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A MATHEMATICAL FOUNDATION
FOR STATISTICAL NEURODYNAMICS*

SHUN-ICHI AMARIt, KIYONORI YOSHIDA$ AND KEN-ICHI KANATANI{

Abstract. The brain is a large-scale system composed of an enormous number of neurons. In
order to understand its functioning, we need to know the macroscopic behavior of a nerve net as a
whole. Statistical neurodynamics treats an ensemble of nets of randomly connected neurons and
derives macroscopic equations from the microscopic state transition laws of the nets. There arises,
however, a theoretical difficulty in deriving the macroscopic state equations, because of possible
correlations among the microscopic states. The situation is similar to that encountered in deriving the
Boltzmann equation in statistical mechanics of gases.

We first elucidate the stochastic structures of random nerve nets. We then derive macroscopic
state equations which apply to a wide range of ensembles of random nets. These equations are shown
to hold in a weak sense: we prove that the probability that these equations are valid within an
arbitrarily small error and for an arbitrarily long time converges to 1 as the number n of the component
elements in a random net tends to infinity. We also derive the macroscopic equations describing the
dynamic behavior of the state correlations, and prove that these equations hold in the weak sense. The
strong assertion which states the uniform convergence in time, is proved for a special class of random
nets.

1. Introduction. The study of the human brain is probably one of the most
active areas of science today. The challenge is to understand the fundamental
functioning of the highly intellectual activities characteristic of human beings.
Difficulties arise, however, due to the great complexity of the brain and its
enormous number of elements. Our main concern in this paper is the study of such
large scale systems. When one is dealing with a system consisting of a large
number of elements, one is, in many cases, not interested in the detailed behavior
of the individual elements. Instead, one is usually interested in macroscopic
behavior of the system. The problem is to deduce the equations which describe the
macroscopic behavior of the system from a knowledge of the individual elements.
Thus our task is to find macroscopic state equations on the basis of the microscopic
state equations. This problem has much in common with those encountered in the
study of statistical mechanics [14], [24].

We study nets composed of idealized neurons mterconnected with one
another. Following the method of statistical mechanics, we consider an ensemble
of nerve nets instead of treating any specific net. We then introduce a probability
measure on the ensemble in such a manner that the specific net can be regarded as
a typical sample from the ensemble. The probability measure is naturally intro-
duced when we treat an ensemble of nets in which neuron elements are connected
in a random manner subject to some prescribed probability distribution. In this
case, a sample net is called a random nerve net. We study the dynamic behavior of
nerve nets which is valid for almost all typical sample nets of the ensemble. That is,
in terms of probability theory, we study those properties whose probability
converges to 1 as the number n of the components elements tends to infinity.
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Random nets consisting of formal neurons have been investigated by many
authors, and many computer-simulated experiments have been done (e.g., [1],
[7], [8], [11], [13], [16], [17], [22]). The macroscopic state equations are derived
by Rozonoer [20], Amari [2] and others for various types of nets. Amari [2], [3],
[6] has studied the macroscopic behavior of random nets in detail. He derived the
catastrophe curve for random nerve nets in the sense of Thom [23]. When the
structural parameters of a net change across the catastrophe curve, a sudden
qualitative change appears in its behavior.

There is, however, a certain difficulty in deriving the macroscopic state
equation, as Rozonoer[19] has pointed out (see also Amari[5]). In order to obtain
the macroscopic equations, one must assume the statistical postulate that possible
correlations between the states of the neuron elements can be neglected, provided
the number n of the elements is sufficiently large. The situation is again the same
as in statistical mechanics; the so-called assumption of molecular chaos or
“Stosszahlansatz” is employed in the derivation of the famous Boltzmann equa-
tion in the kinetic theory of gases. This postulate states that the correlation
between particles after collisions can be neglected. The postulate gave rise to a
major controversy in the history of statistical mechanics (see Kac [14]). The
analogy between statistical mechanics and random nerve nets was discussed by
Rozonoer with the help of Kac’s work. He presented many important concepts
and hypotheses in his discussion [19]. This was the first important step in
establishing the theoretical foundations of statistical neurodynamics.

The statistical postulate is said to hold in the strong sense, if the correlations
vanish uniformly in time ¢ as the number n tends to infinity. It is said to hold in the
weak sense, if the convergence is not necessarily uniform. Rotenberg [18] first
proved the weak postulate for a very special ensemble of nerve nets.

In the present paper, we will give, along the lines proposed in[5],[18],[19), a
rigorous mathematical foundation of statistical neurodynamics. In the beginning
- we will treat ensembles consisting of stochastically homogeneous random nerve
nets of formal neurons of the McCulloch-Pitts type. We will prove the statistical
postulate in the weak sense for these ensembles. It will then be shown that our
method is applicable to more general ensembles of nerve nets. The macroscopic
state equations will be derived for these general random nets. Moreover,
generalizing Amari’s method of approach 5], we will show that the correlations of
a number of different states themselves can be treated as macroscopic quantities
characterizing the net behavior as a whole. The dynamical equations will be
derived for these generalized states of correlations and the statistical postulate in
the weak sense will also be proved. The postulate in the strong sense will be
proved only for a special class of ensembles.

2. Macroscopic description of a large system. In this section we will discuss
the condition under which the macroscopic description is possible in a system
composed of a large number, say n, of elements. Let us denote the state of the ith
element at time ¢ by x;(¢) (which may be a vector quantity). Then, the state of the
system at time ¢ is described by a vector of n components

X(t) = (xl(t)’ x2(t), Tty Xy (t))
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We assume that the system operates in discrete time, t=0, 1,2, - - -, in accor-
dance with the state transition equation

xi(t+1)=7‘i(xl(t)a' °',x,,(t);w), i=1, 2" Y (1
or in vector notation
2.1) ' x(t+1) =T, x(s),

where w denotes a set of parameters specifying the structure of the system and T,
is the state transition operator. Then we can write

x(£) = T, x(0).

It should be noted that x(f) depends on w, i.e., on the structure of the net in which
the state transition takes place successively. Therefore, x(¢) should be written as
x(t; ), when we need to show the explicit dependence on the net parameters.

If the explicit form of the transition equation (2.1) is known, the behavior of
the whole system is understood in principle. However, it is almost impossible to
obtain analytic solutions of (2.1) if the number n is very large. Even if numerical
solutions are obtainable by the use of big computers, our interest is in many cases
not to know the detailed behaviors of the individual elements, but to know the
macroscopic properties of the system as a whole. In such cases, it is most
appropriate to introduce the statistical method. To this end, we treat an ensemble
. consisting of similar systems instead of considering a specific system, where n is
the number of elements of every system. Then the probability of selecting a
particular system from the ensemble is defined in such a manner that the system of
our interest is regarded as a typical sample from the ensemble.

Now we introduce a probability measure on the ensemble W, of systems
described by the transition equation (2.1), by considering the set of the system
parameters w as random variables subject to some probability distribution. What
we are most concerned with is the dynamical behavior of the system which is
common to almost all systems of the ensemble, when n is very large. In mathemat-
ical terminology, we are interested in the asymptotic behavior, whose probability
converges to 1 in the limit n - 00. Therefore, we consider an infinite sequence ¥,
of the ensemble, n=1,2,3, - - -. The distribution functions F, of the system
parameters w of ¥, need to be determined in such a way that the asymptotic
structure of the system has a definite meaning.

In order to know the macroscopic properties of a system in JV,,, we investigate
the dynamical behavior of certain macroscopic quantities which characterize the
state of the system. Let such quantities be given by a set of functions of the state
variables x=(xy," -, x,,)

Xl(x)’ tt X,(X)
or in vector notation
X = X(x).

We call X(x) a macroscopic state corresponding to the microscopic state x. If the
state x is transformed by the state transition operator T, to a new state T, x, the
macroscopic state becomes X(T,x). Obviously, the quantities X, x, @ and
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operator T, are defined in relation to the ensemble W, so that they should be

. n n n . o s
written. as X, X, o, 7"“,,,, etc., and we study the corresponding limits of these
quantities as n -0, However, the superscript n is often neglected solely for

simplicity’s sake. Hence, X, for example, implies the sequence X.

Now, in order that the macroscopic state deserves its name, it is desired that
the value X(T,,x) be determined only by the value X(x) for almost all systems of
the ensemble, if the number n is very large. Hence the following condition is
required for a macroscopic quantity X(x) to be a macroscopic state [5]. The
condition is related to the representative hypothesis of Rozonoer [9].

Macroscopic state condition.. A quantity X(x) (or more precisely a sequence of

quantities )"{(i)) is said to satisfy the macroscopic state condition, if there exist a set
of functions ®;(X), - - -, ®,(X) such that, for any state x satisfying X(x) =X, (or
for any sequence X of state such that lim, ... X(X) = Xo)

(2.2) lim E[X,(T,x)]=Pa(Xo)

@3) lim VIX,(T.1]=0,

<

or in short form

(2.4) lim E[|X, (T,x)- D, (X)"1=0, a=1,2,---,r,
n-»0
where E and V denote, respectively, the operations of taking the expectation and
variance with respect to the random variables w.
When X(x) satisfies the macroscopic state condition, it seems to be expected
that the macroscopic state X’ = X'(w) at time ¢, '

@3 X' =X(xr1(0), -+, x(0)
satisfies the equation
(2.6) X =@(X"),

where ®=(P,, - - -, ®,), within an arbitrary small error, if n is sufficiently large.
But it is not necessarily true [5], [19]. If we substitute x(¢) =x(¢; w), the micro-
scopic state of a net at time ¢, for x in (2.4), equality (2.4) does not always hold,
because x(¢) = T.x is also a random variable depending on the parameters w. In
other words, x(¢) depends on which net in the ensemble the initial value is given to.
This is a very crucial point of the theory. Therefore, we need to prove the
following proposition in order that equation (2.6) be regarded as the macroscopic
state equation.
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Strong proposition. There exists a set of functions ®,(X), - - -, ®,(X) such that,
if X’ is the solution of the equation
xH—l = (I)(xt)

with the initial condition X° = X(x(0)), then the true macroscopic state X' = X' (w)
given by (2.5) satisfies

@.7) lim sup E[|X.~ X.[]=0, a=1,2,--,r.
n- ¢

The functions @, in the proposition, if they exist, are the same as those in
(2.4). As is well known, the mean-square convergence (2.7) implies the con-
vergence in probability

2.7 '!m; Prob {sup | X’ —X!|>¢}=0

for an arbitrarily small positive ¢. It means that, when n is sufficiently large, the
probability measure of those nets for which the macroscopic equation (2.6) holds
within an arbitrary small error £ converges to 1. However, as will be seen later, it is
very difficult to prove this propositior: in most cases of interest. Therefore, we
consider the following weak proposition.

Weak proposition. For an arbitrary time f, the macroscopic state satisfies

(2.8) lim E{X.-X')}=0.

If this proposition is satisfied, the macroscopic state equation (2.6) holds up to
an arbitrary fixed ¢ within an arbitrarily small error bound, if n is sufficiently large.
However, for a large but a fixed number n, there may exist T such that (2.6) does
not necessarily hold for > T. The time T depends on n and T - 0 as n tends to
infinity. The strong proposition requires the uniform convergence in ¢ of (2.8) as
n - 00, whereas the weak proposition does not.

If n random variables x,(f; w), x5(¢; @), - * -, x,(¢; w) are stochastically inde-
pendent, we can prove the weak proposition from the macroscopic state condi-
tion. They are, however, not independent. Instead of the rigorous independence
of these variables, it is useful to consider the asymptotic independence among a
finite subset of these variables. This requires that, for arbitrary number k& and
arbitrary k indices iy, iy, - - -, i, the k variables x; (¢}, x;,(¢), - - +, x;,(¢) are inde-
pendently distributed as n tends to infinity. Kac [14] called this the Boltzmann
property, and Rozonoer [19] treated this proposition as the independence
hypothesis.

We prove the weak proposition by showing the following proposition of
similar character. _

Asymptotic independence proposition. We say that the asymptotic indepen-
dence proposition is satisfied, when, for each n, there exist independently distri-
buted random variables x,(¢), - - -, X, (¢) which satisfy:

(i) the x;(z)’s are independent of @ and their distribution satisfies

lim E[JX, &)~ X41=0, a=1,2,-
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(ii) ‘For an arbitrary finite set of indices iy, i5, * * *, ik, the joint probability
distribution of x;,(¢), - -+, x;, (¢) converges to that of X;,(¢), - - - , %, (z) as n tends to
infinity.

Statistical description of a dynamical system has been studied by many people
in the field of statistical mechanics (Kac[14]). In the following, we will prove the
weak proposition for macroscopic description of various kinds of random nerve
nets by proving the asymptotic independence proposition. The strong proposition
is proved only for a special class of ensembles.

3. Probability measure on an ensemble of homogeneous random nerve
nets. We treat in this section a random net of stochastically homogeneous
structure, in which every neuron has the same stochastic property. However, our
method can be applied to more general nonhomogeneous nets or complex systems
obtained by connecting these homogeneous nets, as will be shown in later
sections.

Let us consider a net consisting of mutually connected McCulloch-Pitts
formal neurons. The behavior of a McCulloch-Pitts neuron is described as
follows: A neuron has at most n input terminals. A quantity called the synaptic
weight is associated with each input terminal. Let x,, x, * * -, x,, be input signals
arriving at the input terminals, and let wy, w,, -+ -, w, be the corresponding
synaptic weights. These inputs cause a change in the membrane potential of the
neuron. The change is given by the weighted sum } wyx; of the inputs, which we
call the postsynaptic potential (PSP). When the PSP exceeds a threshold value 4 of
the neuron, it is excited and emits an output pulse, so that the output x is equal to
1. When the PSP does not exceed h, it is not excited and the output x is equal to 0.
Therefore, the input-output relation of a McCulloch-Pitts neuron is described by

x= I(i w,-x,-—h),

i=1
where 1(u) is the unit step function defined by

1, u>0,
0, u=0,

1(u)={

and the n +1 quantities w; and h characterize the structure of the neuron.

Let us consider a nerve net consisting of n mutually connected McCulloch-
Pitts neurons. Let x;(¢) (i =1, 2, - - -, n) be the output of the ith neuron at time ¢.
All the neurons are interconnected in such a manner that the output signal of
every neuron is fed back to inputs of all the neurons. We assume that the net works
synchronously at discrete times, so that the output x;(t) enters into the jth
terminals of all the neurons, becoming their jth input signal at time ¢+ 1. Let w;; be
the synaptic weight of the jth input terminal of the ith neuron. Then, the PSP of the
ith neuron becomes at time ¢+ 1

i wiix; ().
j=1

When the jth output is not connected to the ith neuron, we may simply put w; = 0.
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Let h; be the threshold value of the ith neuron. Then the output x;(¢ + 1) of the
ith neuron is given by the state transition equation

3.1) x(t+1)= 1( f: wijxj(t)—hi), i=1,--,n
j=1

In this case, a net has n*+n system parameters composed of n> synaptic weights
wy (i,j=1,--+,n)and n thresholds ; (i=1, - - -, n), i.e.  ={wy, h;}. Thus the
structure of the net is completely specified by w.

Now we introduce a probability measure on an ensemble of nerve nets by
considering w, i.e. the n+ n parameters w;; and h;, as random variables. Since we
consider the limiting ideal case n - c0, we need to determine the distribution of the
w;;’s in such a manner that the PSP 3., wyx; of a neuron converges to a certain
random variable in. distribution as n -» 00, with the fraction of the number of
excited inputs (i.e., those for which x; =1) to n kept constant. In this case, the
contribution of the weight w;; of a single input to the whole PSP decreases as n
tends to infinity, since the number of the excited inputs increases in proportion to
n. Thus, the distribution of w;’s in #,, depends on the number n of the elements.
We denote by W(@) the characteristic function of a random variable
lim, o X=1 Wy, which represents the PSP when all the inputs are excited. Now we
put the following assumptions on the probability measure of the w;;’s and &;’s in
the ¥,,’s.

Assumption 1. All the weights w; and thresholds h; are independently
distributed. .

Assumption 2. All the w;; in an W, are identically distributed. The charac-
teristic function W,,(6) of w;; in &, is analytic at the origin.

Assumption 3. All the threshold h;’s are identically distributed irrespective
of n and have a continuous density function. The characteristic function H(8) of k;
is analytic at the origin.

Assumption 4. The characteristic function W(0) of the limit distribution of
Y/=1 wy is analytic at the origin.

Assumption 5.

lim E| ¥ |.'&i,|] <o

n-»co j=1

or equivalently

(3.2) E [wa] = 0('1‘)

n

where O(1/n) denotes a term of order 1/n, the superscript n indicating that W; is
defined on W,,.

The Assumptions 1, 2 and 3 imply that all the component neurons have the
same stochastic properties. Hence, a random net of this ensemble may be said to
be stochastically homogeneous under these assumptions. The independence
assumption plays a very important role in the following. Since the w;’s in /¥, are
identically and independently distributed, the characteristic function of } .., w;; is
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given by (W, (8))". Therefore, we have
(3.3) }'."35 (W,.(8))" = W(9).

This shows that W(8) must be a characteristic function of an infinitely divisible
distribution.

It is easily seen that if the characteristic function of a random variable is
analytic at the origin, the Taylor expansion converges uniformly in an interval
. including the origin, and hence the moment of any order exists. Moreover, the
distribution of the random variable is uniquely determined by the series of these
moments.

From (3.3), or equivalently from

(3.4) ’llx__n; n log W, (8) =log W(9),

we see that W, (8) converges to 1 as n - 0. If we put

(3.5) W,(0)= 1+ Uy (6), U,0)=0,
we have

lirgo U,(6) =log W(6).

From (3.5), we can easily prove that

(.6 Elon,1=0(3), k=123,
Moreover, we obtain

: k .
(3. Eliwl1= o), k=1,23, -

by the use of Schwarz’ inequality.
It is known (Doob [10]) that the characteristic function W(#) of an infinitely
divisible distribution has the following Levy-Khinchin representation,
" iz0 ) 2241
1+z% 2% dG(2),

log W(8) =iu6 +I (e"" -1-
where G(z) is a bounded monotonically nondecreasing function. We show some
typical examples of infinitely divisible distributions. When G(z) =0, we have

log W(8)=iu6,
which represents a constant distribution. Put

z<c¢,

0,
Glz)= {0'2 ZZcC.
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When ¢ # 0, putting p = 1/¢, we obtain a Poisson distribution

THe
ZC (8":8—'1).
C

log W(8)=0o"

In the case of ¢ =0, we obtain a normal distribution

2
log W(8) = iu6 —%a.

Thus the Levy-Khinchin representation shows that an infinitely divisible distribu-
tion can be decomposed into the convolution of a constant distribution, a normal
distribution and an infinitely large aggregate of Poisson distributions.

Among the above three typical distributions, however, the normal distribu-
tion N(w, o?) does not satisfy Assumption 5, because, if we put W, (6)=
(W(6))'", w;; is also normally distributed, N(u/n, a?/n), and we have

E[|wy[l= O(%ﬂ),

which does not satisfy (3.2).

We now show some examples of distribution functions satisfying the assump-
tions.

Example 1. Poisson distribution. Consider a case in which every w;; takes
only on two values 1 and 0 such that

1 with probability ;,
Wi =

0 with probability 1—%

where w is a fixed constant.
Example 2. I'-distribution. Consider a case in which w; is subject to a
distribution whose density function has the form

wp_/n—l e—w/o-

pn(w)=W’ >0, p>0,

where w=0.

In the case of Example 1, all but a finite number of the w;;’s are exactly zero
with probability 1, even when n tends to infinity. Each element is connected with
only u other elements on the average. The values of nonzero w;;’s are always 1 and
do not decrease as n = 0. In the case of Example 2, on the other hand, almost all
the wjy’s are nonzero and hence each element is connected with infinitely many
elements as n goes to infinity, whereas w;; becomes infinitesimally small as n - co.
We can say that a random nerve net with a Poisson distribution is sparsely
connected, and that a net with I'-distribution is densely connected.

It should be noted that when w;; has a distribution satisfying the assumptions,
so does

L
Wi = g;Wij
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where the g;’s are independently and identically distributed random variables,
independent of n and having a characteristic function analytic at the origin.
Therefore, various distributions are derived from those in the above examples.
For example, if we replace w;; in Example 1 by g;w;;, W(8) becomes a compound
Poisson distribution. In this case, each element is also connected with p other
elements on the average, but their weights are not unity but randomly distributed.

Lastly, we show a family of rather trivial distributions.

Example 3.

Eiksilis L 1
pr with probability T

0  with probability 1 _n1—1—a

where a (0<a =1) is a constant and the g;’s are independently and identically
distributed random variables as before. The characteristic function of Y/-; wy
converges to

W(g) — el’we,

where w is the expectation of &;. This case is rather trivial in the sense that Yi=1 Wi
converges to a constant w in distribution, i.e.,

lim V| ¥ w,-,-] 0.
n-co j=1

Rotenberg [18] proved the weak proposition in the case with a = 1. We prove the
strong proposition for any 0 <a =1.

Since the normal distribution does not satisfy the assumptions, even the weak
proposition cannot be proved in this case by our method. However, when all of the
w;’s are nonnegative or nonpositive, the assumption (3.2) is automatically
satisfied, so that our method is applicable. It is known as Dale’s law that the sign of
a synaptic weight is determined uniquely by the type of the presynaptic neurons.
This implies that the synaptic weights stemming from one and the same type of
neurons have the same sign. Our method is applicable not only to a homogeneous
net but also to a complex net composed of various types of excitatory and
inhibitory neurons. Hence, Assumption 5, though it excludes the normal distribu-
tion, does not impose any serious restriction. It is only from the theoretical point
of view that we have an interest in proving whether the weak proposition holds or
not in the case of the normal distribution.

4. Macroscopic equation of a homogeneous random nerve net. The activity
level of a nerve net is defined by

(4.1) X(x) =% D]

i=1
It is a quantity representing the fraction of excited neurons in state x=

(x1,* * *, X,). This activity level satisfies the conditions (2.2) and (2.3). In fact, we
have
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THEOREM 1. The activity level X(x) satisfies the macroscopic state condition :
For any state x such that X(x) = X°

(4.2) lim E[X(T,x)]= DX,
(4.3) lim VIX(T,%)]=0
where
1 g —iud X
(4.4) OX)=— j' I e "Y(W(0)) H(—8) db du.
277 0 —o0

Proof. We have

E[X(T,x)]=

The characteristic function of E,"ff wi; —h; is (W,.(8))"*°H(—6) which converges
to (W(6))*°H(—8) as n - . Thus, using the inversion formula, we obtain (4.2).
On the other hand, each I[Y ., wyx;—h;] is independently and identically
distributed with a finite variance, and hence

i=1 j=1
It is expected that the equation
(4.5) X =®(X")

well describes the behavior of the activity level in a random net. The characteris-
tics of-the above equation, especially its dependence on the macroscopic parame-
ters specifying the stochastic structure of the net, is investigated in detail [2] under
the normal approximation. The weak proposition is proved in the next section.
Assume that %’s (i=1,--,n) are independently and identically dis-
tributed random variables taking on two values, 1 and 0. Moreover, we assume
that the x,’s are independent of w, and that their probabilities are specified by

all

{1 with probability X,
0 with probability 1 —X.
Then we have

E[%]=X.
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Furthermore, we can easily prove that X(X) converges to X in the mean-square
sense,

lim E[|X(&)—X]*]=0.

n—»co

Therefore, we may regard X as a typical microscopic state whose macroscopic state
is X.

We have in this connection the following lemma.

LEMMA 1. The random variable

J=l

converges in distribution to a random variable v; whose characteristic function is
(W(6))*H(—8) and hence

Prob {v; > 0} = ®(X),

where X = E[%,].
Proof. The characteristic function of wyx; is given by
iwx X
E{eij = (I —X)+Xu/n(6) = 1+;Un(6);
and then that of ), w;X; — h; is given by
X n
(1 +; U,,(G)) H(-0),

which converges to (W(0))*H(—0).

5. Proof of the weak proposition. In the present section, the weak proposi-
tion is proved for the activity level of the homogeneous random nerve net. The
method used in the proof is also applicable to more general nerve nets as will be
shown later. The proof owes to the moment theorem due to Kendall and Rao [15],
which states that the convergence of a sequence of distribution functions is
assured by the convergence of the sequences of the corresponding moments of all
orders. We state the theorem in the form convenient to us.

MoMENT THEOREM. Let Y1, Ya, - - - be a sequence of random vector variables
having s components

Y=y R L YR L), =2,

Let
A=(aay - ,as)
be a set of s nonnegative integers, and let ., 5 be the moment of Y, defined by
ma =E[(Y, )% (Y0)" (Y3 *]

If () pnn exists for all n and A, (i) all the p, A’s converge 1o pa

lim g, 4 = pa
n—+oo



STATISTICAL NEURODYNAMICS 107

and moreover (iii) all these j4’s uniquely determine a distribution function F(Y) of
random variable Y, then Y, converges to Y in distribution, i.e. the distribution
function F,(Y) of Y, converges to F(Y) at every point of continuity.

If the distribution function F,(Y; z) of Y, contains a set of parameters z, and if
the corresponding moment p,, 4(z) converges to w4 for all A uniformly in z, then
F,(Y; z) converges to F(Y) at every point of continuity uniformly in z.

The former part of the theorem is well known in probability theory ([25]).
The latter part is a direct consequence of the former (Appendix A).

Let X* be the solution of the equation

X+ =@(X")
with the initial condition X°= X°. Note that X* is not a random variable, while
= X(x(1))
is a random variable depending on all the w;;’s and h;’s.
Now we introduce random variables ¥;(¢),i = 1, 2, - - - , n, which are indepen-

dently and identically dlstrlbuted independent of the w;;’s and &;’s and have the
following distribution.
()= { 1 with probability X,
i 0 with probability 1 - X".

Let us put
u(t)= ‘Zl wiX; (¢ —1)—h;,
j=

u,'(t) = 'él w,,x;(t— 1) - h,',

the latter of which is the true PSP minus the threshold of the ith neuron at time ¢.
We have already seen from Lemma 1 that #;(¢) converges to a random variable
v;(t) whose characteristic function is given by (W(6))*"" H(—8).

The following notations will simplify the description:

xr={xliel},
h[ = {h;ll € I}, etc.,
where [ is a finite set of integers. By ||, we denote the number of elementsin I, i.e.

if I={ij, -,i,}, then |I|=p. Let A=(a,, - -, a,) be a p-tuple of nonnegative
integers. We introduce the following abbreviation:

X7 = (0,)" ()% -+« (x,)%.

The set A is called a power set corresponding to the index set I. We denote by |A|
the number of nonzero elements in A.

Similar abbreviation is also used for w;; as follows. Let K be a finite integer
set. We associate a finite integer set L; with every integer i € K,

L ={Ii.l’ bz, If.p‘},
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where
pi=|Li|.
Then, we write as
Wi ={wylie K, je L},

where L is the family of integer sets L; (i € K). Let

G =(Ci1s Cizy * ¢ 5 Cipy)
be a power set corresponding to L;, and let C be the family of those power sets C;
(i € K). Then, we use the following abbreviation:

W= T1 (we)S =TI IT (wy),

ieK iek jeL;
Icl= X |G
ieK

denotes the number of nonzero ¢;’s.

Now the weak proposition is proved by verifying the following fundamental
lemmas (Lemmas 2, 3, and 4).

LeMMma 2. The asymptotic independence proposition is satisfied, and any finite
set of random variables x(t) converges to X;(t) in distribution as n - 0.

LEMMA 3. For any finite index sets I, J, K and a family of finite integer sets L
such that

INI=49, INK=,

where & is the empty set, the conditional probability distribution of (1,(t), h;) under
the condition w; = zy, converges to that of (v,(t), h;) uniformly in zg; as n—> o,
where v;’s are defined in Lemma 1, i.e.,

lim Prob {u;(t), h;|Wkr = zx, } = Prob {v;(1)} - Prob {h;}.

LEMMA 4. For any index set I, J, K, M, N and a family of finite integer sets L
such that

INJUK)=@, MNJIUJUK)=4,

and for arbitrary corresponding power sets A, B and a family of power sets C, we
have

lim n'YELx7()hSwielwan = 2vw] = ELEF (DR wiee]) =0
uniformly in zy, where E[ - | -] denotes the conditional expectation.

Lemma 2 is a direct consequence of Lemma 3, since u;(z) has a continuous
distribution. The proof of Lemmas 3 and 4 are given in Appendix B. Lemma 2
shows that the independence hypothesis of Rozonoer or the Boltzmann property
of Kac holds for this net.

We now prove the weak proposition.
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THEOREM 2.
lim E[|X’ -XA=0.
Proof. From Lemma 2,
=E[%(n]=X"
Moreover, from
lim Cov [x,(e), x;()] = Cov [%(2), £(1)] =0,
we have

lim V[X‘]=0,

n->oc

where Cov [x, y] is the covariance between x and y.

6. Macroscopic state equations of various types of random nerve nets.

6.1. Nonhomogeneous random nets. Many types of neurons are mutually
interconnected in the brain. Therefore, we need to treat nonhomogeneous
random nets or systems composed of a number of different homogeneous subnets.
We can derive the macroscopic state equations in this case, too.

Let us consider a random net consisting of m types of McCulloch-Pitts
neurons with different stochastic structures. This net can be regarded as a system
composed of m subnets, each subnet being a homogeneous random net. Let the
number of neurons of type a, « =1, -+ -, m, be n,. We consider the case in which
the number n =Y, n, of all the neurons increases in such a manner that the
ratios n,/n,a =1, - - -, m, are always fixed. Let the output and the threshold of
the ith neuron of type a be denoted by x{' and hf,i=1, - - -, n,, respectively. Let
w:-’,-‘B be the synaptic weight of the ith neuron of type a, with which weight the
output of the jth neuron of type B is connected to the former element. Then, we
obtain the following state transition equation:

6.1) x}'(t+1)=1(ﬁ§ , w:-;"xf(:)—h;').

uli

The synaptic weight w;” is a random variable whose distribution depends on
the types B and « of the presynaptic and postsynaptic neurons. Therefore, we
assume that for each pair (@, B), the wjj™s are independently and identically
distributed. We denote their characteristic function by W2#(6). The distribution is
assumed to satisfy the assumptions of § 3. We denote the limit characteristic
function of a random variable Y2, wi® by W=#(9).
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We can choose the m activity levels X, corresponding to each of the m types
of neurons,

(6.2) X,,(x)=-—1- > xf, a=1,--,m,

Ny i=1

as macroscopic quantities characterizing the state of a net. Let X'=
(X1, X3, - + -, X},) be the macroscopic state at time ¢ defined by

Xo=Xo (x(1)).

Then, we can prove the following theorem.
Tueorem 3. The activity levels X(x) satisfy the macroscopic state condition,

with the macroscopic state transition function ®= (®y, « - -, ®p,),
6.3) <D,,(X)=J. I [ (W8 (0)y*®H(~6) e ™™ do du.
0 J-o B=1

The macroscopic state equation
(6.4) X =®(X")

satisfies the weak proposition.

The proofs are obtained by the arguments similar to those in previous
sections. Some characteristics of the above macroscopic state equations are
analyzed by Amari [2]. Models of association and concept formations are pro-
posed in [2], [4], [6] by the use of nonhomogeneous random nets.

6.2. Random nets consisting of neurons with refractory. A McCulloch-Pitts
formal neuron is said to have absolute refractory of period 7, if it cannot be excited
in the successive r times after its excitation. We treat a homogeneous random net
consisting of formal neurons with absolute refractory, where random variables w;;
and h; are considered to satisfy the assumptions of § 3.

In this net, the state x(¢ + 1) at time 7+ 1 cannot be determined by x(¢) alone.
It depends on the previous r successive states x(¢), x(¢—1), - - -, x(¢—r+1).

The state transition equation is written as

r—1
0 if ¥ x(t—k)#0,
k=0
x;(t+ 1) =

1 i wyx; (£) — h,) otherwise.
j=1
We treat the activity level
1 n
t == e t
X n 1§1 x‘( )

as a macroscopic quantity describing the state of the net at time # Let
x(0), x(1), - - +, x(r— 1) be the initial r successive states satisfying

X(x(k)) = X*, k=0,1,-+-,r—1.
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We assume, for the sake of consistency, that

r=1
Y x(k)=0 or 1.
K=0
Then we can prove the following theorem.
THeEOREM 4. Let X" = X(x(r)). Then

r—1
lim E[X’]=(14 3 X")cb(X"’),
n-co k=0

lim V[X"]=0
where ®(X) is the function given by (4.4).
Let X' denote the following r dimensional vector composed of r successive
activities:

Xt = (Xz—r+1’ err+2’ o e Xz)

Then, Theorem 4 implies that the macroscopic state condition is satisfied for this
vector quantity. Therefore, it is expected that X = X(x(¢)) satisfies the following
difference equation of order r,

(6.5) X+ = (1 "k‘;:: X’”")(D(X').

The behavior of this equation is studied by Yoshizawa [26].

. Let the solution of the above equation be X', with the initial conditions
X*=X*k=0,1,--+,r—1. Then we can prove the asymptotic independence
proposition, which leads to the weak proposition.

THEOREM 5. The weak proposition holds for the macroscopic state equation of
the net with absolute refractory,

(6.6) ' lim E[|X'~X‘[]=0.

6.3. Random nets of multi-threshold threshold elements and analogue
neurons. The McCulloch-Pitts formal neuron can easily be generalized to a
multi-threshold threshold element whose output takes s+1 different values
do,dy, - -+, d,. The real axis R' is divided into s+ 1 mutually disjoint intervals
Dy, Dy, - - -, D,. The output of each element is d_,, if the PSP minus its threshold is
included in the interval D,. Thus, we obtain the following microscopic state
transition function:

(6.7) x; (¢ + 1)=)((.=i1 Wijxf(t)"'hi),

where x(u) is a multi-threshold function of the form

xw)=d,, whenueD, (a=0,1,---,s).
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If the function y is replaced by a continuous function in (6.7), the element is
called an analog neuron element, which is considered to be the limiting case of the
multi-threshold threshold element as s - co.

Now let us consider the following macroscopic quantities [18]

1 n
(6.8) X0 == 3 8,(x), a=0,1,---,s,
i=1

where 8, is defined by
1 u=d,,

0 otherwise.

6ﬂ(u)={

Then X, (x) expresses the fraction of the neuron elements whose output is d,. We
write X = (X, -+, X;). The quantities X, - - -, X, are called the occupation
rates. Note that only s of them are algebraically independent, since we have

5
2 X, (x)=1.
a=0

We can derive the macroscopic state equation of this net and prove the weak
proposition. The proof is omitted.

THEOREM 6. The macroscopic quantity X(x) satisfies the macroscopic state
condition with the macroscopic state transition function W= (¥, - - - W¥.).

69 w.m0=] [ (M) - (Wdo) H(6) e do

Da
a=0,--,s

The macroscopic state X' satisfies the weak proposition.
The occupation rates are not the only macroscopic quantities characterizing

the net composed of multi-threshold threshold elements. An alternative choice is
the following quantities:

Q=1 & (), a=12, 40

When the distribution of the sum ¥, w; can be approximated by a normal
distribution, the distribution of the sum )/, w;x;(¢) is approximated by a normal
distribution. In this case, only two macroscopic quantities Q, and Q, are sufficient
to constitute the macroscopic state. The approximated macroscopic equations are

Q' =1.(Q1, Q%), a=1,2,

where w =lim, .., E[nw;],

71.(Qy, Qg)=ij-m I” Ol e

-exp {iw(Ol—@)G}W(\/O—ZG)H(—G) dé du, a=1,2,

The same argument also holds for a net consisting of analogue neuron elements,
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where the multi-threshold function y(u) is replaced by a continuous function.
Behaviors of random nets of analog neurons have been investigated in [3], [9].

7. Macroscopic description of state correlations. A state of a McCulloch-
Pitts neuron net is represented by a vector whose n components consist of 0 and 1.
There are 2" states all together. A sequence of states x, T, x, T-x, - - -, Tox is
called a cycle of period k, when k is the least positive integer satisfying Thx =x.
Every infinite sequence of state transition

2
X X T X

falls into a cycle after a finite number of transient periods. It is both interesting and
meaningful to study the characteristic features of the state transition diagram, e.g.,
the number of cycles, the periods of cycles, the average length of transient periods,
etc. Amari [5] tried to attack this problem, investigating the macroscopic law
which gives the distance (in the sense of Hamming) between two states T, x and
T,y in terms of the distance between x and y. Rozonoer [21] also treated the
problem in the special case of Example 3 in § 3. The distance of two states is
considered as one of the quantities that describe the correlation of states. Here we
will generalize the method so that we can treat the dynamics of correlation of
many states.

Let us consider a set of r states x;, X5, - - -, x, andlet R ={1, 2, - - -, r} be the
set of indices of the states. Let S be a subset of R. There are 2" subsets of R. The set
of all the subsets of R is denoted by 2%. We define the following quantity related to
asubset S ={a;, as -, a,} of R:

(71) YS(XI: R X,) =% :‘;l Xay,i **" xap.i(l_x.81.r') = a1 _xﬁq,i)a
where x,; is the ith component of x,, and S={B:, 85", B,} is the complement
of S, S=R-S.

The meaning of the quantity Y becomes clear, by considering r randomx,,’s.
We assume that the ith components x; ;, x5, * * -, x,; of x4, - - -, X, are mutually
correlated. Moreover, we assume that their joint distribution is the same for all i’s
(i=1, -+, n)and they are independently distributed for different i. We associate
with the set S the probability

(7:2) P(S)=Prob{x,, =1, %: =15 %5,:=0, « - +, x5+ =0}

By virtue of the law of large numbers, we have

lim E[l YS(xls iy xr) _P(S)lz] = O'

n—»co
This shows that, if the x,’s are random, Y5 gives a good approximation to the
probability P(S). The set of all the 2" quantities P(S) (Se2) completely
determines the correlational structure of x;, - - -, x,. There are many kinds of
quantities representing various types of correlations (e.g., pairwise correlation,
triple correlation, and so on), and their structures are investigated by Han [12]
from the information-theoretical point of view. Since all of the correlational
quantities can be calculated from the P(S)’s or Y's, we treat, in the present paper,
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the Yy's as the quantities representing the various kinds of correlations among the
r states. We call the 2"-dimensional vector

(7.3) Y(xi, - o5 %) =(Ys(xp,* + +, %,), S§€25)
the correlation vector of x,, * - -, X,.

Let Y be the correlation vector of r states X, - - - , X,. Then how are their
next states T,xX;, TuXa, - -, Tux, correlated? Is there any law by which
Y(x,, -+, x,) is related to Y(T,xy, - * -, T,x,)? More generally, put

Xo (8) = T, X, (t—1) = T, X, (0),
and
Yl =Y(X|(I), ALy xr(t))-

By treating the quantity Y as a macroscopic state in the generalized sense, we want
to obtain, if any, the common dynamical law by which Y*'is determined from Y’
in almost all nets in the ensemble.

We can prove that Y(x,, - - -, X,) satisfies the macroscopic state condition and
the dynamics satisfies the weak proposition.
THEOREM 7.
lim E[|Ys(Tx., -+, Tx,) = s(DF1=0,

where ®g(Y) is given by

1 oo a0
(DS(Y)zﬁI dﬂ]"'dur[ J' de, - - - dé,
(7.4) L) Jgs 0 —
r Yo r
cexp{=i 5 wa) 1 (W( £ o)) H(- £ 6)
a=1 oe2® ‘aeQ a=1
(7.5) D ={(uy,- - -, ,)|ua >0, a €S; us =0, B S}.
The correlation Y' satisfies the weak proposition.
We have so far considered the dynamics with r initial states x,(0), - - -, x,(0).

Now we consider a state transition sequence
x(0), x(1)="T,x(0), x(2)=Tcx(0),"-"

beginning with a single initial state x(0). We want to know the correlation

(7.6) Y(t)=Y(X(f).X([+1)" - .,x(r+r_l))

of the r successive states x(¢), - + -, x(z +r— 1) in this sequence. If we define r states
xl(o)a ST xr(o) by

(7.7) x,(0) = T2"'x(0) = x(a — 1), o= stk

then the correlation Y(¢) can be written as

Y(1) = Y(Tex:0), - - -, Tox,(0).
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Therefore, it is expected that Y(¢) also satisfies the macroscopic state equation
(7.8) Y(t+1)=®(Y()).

However, in this case, the r initial states x,(0), - - -, x,(0) defined by (7.7) are not
independent of the wy’s and h;’s. Hence, Theorem 7 cannot be applied to this
case. However, we can also prove the weak proposition via the asymptotic
independence proposition. :

THEOREM 8.

lim E[|Ys(5)— Ys()l"1=0.

We note lastly that, if the strong proposition holds for (7.8), then Y(¢)
represents the correlation among cyclic states in the state transition diagram, for
sufficiently large 1, because all the states x(¢), x(t + 1), - - - fall into cyclic states for
large ¢. This suggests that the structure of the state transition diagram of a nerve
net can be studied by the present approach (see Amari [5]).

8. Proof of the strong proposition. We prove the strong proposition for the
dynamics of the activity level of homogeneous random nets of McCulloch-Pitts
neurons, in the case of the distributions shown in Example 3 of § 3. In this special
case, the macroscopic state transition function (4.4) reduces to

8.1) O(X) = F(wX),

where F is the distribution function of the threshold 4; (i.e., the inverse Fourier
transform of H).
We first study the property of the macroscopic state equation

8.2) X =d(X").

When w =0, the function ®(X) is continuous and monotonically nondecreasing.
Since ®(X) is bounded, every solution X°, X', X?, - - -is convergent. It converges
to an equilibrium X™ satisfying

X*=d(X*).

An equilibrium X™ is said to be stable when ®(X) is a contraction in a neighbor-
hood of X*, i.e., when there exists an € >0 and a ¢ <1 such that

(8.3) [D(X) —D(Y)| S c|X - Y

holds for arbitrary X and Y satisfying |X — X*|<¢, | Y — X*| < e. A solution X’ of
(8.2) is said to be stable, when it converges to a stable X*. Unless initial X° is an
unstable equilibrium, every solution is stable, except for such a pathological case
that the set of the equilibrium states has an accumulating point.

In the case of w <0, similar arguments hold, if we consider the following
subsequence

If we put
(8.4) V(X) = O(P(X)),
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every subsequence X converges to an equilibrium X* of W(X) satisfying
X*=Ww(X*).
When the equilibrium X* of W(X) also satisfies
X*=@(X*),
the original solution X* surely converges to X*. However, when
X* =d(X*)
does not coincide with X*, the original solution X' converges to the oscillatory
solution alternating X* and X*' with period 2. We also say that solution X’ S
stable, if the subsequence XA converges to a stable equilibrium of W(X).

We now state the main theorem which guarantees that (8.2) is the macro-

scopic equation in the strong sense.
THEOREM 9. Let X' be the stable solution of (8.2) with initial condition

X°=X°. Then, for an arbitrary € >0,
(8.5) lim Prob{sup |X'—X"|<s}=1.
n—+oo t

To prove Theorem 9, we first prove the following lemma.
LEMMA 5. For an arbitrary € >0,

(8.6) lim Prob {max | X(T,x) ~—<D(X(x))|>s} = ().
X

neco

Proof. Put

Then, the next macroscopic state X' = X(Twx) is written as

)]
ni=1
By putting
a;= nW,,X—hl-,
bs = Z (w:'j W")x‘,,
j=1
where

E[wij]=wr:»
1 n
X=X@=— 2 %,
nj=1

u; is decomposed into the sum

u; = aq; +bi'
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Putting
D=max|x-1 £ 1a)|
x n j=1
c=max |1 $ 1(a)-awx],
x n j=1
we obtain

max | X' -®(X)|=D+C.

We see that nD is equal to or less than the number of those components for which
a; and u; = a; + b, have different signs. When there exists a é such that

|a,| >8 >|bil,
a; and u; surely have the same sign. Therefore, putting

nA = max Kl la:) < 8},

nB =max {i| |b| >8}|
where [{i|Z(i)}| means the number of those ’s for which Z(i) holds, we have
D=A+B.

Combining the above inequalities, we have
max |[X'-®(X)|=A+B+C.

When
max | X' - ®(X)|> ¢ =3¢’

holds, it is impossible that all of A, B and C are smaller than or equal to £’ at the
same time, and therefore one of them is greater than ¢'. Hence, we have

Prob {mfx |X" - ®(X)| >3e'} =Prob{A >¢'}+Prob{B >¢'}+Prob {C>¢'}.

Therefore, the lemma is proved by showing that, for an arbitrary ¢’,

(A) litg Prob{A >¢'}=0;

(B) }i_gloProb{B>s'}=0;
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(&) lir[‘!> Prob{C>¢'}=0.

The proofs are given in Appendix C.
LeMMA 6. For an arbitrary € >0,

8.7) lim Prob {sgp | X"+ - (X)) >e} =0,
Proof. Taking the limit n - o0 of
Prob {sup | X - (X > s] =Prob { max | X(T,x) — d(X(x))| > s],
¢ X

we have (8.7) from Lemma 5.

Proof of the theorem. We prove the theorem in the case of w =0. (The case
with w <0 can be proved in a similar way by using ¥(X) instead of ®(X).) Since
®(X) is continuous and bounded, we can easily prove from Lemma 7 that the
weak proposition

(8.8) lim Prob {{X" - X'|>¢}=0, t=0,1,-+-, T

holds, where T is an arbitrary finite number and ¢ is an arbitrary positive number.

Let X be the stable solution of (8.2) with the initial condition X°= X",
converging to a stable equilibrium X*. Let ¢’ be such a number that ®(X) is a
contraction in the &’-neighborhood U, of X™*. Let £ be an arbitrary positive
number satisfying

2e<eg’.

Since X' converges to X™*, there exists a T such that
|X* - X*<e, t=T,

holds.
When the two conditions

(@) St:pIX'*'-¢(X‘)I<(l—c)s,
() |X'-X|<e, t=1,2,---,T,
where ¢ <1 is a positive constant defined in (8.3), hold, we can prove
(8.9) sup X -X|<e
by induction. We show that the condition |X*— X*|<¢ implies |X"*'—X"*!|<e

forany ¢ = T. When | X' — X’| <& holds, X" belongs to the &'-neighborhood of X™,
because

X" = X¥| = |X* - K| +|X - X¥| <26 <&,
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Hence, applying (8.3), we have
|O(X") - (X" =c|X' - X'| < ce.
Then
X1 =X =X - (X + (X ) - (X
7 <(1-c)e+c|X' —X'|<(1—c)e +ce
=E.

Thus, (i) and (ii) imply (8.9). In other words, if
sup [ X'~ X'|>¢
t
holds, then at least one of (i) and (ii) must be violated. Hence,

Prob {sgp |X'—)?‘I>e}

=Prob {sup X -@(x")|>1 —c)e} +Prob { max |X*—X| >£}.
4 o=t=T

According to (8.7) and (8.8), the right-hand side converges to 0 as n tends to
infinity, which completes the proof of the theorem.

Conclusion. We have derived the macroscopic state equations for various
kinds of random nerve nets and proved that the equations hold in the weak sense
under some stochastic assumptions on the distribution of synaptic weights.
However, the assumptions are not satisfied in the case where synaptic weights are
normally distributed. Therefore, we cannot yet prove the weak proposition in this
case. We have proved the strong proposition only in a special case.

It should be noted that our method will be applicable not only to random
nerve nets but also to various systems of random structure composed of a large
number of elements.

Appendix A. Proof of the moment theorem. The latter part of the theorem is
proved by the use of the former part. If the convergence F,(Y; z)~> F(Y) is not
uniform in z, there must exist a sequence z,(Y,) such that F,(Y; z,(Y,)) does not
converge to F(Y) at Y =Y,. However, the convergence p,, 4 (z) > p14 is uniformin
z, and hence u, 4 (z,(Yy)) is convergent to u,. This fact contradicts the result of
the former part.

Appendix B. Proofs of Lemma 3 and Lemma 4. We prove Lemmas 3 and 4
by the method of mathematical induction. Let [L3], and [L4], be the propositions
that Lemma 3 and Lemma 4 holds at time ¢, respectively. The proof is completed
by showing the following three propositions.

1. [14]‘::0 is true.

2. [L3], implies [L4],.

3. [L4],—, implies [L3],.

Since the initial quantities x,(0) are independent of the w;;’s and h;’s, [L4]
trivially holds at time 0. We prove 2 and 3 in the following.
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I. Proof of [L3],=>[L4). We first note the following three preliminary
lemmas. 4

LemMma B.1. When a sequence of random variables u,, u,, - - - converges to il
in distribution, and when ii = 0 is not a discontinuous point of the distribution of ii,
then

lirg E[x,]=E[X],

where
X, = 1(u,), x=1(a).

The proof is obvious, because we have E[x,]=Prob{u, >0} and E[X]=
Prob {u >0}, and & =0 is not a discontinuous point.

LemMA B.2. The distribution of v,(t) is continuous at v;(t) = 0.

Proof. Since h; has a continuous distribution, and is independent of

¥i-1 wyk;(¢) and its limit, the event v;(f) = 0 occurs with probability 0.

LEMMA B.3. For a finite index set K and a family of finite index sets L,

Ellwguli= 0 ).

Proof. The lemma follows from the fact that E[|w;|*]= O(1/n) for ¢ >0, all
the w;;’s are independent and from the definition that |C| denotes the number of

nonzero c;’s. .
Proof of [L3), > [LA4],. Assume that Lemma 3 holds at time z. Then, we obtain,
by virtue of the uniform convergence,

P_glo E[xf(’)hﬂWMN = 2] = E[#7()h7].

In other words, by putting
(B.1) E[x$()hTIwan = zsn]= E[£7 ()1 7]+ &0 (2aan),
we can choose 8, such that
|en(zaan)| < 84
irrespective of zpy and
lim 8, =0.

n-»00

Let E, (yx.) be the distribution function of a set of random variables wg; , where n
denotes the number of elements. Then, the conditional expectation can be written
as

B.2) E[x IA(t)h.?wI(ELIWMN = Zpn ]

= IyiLE [xORT|Wan = zaans Wie = Vi JAF, (Yx).

Since (K UM)NI=0, taking account of (B.1), we can write ‘

E[x?(t)hflw,q, = Y1, WMN = Zmn] = E[#7(OhT]+ ea(Yiws 2mn)s
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where we can find a sequence §, such that

Isn (}'xr_, zMN)l < 8,.,,

lim &, =0.

Therefore, we have

E[x?(t)hfwﬁ;_l Wan = Zpn ]
=I YEL{E[xf(f)hf] +eg, (YKL’ ZMN)}an (yKL)

= E[ff(t)h?]E[WEL]“*'J yELEn(yKLa Zaan)dF, (Yier ).

However, we have

pic! J )’I%LEn (V1> Zmn)dF, (vkr)

3 1
=8,n' | |y&LldF, (yke) = 8,n''E[|w.[]1= 6,n''Ol =) = 5,0(1),
n

where Lemma B.3 is taken into account. This converges to 0 uniformly in zy,y as n
tends to infinity. This completes the proof that Lemma 4 holds at time ¢, or [L4],.

II. Proofof [L4],_;=[L3],. We have the following two preliminary lemmas.

LemMmA B.4. For any integers t and m, the moment E[(w;(1))™] and its limit
n -0 exist.

Proof. We have

E[(w()™] gE[(él [wigx; (2 = 1)[ + !h,-l) m]

=5]($ twl+in)]

Since ):;':1 w; and h; are mutually independent, and since E[(X]-, |w;[)™], its
limit, and E[|h;|™] always exist, both E[(«;(¢))™] and its limit exist.
Lemma B.5. Let J be a finite set of integers and let ul(t) be

u:(t) == E W,'jxj(t o 1) ou h,‘.
jet
Then, the moment of u(t) of any order converges to the corresponding moment of
u; (1), in the limit n - 0.
Proof. We have

o E[(u;(0))" = (ui(e)"]

=VE[u, (1) — ul(t) PIVELE)_ o (i (0)™ (1)),

where Schwarz’ inequality is taken into account. We have, moreover,

E[(u(0))* (wi(0)° 1=V E[(w: (1)) TE[(u}(1))*"].
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Since u;(t) and u}(f) have the mements of any order in the limit n ->co,

lim B{(a()"™ ™ )"

surely exists. On the other hand, since |J] is finite,
, 1
Ella()) - ul()P1= EU S, wya— DFISEDE wP1=0(2).
jeJ jeJ n
Therefore, the right-hand side of (B.3) vanishes in the limit, and we have
lim E[(4()"]= lim E[(wi()")

Before proving the proposition, we need some preliminaries on abbreviated
notations. Let us consider the following expansion:

(£5) =S+ 5 T o™

a1+azr=a i1<iz

+ X T ()M () (xp) =+

ar+aztaz=a i1<i2<iz

We adopt the following abbreviation for the above expression:
(£x)=5 syt
i=1 k=1 Ay L

where I, stands for a set of « integers (iy, i, * - -, i) satisfying 1 =i, <ip<- -+ <
i.=n, A, stands for a power set (a,, a,, * * *, a,) corresponding to I,, satisfying
X
Y a=a  a>0,
i=1
xIA":x?ll .o .x;:*

and the summation is taken over all these I, and A,. It should be noted that the
number of the sets of integers represented by the L’s is ,C,, the binomial
coefficient, and when n is large,

nCec = O0(n").

The ath power of ;(¢) is written, in this notation, as follows

@y =( £ wae-0-h)’
(B.4) g )
= £ Gk £ 3 Iwhiee=D),

d=0 k=1 Ax I
where
WQ: = (W) (Wii)) ™2 - + - (Wi )™

So far as the limit n - co of the nth moment E[(1(¢))"] is concerned, we may
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replace I, in (B.4) by I,
W)= Y Cu(-h)* 4T T Y wipxp-(t—1),
d=0 x Al

where I, represents a set of « integers which does not include any integers
belonging to K, where | K] is finite. The number of the sets of these I'.’s is also of the
order O(n*).

Similarly, the product of the (1;(¢))*’s over i € I is symbolically written as

ur () =1 (i ()™
iel

-1 ACo(-hA P TS T whexie(e—1)

K Ak J

where A =(a;;iel),D=(d;;ie,0=d;=qa),
ACD = H R‘Cdp
iel

(=h)*™P =TI (=h)*4,

iel

k =(k;, i€l), Y, standsfor ¥,  Y%_, and J, denotes the family of sets J,, (i e I) of
integers and A, denotes the corresponding family of power sets.
Proof of [LA4),-;>[L3),. Assume that Lemma 4 holds at time ¢t—1. The
conditional expectation of the moments of u;(¢) and A, is calculated as
E[uT(O)h5|wiy, = 2k1)
(B'S) —_ B, A-D A _A —
= % ACp X X Y E[hy(=h)* " Pwipxg=(t = 1)|wir = 21 ]

x AxJe

for INJ= & and INK = . So far as the limit n > 0 is concerned, the above J,
in (B.5) may be replaced by the J,’s, where J, consists of those integer sets J e
which do not include integersin I, J and K, i.e., J,,N (IUJU K) = 0. Since Lemma
4 holds at time ¢—1, we obtain

E[h3(~hy)* Pwiyxse(e— Dwgr = 25, ]
= E[A3(-h)* Pwigefee- 1)1+ O =fr) e
where

lim ¢, =0
n->00

uniformly in zx;. Obviously, |A,|=|J4 =X, /.| holds. Hence, the number of
terms summed over under the symbol } ;, is of order O(n "“"). Therefore, we have

IJZ E[hS (~hp)* _DWIAJEXﬁZ(t = Dlwyr =24, ]

—E[h5(-h)*Pwiztis(t—1)] = e,
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with
lim g, =0.

n->

Since the summation with respect to D, k and A, includes only a finite number of
terms, the conditional expectation converges to

E[vi(®)h7]

in the limit. We have thus proved that all the moments of u;(¢) and h; under the
condition wg; = zx;y

E[uf(0h7Iwie = zi]
converge to those of v,(¢) and h;,
E[vf (A} _
uniformly in zx;. By virtue of the moment theorem, this implies that Lemma 3
holds at time ¢ or [L3],.
Appendix C. Proofs of (A), (B) and (C).
Proof of (A). Let
ps(X) = Prob {|a,| <8}.

Since A, has a continuous distribution, for any X, p;(X) converges to 0 as & tends
to 0. In other words

ps= max ps(X)

0sXs1

can be made arbitrarily small by taking a sufficiently small 8. Since a; depends on x
only through X, we have

Prob {A >¢'}=Prob {021)?55(1 Ki] la;| < 8} > ne }

When maxy [{i| |a| < 8} > ne' occurs, [{i] |a;| < 8}| > ne’ occurs for at least one X.
Hence, :
Prob {A > &'} =Y. Prob {|{i| |a;| <8}| > ne'}.
X

Since the events |a;] <& are independent for all different i’s, we have

Prob {|{i| |a;| < 8}|> ne'} =1>ZM, "Q(ps(X))i(l -ps(X)"

=¥ ,.C}(Pa)i(l-Ps)n_j,

j>ne’

where ,C; are the binomial coefficients. Since X takes only n+1 values
0,1/n,2/n,- + -, 1, we finally have 4 :

Prob A >e}s+) T LGlee(=ps),

>ne

which converges to 0 as n tends to infinity.
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Proof of (B). Put
g (x)=Prob {|b;| > 8}.

It is easy to show that b; converges to O in distribution as n tends to infinity.
Therefore, for an arbitrary 8, g, (x) converges to 0 as n tends to infinity. Moreover,

qn = max g, (x)
becomes arbitrarily small as n tends to infinity.

Prob {B > &'} = Prob {max [{i| [b,| > 8}| > ne’}
=Y Prob {[{i| |b:| > 8} > ne'}
=2" 2 nC;(qn)’(l -q:l)n-iy

j>ne'

for there are 2" x’s and the events |b;|>& are independent. When n is large, g,
becomes smaller than ¢’. In this case, we have

2n j>z , RQ(qn)l(l ;qn)n-i = n2nnc[nu'](qn)[""]a
where [ne'] is the least integer greater than ne’. Hence,
lir?o Prob{B>¢}=0.

Proof of (C). Since a; depends on x through X = X(x), we put
> s'} .

Prob {1(a,) = 1} =Prob {k; =nw,X},

r,.(X)=Prob{|%§l_1(a.->-d>(X)

From

which converges to F(wX) = ®(X) as n - o0, we see that r,(X) converges to 0 as n
tends to infinity. Part (C) is proved from
> e'}

> e"}

Prob{C>e'}=Prob{m§x ’11 i 1(a,)—P(X)

i=1

=3 Prob { %é 1(a)-®(X)

=(n+1) m)z:lx r.(X). |



126 S. AMARI, K. YOSHIDA AND K. KANATANI

REFERENCES

[1] J. T. ALLANSON, Some properties of randomly connected neural networks, Proc. 3rd London
Symp. on Information Theory, C. Cherry, ed., Butterworths, London, 1956.

[2] S. AMARI, Characteristics of randomly connected threshold element networks and network
systems, Proc. IEEE, 59 (1971), pp. 35-47.

[3] , Characteristics of random nets of analog neuron-like elements, IEEE Trans. Systems, Man
Cybernet., SMC-2 (1972), pp. 643-657.

(4] ———, Learning patterns and pattern sequences by self-organizing nets of threshold elements,
IEEE Trans. Computers, C-21 (1972), pp. 1197-1206.

[5] ——. A method of statistical neurodynamics, Kybernetik, 14 (1974), pp. 201-215.

[6] ——, A mathematical theory of nerve nets, Advances in Blophysns, 6, M. Kotani, ed.,

Umversuy of Tokyo'Press, Tokyo, 1974, pp. 75-120.
[7]1 P. A. AnN1OS, Evoked potential in artificial neural nets, Kybernetik, 13 (1973), pp. 24-29.
[8] W. R. AsHBY, F. v. FOERSTER AND C. C. WALKER, Instability of pulse activity in a net with
threshold, Nature, 196 (1962), pp. 561-562.
[9] D. YA. AVERBUKH, Random nets of analog neurons, Automat. Remote Control, (1969), pp.
116-123.
[10] J. L. Doos, Stochastic Processes, John Wiley, New York, 1953.
[11] J. L. FELDMAN AND J. D. COWAN, Large-scale activity in neural nets I, Biol. Cybernet., 17
(1975), pp. 39-51.
[12] T.S. HAN, Linear dependence structure of the entropy space, Information and Control, 29 (1975),
pp. 337-368.
[13] E. M. HARTH, T. J. CSERMELY, B. BEEK AND R. D. LINDSAY, Brain functions and neural
dynamics, J. Theoret. Biol., 26 (1970), pp. 93-120.
[14] M. KAc, Probability and Related Topics in Physical Sciences, Interscience, London, 1959,
[15] M. G. KENDALL AND K. S. RAO, On the generalized second limit-theorem in the calculus of
probabilities, Biometrika, 37 (1950), pp. 224-230.
[16] R.J. MACGREGOR AND R. L. PALASEK, Computer simulation of rhythmic oscillation in neuron
pools, Kybernetik, 16 (1974), pp. 79-86.
[17] A.RAPOPORT, Ignition phenomena in random nets, Bull. Math. Biophys., 14 (1952), pp. 35-44.
[18] A. R. ROTENBERG, Behavior of Markovian statistical ensembles of finite automata, Automat.
Remote Control, (1971), pp. 84-92.
[19] L. 1. ROZONOER, Random logical nets I, Ibid., (1969), pp. 137-147.
[20] , Random logical nets II, Ibid., (1969), pp. 99-109.
[21] , Random logical nets 111, Ibid., (1969), pp. 129-136.
[22] D. R. SMI’I’H AND C. H. DAVIDSON, Maintained activity in neural nets, J. Assoc Comput.
Mach., 9 (1962), pp. 268-278.
[23] R. THOM, Stabilities structurelles et morphogenese, W. A. Benjamin, Reading, MA, 1972.
[24] R.C. TOLMAN, The Principles of Statistical Mechanics, Oxford University Press, Oxford, 1938.
[25] S. S. WILKS, Mathematical Statistics, John Wiley, New York and London, 1962.
[26] S. YOsHIZAWA, Some properties of randomly connected networks of neuron-like elements with
refractory, Kybernetik, 16 (1974), pp. 173-182.




