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A complex-valued Cosserat continuum model is constructed for grid frameworks
vibrating with an arbitrary frequency by means of a variational principle related to the
average energy of the system. The degree of approximation is taken into consideration.
Forced vibration is analyzed, and resonance effects, which are not seen in the usual continuous
models, are noted. Analysis of wave propagation reveals the existence of high frequency
waves. The accuracy of solutions is also investigated.

I. INTRODUCTION

In frame analysis the displacements and the rotations of joints are taken as unknown
variables, and equations of equilibrium are solved to determine them. Usually electronic
computers are used, but the calculations become expensive, especially when the structure is
large. Hence, a suitable technique for approximation is desired. For this purpose continu-
ous approximation has been frequently used: elastic plates and shells have long been used
as models for lattice plates and shells. Recently Cosserat, or micropolar continual), have
come to be used.2~® Continuous approximation is especially effective in dynamic problems,
because exact calculation is more difficult than in static cases. Sun and Yang® showed
that the Cosserat continuum model can be employed for dynamic problems with great
ease. However, their model cannot describe such an important phenomenon as re-
sonance, because they made an implicit assumption that static characteristics of member
beams are valid even when they are in motion. But general equations of motion of an
equivalent continuum cannot be obtained without this assumption. In this paper we shall
circumvent this difficulty by restricting our attention to vibration. We shall construct
a complex-valued Cosserat continuum model for vibrating grid frameworks applicable to
vibration of any frequency. Equations of vibration are derived by means of a variational
principle related to the average energy of the system. In order to convert a discrete system
to an equivalent continuum model, Taylor expansion has commonly been used?=% with only
the first few terms retained. This procedure, however does not lead to reasonable equation, if
the degree of approximation is taken into consideration. In this paper we shall follow a suita-
ble principle of approximation. Forced vibration is analyzed, and resonance effects, which
cannot be seen in the model of Sun and Yang,® are observed. Wave propagaion is also
analyzed, and the existence of high frequency waves, which were also missing in Ref® is
shown. Sun and Yang showed that their analysis was in good agreement with several sample
solutions calculated by the finite element method in the range of low frequency. In this
paper we shall show that our results are in fairly good agreement with exact solutions in a
wide range of frequency, if the order of continuous approximation is taken properly.
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II. EQUATIONS OF VIBRATION OF GRID FRAMEWORKS

Consider a moving beam as shown in Fig.1. The kinetic energy of the beam is

1 rt Spiy . o
5 [, PAE©? + 3(5)° + 2(5)1ds. (1)

Fig. 1. Deformed and undeformed configurations of a member beam.

wherepA is the line density, and - denotes d/d. If there exists an equivalent continuum, then
(I) must be expressed only in terms of the variables at both ends. Sun and Yang® im-
plicitly assumed static bending and expressed (1) in terms of v;, 4vj, s and dwp; (v; = 1,
wi; = dr;). Using Taylor expansions of the relative velocity 4v; and the relative angular
velocity dwys, Sun and Yang derived equations of motion by Hamilton’s principle. We call
their model the guasistatic model, for it is valid only for slow motion. But without the as-
sumption of static bending, general equations of motion of an equivalent continuum cannot
be obtained, and hence such an important phenomenon as resonance cannot be described.
We shall circumvent this difficulty by restricting our attention to vibration alone. Then we
can make use of a variational principle related to the average energy of the system to obtain
a complex-valued Cosserat continuum model for grid frameworks vibrating with an arbi-
trary frequency.

Let x* (@ = 1,2, . . . ,n) be the generalized coordinate for a linear mechnical system,
Equations of motion have the form

Mgy X8 + ko XP + dyy 38 = Q,, )
where my,, kg, and dp, are the mass matrix, the stiffness matrix and the damping matrix
of the system respectively, and Q, is the force acting against the generalized coordinate x=.

In the usual analysis of vibration, x&, Q, o< €' (i = y/—1) is assumed. Then the equations of
vibration of the system are

—? mg, XF + kg, x* + iwdg, X* = Q,. (3)
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Now x% and Q, are complex quantities. We now construct a variational principle which
leads directly to the complex expression (3). Consider the time average of the kinetic energy
K, the potential energy U, and the dissipation function F. We obtain Hermitian forms

2
(K> =2 mpy 3o, (UY = kg x5, (Fy =G dyo x5, )

where % is the complex conjugate of x% By { ) is denoted the time average. Then we
can deduce the following principle.

s
iﬁ' = Qav (5)

| ¥
§ = 5 (CUY — <K + ({)F).
The number # of the variables is irrelevent, so this must also hold in the limit of continu-
um, in which partial derivatives must be replaced by functional derivatives with respect to
the corresponding field variables.

Consider a vibrating beam shown in Fig. 2, where u, Au, v, Av, ¢ and A¢ may be com-

plex. If the longitudinal vibration of the beam is neglected, we can put
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Fig. 2. Vibration of a member beam.

x(s) = (u -+ %AH) gl (6)
and y(s) is determined by
EIy""(s) + ny(s) + pAj(s) = 0, (M
where # is the damping coefficient. Putting y oc ef®!, we have
(8)

yﬂ ”(S) — ,7.,,‘1}'(.5‘), A. = 4‘\/(/}4‘1&)2 -_— "CU-’])/EI'

The boundary conditions are
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y(0) = gefat,
)

y(0) = velet,
Y'(l) = (¢ + dg)etet.

Y()= (v + dv)etet,

Then y(s) is determined in the following linear form in v, 4v, ¢ and 4¢
(10)

Y(s) = (vya(s) + dvypa(s) + Igws(s) + IAdya(s))etet:

Here y,’s are complex-valued non-dimensional functions of s. (See Appendix.) If the strain
energy due to elongation and twisting is neglected, the average strain energy of bending is

@ = 3 [ B 6y s

o/l

= %(U/!, Av[l, ¢, AGCpaAD)] A;_)/] sl
44 ],

where Cy, is the following non-dimensional real symmetric matrix
(12)

w0 = EE [ s, @p= 1239

The average kinetic energy (k) and the average dissipation function (/) are determined in
the same manner. They are also Hermitian forms in u, du, v, Av, ¢ and A44.

pA(x(S)X(S) + ¥(s)y(s))ds

ky =
Ml 112 apt
-l "‘“m[ 12 1 ][Aﬂ/[]
3/l
- M’:“’z @/, dv]l, §, A) M, (AD)] ‘“;;” (13)
A¢
= %zﬂ ny(s)y(s)ds
o[l
= 1CO% (uj1, 0l g, A9) My (AD) ‘“g’ (14)
A3
(15)

0D =4 [yl r@ds. (@ =1,234)
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Now consider a three-dimensional grid framework in vibration. Repeating the above
procedure, we can obtain the total average kinetic energy (K, the total average strain
energy {(U), and the total average dissipation function (F) in Hermitian forms. Put

S = ((U) — LK) + (ilw){F>)/4, (16)

Then S is expressed in the form

S= X slJ,K), L T,K), dxul.J.K), 4usTT.K),
€

Iy

Sjk.?'(]a‘LK)- ¢kj(]1J5K)1 Afék}'(LJ,K)) Afékj(]stK)) (17)

where u;(1,J,K) and ¢p;(1,J,K) are respectively the amplitude of the displacement and the
amplitude of the rotation of the joint labeled as (1,/,K), and 4; denotes the finite difference
operator in the j-direction.®’ An equivalent continuous model is obtained by replacing the
finite difference terms by their Taylor expansions

Aklij - I'Ikak“j + %—h%a%ﬂi + .. 5
1
Ay = Moy + jhzzaz%kj i B o =3 (18)

where /; is the length of beams lying in the j-direction, and 8; denotes 8/ax’. To convert a
discrete system to an equivalent continuous model, Taylor expansion is also used in Refs.
(2)-(5) where only the first terms are retained. This is, however, not a reasonable approxi-
mation here, because s is a Hermitian form. The validity of omitting succeeding terms comes
from the fact that they are quantities of higher order smallness. Then the term NiBruihmomity,
for example, is of second order smallness and it is comparable with the omitted term (1/2)
hxdkiz; multiplied by the 0 th order term ;. To avoid this inconsistency, we adopt the fol-
lowing procedure: substitute formally the infinite series (18) into (17) and omit those terms
of order of smallenss higher than N. Let us call this approximation the N-th order continuous
approximation, and that used in Refs. (2)~(5) the simple approximation. However, Bazant
and Christensen® noticed that important terms were missing and added them. A consistent
principle is given by our method of approximation.
After our procedure of approximation, we can approximate S by

S = | s(uy, iy, Oruy, Okity, . . . , Prj, QSTJ, 4 4 DdE (19)

Taking functional derivatives with respect to the complex conjugate variables according to
principle (5), we obtain the following equations of vibration.

(65/6u; =) 8s/ou; — 0x(8s5/8(Bku)) + . . . = bi,

oy =0 S (20)
(95/0¢k; =) 0s/0¢ks — 01(3s/6@igrs) + . . . =0,
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where we have put the force acting on joints per unit volume to be b’e?®t and put the joint
moment to be zero.

IT1I. APPLICATIONS AND ACCURACY OF SOLUTIONS

Consider shearing vibration of a two-dimensional grid framework of infinite extent.
The grid is assumed to be square with identical members of length /, stiffness EI and line
density p4. We adopt the natural units; we measure all length in terms of /, all masses in
terms of pAl, and the time in terms of /2y/pA/EI. Let us put u; = (0, v(x))e’t, § = g(x)ei!
and b7 = (0, b(x))et®!. In the second approximation, equations (20) are reduced to

A v Ay 5 CHl= b, —Cv -+ Bid -+ Rigl = 0; (1)
where

A1 = w2(M1u1 + 1) + Ci1 + fonM,

Az = —¥ (M2 — Mzs) + (Ciz — Ca2) + iwn(Mia — May),

B1 = —2w2Maz + 2Ca3 + 2ieonMaa, (22)

Bs = —w*(M3zq — May) + (Caqa — Caa) + iowon(Mzq — Maa),
C= —w?(Mis — Mag) + (C14 — Cag) -+ f(w](!qu — Mo3).

[

Consider M1, for example. It plays the role of virtual mass density of the vibrating grid
framework and depends on @ and # as shown in Fig.3. The angular frequency wo = 22.37
VEI[pAji2 is the first characteristic angular frequency of member beams. Similarly Mag
plays the role of virtual moment of inertia density (Fig.4). If all Cy,’s and Mp,’s in (22) are
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Fig. 3. Virtual mass M1 of vibrating Fig. 4. Virtual moment of inertia Mas of
member beams. wo = 22.37 vibrating member beams.

~EIfpAJi2.
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replaced by their respective values at w = 0 (see Appendix), then Eqgs. (22) are reduced to
those of the quasistatic model.

Let us consider the problem of forced vibration. We put the shearing force to be b(x) =
box, and seek a solution to Eq. (21)in the form v(x) = vox and 3(x) = go. The magnitudes of
response |vo/bo| and |@o/bo| are plotted in Fig. 5 and Fig. 6, respectively versus the angular
frequencies. The dashed curves show the response of the quasistatic model, and the reso-
nance effect in our model is missing in the quaistatic model. Since continuous models are
obtained by the neglect of higher order derivatives, solutions are fairly accurate for low
order modes of vibration. The above forced vibration is of the linear mode, and hence the
solutions are exact in this case. If higher order modes are assumed, we must consider the
accuracy of the solution. A systematic investigation of this is possible if we study the prob-
lem of wave propagation, for the wavelength plays the role of the mode of vibration. Let
us assume v(x) and ¢(x) in (21) to be proportional to =¥z, Then we obtain a set of algebraic
equations. Wave propagation is possible only when the determinant vanishes. Figure 7
shows the angular frequency of the wave of wave number k, including those of the first, the
third, and the fourth order approximations. Exact solutions* are shown by the thick solid
curves in Fig. 7. We can conclude that the second order approximation is accurate enough
for k/ = 0.5, while the third order approximation is necessary to keep enough accuracy
for kI = 1.** We should note that the high frequency waves shown in Fig. 7 cannot be seen
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Fig. 5. Response |vo/bo| under forced Fig. 6. Response |¢$o/ho| under forced
shearing vibration. w; = 27.62 shearing vibration. ws = 39.48
‘\/EI[‘[)AH:. The dashed curve is ‘\/EI/PAJ’["’ The dashed curve
the quasistatic solution. is the quasistatic solution.

*Sun and Yang® also calculated the wave frequency by the quasistatic model of simple approximation in
the range of low frequency, but they did not give exact solutions. Instead they gave several numerical
examples calculated by the finite element method. However, exact solutions can be obtained also by our
variational principle of average energy.

**Due to the regularity of the grid, k/ = n corresponds to the shortest possible wavelength. The situation is
similar to the Brillouin zone in crystal physics.
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Fig. 7. Angular frequencies of traveling waves in the N-th order continuous
approximation compared with exact solutions (n = 0).

in quasistatic continuum models, though the phenomena are sometimes very important,
especially when the structure is given a strong shock.

IV. CONCLUSION

To supplement the defects of the quasistatic Cosserat continuum model for grid frame-
works, we have established a complex-valued Cosserat continuum model for vibrating grid
frameworks, taking the degree of approximation into consideration. Equations of vibration
are derived by means of a variational principle related to the average energy of the system.
Forced vibration is studied, and the effects of resonance, which cannot be seen in quasistatic
models, is shown to exist. Wave propagation is analyzed, and the existence of high fre-
quency wave is shown. The accuracy of the wave solutions is also investigated.

The author wishes to express his thanks to Professor Nobunori Oshima of the Univer-
sity of Tokyo for his kind suggestions and discussion. Numerical calculations were made
by HITAC 8800/8700 of the Computer Center, University of Tikyo.
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APPENDIX

w1(s) = a1(4l) (cosis — coshis) + ao(Al) (sinis — sinhAs) + coshds,

wa(s) = as(Al) (cosAs — coshls) + as(A]) (sinds — sinhAs),

wa(s) = as(Al) (cosds — coshls) + ag(A!) (sinds — sinhls) + % sinds,

wa(s) = az(Al) (cosAs — coshls) + as(A) (sinds — sinhds).
a1(4l) = (cosAl — coshAl + sind/sinhAl — cosd! coshil + 1)/D(Al),
az(Al) = (sinAl + sinhA/ — cosA/ sinhA/ — sind/ coshAl)/D(Al),
az(Al) = (cosAl — coshAl)/D(A),
as(Al) = (sindl + sinhil)/D(A]),
as(Al) = (—sind/ + sinhAl + sinhAl coshAl — cosAl sinAl)/AID(Al),

ag(Al) = (cosil — coshAl — cosAl coshAl — sind/ sinhAl + 1)/AID/(A})
ar(Al) = (— sinA/ + sinhal)/AID(A),

ag(Al) = (cosAl — coshAl)/AID(AD),
D(Al) = 2(1 — cosil coshil).
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