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Continuum description of polycrystalline material is developed on the basis of the
continuous dislocation theory. The state of each grain is characterized by the disloca-
tion moments, which are taken as field variables. Physical and mathematical interpreta-
tions of the dislocation moments are discussed, and the relation between the plastic
strain of the grain and the dislocation configuration in it is studied in detail. The mean-
ing of approximation procedure is also discussed. Stress and energy expressions are
considered in terms of the elastic displacement and the dislocation moments. It is
shown that our treatment enables us to consider any higher order effects of plastic de-
formation and that it is reduced to the usual slip theory, if the first approximation is
taken.

I. INTRODUCTION

There have been many works on the plastic behavior of polycrystalline materials. The
main concern of these works is the slip mechanism of a typical crystal grain of the material,
which is assumed to have a single crystalline structure. One of the earliest works is due to
Taylor and Elam!) and developed by Bishop and Hill.2) According to their model, the slip
begins along one of a certain set of slip planes, which is determined by the crystal structure
of the grain, if the resolved shear stress on the corresponding slip plane exceeds the value
of the critical stress. Budiansky et al.¥ made calculations based on Eshelby’s? method of
elastic inclusion. Lin and [to® extended the theory of elasticity to include the crystal slips
in the grains.

Meanwhile, it has been known that the crystal slips is caused by means of the disloca-
tion motion. Hence, the plastic behavior must be studied also in terms of the dislocation
theory. We are, however, not interested in the details of an individual dislocation line.
Rather, we want to know the macroscopic behavior of the aggregate of dislocations.
Kroner® developed the theory of continuous dislocation field, and calculated the strain and
the stress in terms of given dislocation distribution. Most of his theory, however, concerns
uniform single crystalline materials. In polycrystalline materials the dislocation is localized in
each of the grains, and there has been no suitable theory so far that takes into account the
localization of the continuous dislocation field.

In this work we will show that the continuous field theory of polycrystalline materials
based on the continuous dislocation theory is possible, if we consider the moment that the
dislocation field produces in each grain. We will examine the geometric and physical proper-
ties of the dislocation moment and make clear the relation between it and the plastic strain.
We will also calculate the stress and the energy in terms of the dislocation moment. Then
it will be shown that the phenomenological slip theory is nothing but the first approxima-
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tion of our theory. Thus our formulation enables us to study the higher order effects of
plastic deformation which are usually ignored in the slip theory.

II. DISLOCATION IN THE GRAIN AND ITS
CHARACTERIZATION

In the continuous dislocation theory®? the distribution of the dislocation in the ma-
terial is described by a tensor field a’i, which is called the dislocation density. 1t represents
the number of those dislocation lines perpendicular to the unit surface element with its
normal along the j-direction that have the unit Burgers vector along the i-direction. It is
easily shown that the field a’t is of no divergence, i.e.,

datt = 0, (1)

where d; denotes 9/dx7 and the summation convention is in use. (Our coordinate system is
always the orthonormal Cartesian system.)

The motion of the dislocation field is expressed by a tensor field ;i, which is called the
dislocation flow. The time change of the dislocation density a’i is expressed in terms of the
dislocation flow I as follows:

ji
7 = &Hai, (2)

where &7 is Eddington’s epsilon which takes the sign of the permutation (/kj) of (123).
It has been found that if one looks on the plastic material as a non-Riemannian space, in-
troducing an affine connection into it, the relations (1) and (2) are directly related to the
geometric structure of the space-time.8® In fact they are interpreted as so called Bianchi’s
identities. We do not, however, go into these considerations in this paper.

Now let us investigate the dislocation field confined in a particular grain, which we
denote by U. We assume that the dislocation does not flow through the surface 3U of the
grain U. Generally speaking, all the properties of the grain depend on the dislocation field
a’l in the grain, and the physical quantities such as strain and energy of the grain are func-
tionals of a’t. However, if we want to describe the macroscopic behavior of the polycrys-
talline materials, we must replace these functionals with corresponding functions of the
quantities that represent the dislocation distribution in the grain as a whole. The simplest of
these quantities is of course the total amount of the dislocation in the grain

fu a’idV.

Let us examine the time derivative of this quantity. Then we see from (2), using Gauss’
theorem,

(—l alidV = c”‘ff alktdV = gikd ItdS; = 0, (3)
dr Jy U au
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because we have assumed that there is no dislocation flow through the boundary 6 U of U.
Thus, if the material was at first perfect crystal, and the imperfection took place inside the
region U, then we obtain the relation.

[ arav =o. )
U

This result is easily understood, if one recalls the well known crystallographic fact that
the dislocation lines are always closed, i.e., they appear as dislocation loops, if they do not
pass through the boundary.

II1. DISLOCATION MOMENT OF THE GRAIN

Now we must take a further step. Since the crudest of the quantities that characterize
the dislocation distribution in the grain is not the total amount of the dislocation, as we
have seen, we must consider the amount of polarization of it

AkIt = TEITI f | reaay, (5)

where r¥ is the position vector and | U] is the volume of the grain. We can see from (4) that
A¥it does not depend on the position of the origin of r%,

Let us take the time derivative of A%/i, Then we obtain, using (2), integrating it by parts,
and recalling that there is no dislocation flow through the boundary,

dAkii  giml gkil
et A e Wl e e A (e e 6
dt [0 by [U| JAU t &

We always assume that the initial state of the grain is perfect crystal, and therefore
A3t vanishes at first. Then we see from (6) the antisymmetry

Akl = — qiki @)
and hence we can reduce the indices by defining

1

At = — gupA*L (8)
Then (6) takes a simple form
dast _ 1 ‘
T |U|fU lidl ©)

We call the quantity A% (or Ajf) the dislocation moment (of the first order) of the grain.

In order to see the physical meaning of the dislocation moment, let us calculate A;i,
when there is a single dislocation loop with the Burgers vector bt (Fig. 1). We obtain, using
Stokes’ theorem,
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0

Fig. 1. A dislocation loop with the
Burgers vector bf.

kj
Abt = T;fl' Prbidl = T—U"T’ bi [dsn
C

S L — ﬁ Sjbt, (10)

where S; is the area of the enclosed surface projected on the j-plane. We deduce from this
result the following physical interpretation of the dislocation moment.

Proposition 1.

The dislocation moment A;i represents the total area of the dislocation loops on the
planes with their normals in the j-direction that have the unit Burgers vector in the i-direc-
tion.

Then (9) shows the following physical interpretation of the quantity .

Proposition 2.

The quantity I represents the density of the dislocation source (e.g., the Frank-Reed
source) which emits the dislocation loops on the plane perpendicular to the j-direction with
the unit Burgers vector along the /i-direction.

IV. DISLOCATION MOMENTS AND PLASTIC STRAIN

Suppose that the dislocation moment A4;¢ of the grain changes its value infinitesimally
to Aji + 8A;t. This change is thought of as caused either by the increase of the area swept by
the dislocation lines or by the increase of the Burgers vector, i.e., the simultaneous increase
of the slips. In either case the work done by the stress o7 per unit volume of the grain is

SW = dlidAj, (11)

if the stress is uniform. (Since our coordinate system is Cartesian, we do not make any dis-
tinction between upper indices and lower ones.) If all the dislocation loops are caused by
single slips, then the Burgers vector bt of each loop is perpendicular to the normal of the
slip plane, and therefore from (10) we see

Ait = 0. (12)
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The relation (11) and (12) suggest that the dislocation moment A;¢ is identical to the
plastic strain ej; of the grain. To see this, let us cut out from the material a cube with the
side length  which contains N dislocation loops with the Burgers vector 4 as in Fig. 2.
Then the plastic strain due to the dislocation is

X2 r—d —_—
ol
geal SR
T e
ApEE L
_..I Nb —
0 X

Fig. 2. A2! > 0. A4 = 0, otherwise.

Now we can conclude from this example that the plastic strain ey is
eji = Ay, (13)

where () denotes the symmetric part of the components. (We will later give a more general
mathematical treatment.) Then (11) and (12) are written as

oW = dlidej; (1y
e = 0, 12y

as are expected. Moreover, we can see that the antisymmetric part of Ay is the plastic
rotation wy; of the grain:

Wji = A[j-[]. (14)

Thus the dislocation moment At has all the information about the grain deformation to the
first order, which is taken into consideration in the usual slip theory.

V. DISLOCATION MOMENTS OF HIGHER ORDERS

We have seen that the dislocation moment A, of the first order represents the first order
deformation of the grain. Then it is natural to expect that the dislocation moments of higher
orders represent the higher order deformation of the grain. Let us consider the moment of
the second order
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1
At = —— | rlrkalidV (15)
i),

and differentiate it with respect to time. Integrating it by parts, we obtain

d AT B gnmj ok : 0 M(l k) s 16
=T Urra,zlde_ 1 fUr LyidV. (16)

Let us also calculate the moment A7 of a single dislocation loop with the Burgers
vector b? (Fig. 1). We obtain, by Stokes’ theorem,

jm (1 k)
Alkit — |17| fc rirkbidll = %"Uil f r dSpbt. (17)

If we decompose the position vector r* into two parts
rk = rk 4 p'k (18)

so that rf is the position of the center of the loop, i.e.

[rds, = o,
then (17) is reduced to
Jm (1,
Aldt — TEU’T Bl ITZJT r{ADII, (19)

Thus we can think of A4 as indicating the central position of the loop weighted by
its area and the amount of the slip. Hence, generally speaking, the moment A4'/? represents
the deviation of the distribution of the dislocation loops. Let us take the origin of r* at the
center of the grain. Figure 3 shows the deformation of a cut out material piece such that
Ajt = 0 but A%t == 0. We can see that 4%/7 expresses the second order deformation of the
grain Generally we can regard higher order moments A%, Amikii ete., which are similar-
ly defined, as indicating the higher order deformation of the grain

Fig 33.. Allﬂl —_ Aﬂlll — — Alﬂll = 0 Flg 3b A2311 — A3211 —_ A2131 —
AWl = 0, otherwise. — A1231 = 0, Atkii = (, otherwise.
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VI. APPROXIMATION PROCEDURE OF THE
GRAIN DEFORMATION

In this section we study more generally the results intuitively obtained in the previous
sections. Let us first consider the dislocation moments 4%/ and A%/t from the viewpoint of
approximation of the function a?i(r).

Suppose we are to approximate the function a’{(r) by a second order polynomial

5 0 Lig s 2
ajl(r) = a.fi + ak]irk + a!lerlrk_

One might think of taking the Taylor expansion series. It is, however, not suitable, because
the Taylor expansion has the heaviest weight at the origin, while we are interested in the
average behavior of @/i(r) in the grain. The approximation should be done not by differentia-
tion. Thus we are led to an idea of taking the least square approximation:

L B 2 = .
f (@t + aplirk + aydirirk — a¥i(r))2dV — min.
U

Then those coefficients in the approximation are expressed in terms of the integral _furkaﬁdV

and fU rirkaitdV, i.e. the dislocation moments A%/t and A!Ji. (Note that fu alidv = 0).

If the grain is assumed to be a sphere of radius & with its center at the origin, then the
coefficients are determined as follows.

0
aj

Il

— (35/4h2) Akt
apft = (5/h2) Akt (20)

;Hs:ji = (35/2h%)(AMI 4 %(jzkAmmJi)

Let Fjt be the deformation tensor of the material (i.e., an infinitesimally small material
piece dx? in the unstrained state corresponds to dx?! + dx?F;! in the strained state). Then it
is known in the theory of continuous dislocation?10) that

ocFyt = opvt — It (1)

where vi is the velocity field. The relation (21) states that [;¢ is the internal relaxation of the
macroscopic deformation d;vi. Now we define the equivalent velocity vt by

ot = It (22)

(Of course #¥ may not be determined as a single valued function, but, as will be seen, we
need not solve this for #.. We are interested not in a global description but in a point-wise
one.) Then the deformation caused by /i and that caused by the corresponding equivalent
velocity field #; are equivalent as long as we consider the deformation Fjt.

Next we consider the grain average of the dislocation flow [;t. Let us approximate I;i(r)
by the linear form
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1) = It + Lgire (23)

in the sense of the least square error. Suppose that the grain is a sphere of radius h whose
center is at the origin. Then the coefficients are determined as follows:

0

1
A = —— i
[] |U| fU I}dV

Ishe (24)
1 1/5h
Sty It
f;c_; - |Ui UrkljdV
Now (9) and (16) are written respectively as
(IAji & 0
da ~— @
d ALk q 1
dt = IOh“Ejm(zlk)mi.

. . 0 I . .
In view of (22), we can think of Iji and I, as the average quantities of 8;7¢ and 6x0;7¢ re-
spectively in the grain. If we introduce the equivalent displacement iit corresponding to the
equivalent velocity #¢, then (25) implies

Ay = 05k

26
Azkji = 10!'!28_11,1(16,&:)8,7;55. ( )

The first of (26) states that the grain with the dislocation moment Aj; suffers plastic de-
formation equivalent to 8. This result completely agrees with the consideration in section
4. The expressions (13) and (14) are now written as

eji = 0yiky) on
wji = O[]

Let us examine the equivalent displacement i#; of the example given in Fig. 3a by using (26).
Then we see

A131 = . 43111 — _ [0h20,00i; > 0

. 0q0et; < 0,
which agrees with our previous consideration.

VII. STRESS CAUSED BY THE DISLOCATION MOMENTS

Let us calculate the stress caused by the dislocation moments in the grain. As is known
in the theory of elasticity, the stress is determined by means of the stress function yji:
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glt = — gllkginmgg, vy (28)
According to Kréner,® the stress function is given in an infinite medium in the form

Xulr) = — fr Fgji f?h'i(")l" = |t

]
I —v

Firji = 610kt + O1djis (29)

where #;; is the incompatibility tensor and x and v are the rigidity and Poisson’s ratio re-
spectively. Since the incompatibility #;; is expressed by the dislocation density a’f in the
form

nit = 2810 1,81k, (30)

we can obtain, substituting (30) into (29) and integrating it by parts, the following expres-
sion.

1 s ;
Ami(r) = — :;_nHmlkji J‘aﬁ(' )ok|r — r'|dr

@31
Humikgt = Ojmenki — 7 i  Omiekjt

We assume that the dislocation is confined in a grain whose center is at the origin. If the

grain is small compared to r,then we can develop |r — r'| into the Taylor expansion (Fig.
4).

|5~ | =& — @)% + %(a:akr)r“rk’ )
where r = |r|. Then
! i(p! ’ ‘ ; | !
mfy a(r)|r — r'|dr' = — (@kr) AH + = (QBer) AT + - - - (32)

Hence,

Fig. 4. Dislocations are confined in the grain U.
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U 1
Hmi = %1 Hn1ki(@kdnr) AM — —- (0k8¢0pr) ATPH + - - - )
BiBar = — Bpn — = 33
knr—T kn—;grkrn (33)
3 3
0x0q0pr = — 78 rkdqp) + = T'rlql'p

If we neglect 477/t and other higher order moments, this expression agrees with that derived
by elastic inclusion.?) The dislocation moment thus plays an important role, when higher
order effects are involved.

If the imperfection is distributed all over the body, then these expressions must be in-
tegrated over the body. But this process is tedious. Instead we will consider in the next sec-
tion a kind of self-consistent approach by extending the self-consistent slip theory.®

VIII. ENERGY AND CONSTITUTIVE EQUATIONS

Let us consider the stored elastic energy of the material, for it plays a fundamental
role in the mechanics of continuum. For us it is sufficient only to consider its variational
form. We take the macroscopic displacement u; and the dislocation moments Ay and A
as continuous field variables. Since the dislocation moments represent internal relaxation of
the strain in the grain, as we saw in section 6, we can deduce from (26) that the increment of
the energy takes the form

oU = f SV — Ap)dV
(34)
g f S S S(1 0K 108y Omtts — Aviii)dV.

Now let us consider the constitutive equations of >/ and >/t For simplicity, we
assume linearity with respect to Aji, Aigji, 514z, etc. Moreover, we demand that if there is no
plastic imperfection, i.e., 4;; = 0 and A = 0, the energy form be reduced to that of
elasticity. We further demand that if the plastic imperfection is of the first order, i.e. Ay =
0, then the form be that of the slip theory. Hence, we can write

Sk = EWR gy + FIEIiAy 4 GUnmIig s

(35)
Zl.‘:ﬁ — Ht.’uzmﬂqummm.

If isotropy is further assumed, the number of the coefficients decreases considerably. For
example, the expression of >}'* is reduced to the form
3D = git + agAyiy + adudrr + azAgner + azAxran
+ asdrgor + asA ggen + dji(@sAure + arAiri)
20 = bodyjy + brAkwin + beeF Arnmy + bsAjprin + badryak
(o7t = 2ud juiy + Adjidkur).

(36)
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The constants ag and a; are those determinable by the method of elastic inclusion. Accord-
ing to Eshelby,® they are

7 — 5 aig_).]—b
= LA

)
®

ag =

0 (37)

wn

IX. CONCLUSION

We intended to develop a continuum theory of polycrystalline materials, characterizing
the state of each grain by the dislocation moment, and we have so far investigated various
properties of the dislocation moment and the role it plays in the mechanics of polycrystal-
line materials. In order to calculate the details of plastic behavior, we must give a suitable
yield condition of the material. The detailed analysis is beyond the range of this paper.
However, we should note that if we restrict our attention to the first order dislocation mo-
ment, our theory is reduced to the phenomenological slip theory. Since we take a structural
point of view in the sense that our formulation is based on consideration of the dislocation
configuration in the grain, the author believes that this approach will enable us to obtain
solutions of various plastic behavior with higher accuracy.

The author wishes to express his thanks to Professor Oshima and Professor Amari of
the University of Tokyo for their many suggestions and discussions.
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