulus of the complex number. Next, using the solution 
a, compute the following two complex quantities. 

P = i ( L  f -), W =  i ( L  T e--zz). 
a 

(H.4)  
Then, the surface gradient components p ,  q and the ro- 
tation velocity components wl, w 2 ,  w3 are given as fol- 
lows. 

p = Re [ P I ,  

w3 = ;Re [PW*] + a3. 

9 = Im [ P I ,  

w1 = Re [ W  + iL]  + a, ,  w2 = Im [ W  + iL]  + a2, 

(H.6)  

From these results follows the observation in Section VII. 
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