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A theory for the kinematics of granular materials is presented which satisfies
the following properties: (1) It is expressed in the form of three-dimensional tensor
equations; (2) the deformation is plastic, i.e., there is no one-to-one correspondence
between the stress and the strain-rate; (3) the material is isotropic, satisfying Saint
Venant’s principle; (4) the material is incompressible; and (5) the strain rate is
derived from the associated flow rule. This theory thus resolves all the inconsistencies
involved in the existing plasticity theories for granular materials. The basic idea is
a new interpretation of the associated flow rule with geometric constraints of
deformation. The elastic strain is then incorporated, and the theory is extended
to an elastic-plastic theory.

I. INTRODUCTION

It has been shown that the statics of granular materials based on the Coulomb yield
criterion provides a satisfactory basis for the analysis of limit equilibrium (e.g., Sokolovskii').
However, various attempts to describe the velocity field have been less successful. Drucker
and Prager? proposed the plasticity theory which had been developed for metals. They ap-
plied the associated flow rule to granular materials. Their theory then predicted unreasonable
increase in specific volume during shear deformation, which has often been criticized in the
past. Although various attempts have been made to modify or extend the Drucker-Prager
theory (e.g., Drucker,” Shield,*~® Drucker, Gibson and Henkel,” Jenike and Shield,”
Jenike®), no remarkable consequences have been obtained. Spencer'® introduced the idea
that deformation occurs due to shear on certain critical planes, assuming that the strain-
rate is dependent on the stress-rate as well as on the stress. This new approach has been
further developed by Mandel,'” Mandl and Fernidndez Luque,'” de Josselin de Jong'?
Morisson and Richmond'¥ and others,'*'® and has been called the double-slip theory.
However, their theories are almost limited to plane motions and are difficult to generalize
in the form of three-dimensional tensor equations. Moreover, a great deal of sophisti-
cation is needed in the derivation of equations, and the results are very much complicated.
Goodman and Cowin'™'® assumed that the stress depends on the gradient of the solid
volume fraction of the material as well as the strain-rate. However, their argument is re-
stricted to formal continuum mechanical considerations, so that the constitutive equations
are determined only by plausible assumptions. Kanatani'®=2" held a different viewpoint. He
analyzed microscopic interparticle friction and collisions and took statistical average of
the interactions to obtain constitutive equations for an equivalent continuum model of
the flow.

In this paper, we reexamine the Drucker-Prager theory in the light of the above stated
recent developments. We first consider the validity of the associated flow rule and show
that the rule must be altered when applied to granular materials, while it remains valid
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when applied to metals. Then, we present a plasticity theory for granular materials which
satisfies the following requirements: (1) All the equations are expressed in the form of
three-dimensional tensor equations; (2) the deformation is plastic, i.e., there is no one-
to-one correspondence between the stress and the strain-rate, which implies that the
components of the stress tensor are not mutually independent, and hence there must
exist some relation among the stress components, which has usually been identified with
the yield equation; (3) the material is isotropic, so that the stress tensor and the strain-
rate tensor must have common principal axes (this requirement is referred to as Saint
Venant’s principle); (4) the material is incompressible; and (5) the strain-rate is derived from
the associated flow rule. It has been believed that these requirements cannot be satisfied
at the same time. In particular, requirements (4) and (5) have been believed to be
unreconcilable, and requirment (3) has been doubted because it gives velocity characteristic
surfaces different from the stress characteristic surfaces of limit equilibrium. Hence, which
of them should be dropped has been the main concern in the arguments advanced so far
(e.g., Takagi,?»?® Hythornthwaite,*® Spencer,'® Davis,?” Mandl and Fernandez Luque'®).
Our theory is the only one that meets all these requirements, though in a slightly different
sense. Our theory for perfect plasticity turns out to be nothing but a straight extension of
the Levi-Mises theory of metal plasticity. We then incorporate the elastic strain into the
theory and develop an elastic-plastic theory for granular materials, which turns out to
be an extension of the Prandtl-Reuss theory of metal plasticity.

II. ASSOCIATED FLOW RULE FOR GRANULAR MATERIALS

The associated flow rule is the rule that relates plastic strain increments and stresses
through differentiation of the yield function. This process was first worked out in the theory
of metal plasticity. Later, Drucker?®*” formulated a fundamental postulate of material
stability and derived the rule from his postulate. His postulate states that when a body is in
an arbitrary equilibrium, the work done by any cycle of application-and-removal of additional
loading is non-negative. Let the initial stress in an equilibrium at time ¢t = 0 be g}, and let
t, designate the first occurrence of plastic strain. Furthermore, let the loading be continued
until # = 5, and let the removal of the added load take place until # = ¢; when the stress is
again o. Since the work done by the stresses on the elastic strains during a closed cycle
vanishes, and since plastic deformation occurs only during the interval ¢, < ¢ < t,, the work
done by the additional loading is

f’z (0, — a}) &, d, )
n

where e, is the plastic strain and the dot designates the time derivation. Throughout
this paper, we adopt the Cartesian tensor notation and the rule of summation convention.
Taking the limit ¢, — ¢, and applying Drucker’s postulate, we obtain inequality

(op—of)én =0 (2

for an arbitrary equilibrium stress ;. This is interpreted such that the angle made by the six-
dimensional vectors a,, — o} and ¢, is not greater than /2. Then, we can conclude that (i)
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the yield surface determined by the yield equation is convex ; and (ii) if the surface is smooth,
vector €% is normal to the yield surface at the point of ¢,,. Consequently, if the yield equa-
tion f(g,) = 0 is regular, then we have

; af
Cji = E1 (3)
where A is a scalar quantity. This is also referred to as the normality condition.

Several alternatives have been proposed to Drucker’s formulation. Il'iushin?® asserted
that the cycle of loading should be replaced by a cycle of the total strain. Yamamoto?” and
Green and Naghdi’® gave formulations which include thermal effects. However, these
alternatives result in a great deal of complexity and do not seem very successful. Meanwhile,
the associated flow rule predicts unreasonable increase in specific volume when applied to
granular materials whose yield function depends upon the hydrostatic pressure. The reason
is easily understood if we consider the following example. Imagine a block on a horizontal
plane as is shown in Fig. . If the friction between the block and the plane obeys the Cou-
lomb law, the yield equation is F = +-uN, where g is the friction coefficient. As is seen from
Fig. 2, the associated flow rule predicts normal displacements which do not actually occur.
Suppose the block is in equilibrium under the normal force N* and the horizontal force F*.
Let us apply a force F which has a backward horizontal component small in magnitude but
has an upward normal component large enough in magnitude to cause slip (see Fig. 3).
Then, remove the force to reduce the system in the initial state of equilibrium forces. The
work done by the added force during this process is clearly negative because the block
moves in the opposite direction to the horizontal component of F. (The normal component
of F does not do any work.) Thus, Drucker’s postulate is violated, and the system is not
stable in the sense of Drucker. It is evident that if the block could move upward, Drucker’s
postulate would be satisfied. Thus, the increase in specific volume is inevitable if granular
materials in which frictional slips occur are to be stable in the sense of Drucker. However,
we assert here to draw an alternative conclusion: Granular materials are no more stable in
the sense of Drucker than the slip of a block on a plane.

Frictional slip is a basic concept in the mechanics of granular materials, for the Cou-
lomb yield criterion is derived from the local slip condition on potential slip-planes. If local
slips are the mechanism of deformation, the specific volume must be conserved during defor-
mations. This is a geometric constraint of deformation. Of course, the so called dilatancy
may occur depending upon the configuration of constituent granules. But it cannot be
described by the Coulomb yield criterion alone. In order to describe the dilatancy, we must
introduce additional internal variables which express the internal state of the constituent
granules such as the solid volume fraction introduced by Goodman and Cowin. If we are
to regard the material as a continuous homogeneous body without such internal variables,
we must necessarily assign the constraint of incompressibility.

Now, we try to modify Drucker’s postulate so that it may be applied to plastic defor-
mations with geometric constraints. A constraint of deformation defines an associated
constraining stress, which is a portion of the stress that does not do any work for admissible
deformations but does work only for virtual displacements violating the constraint. Since
the constraints give an additional set of kinematic equations, the corresponding constraining
stresses are treated as so many additional kinematic variables, which are often referred
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Fig. 1. Friction on a plane. Fig. 2. The yield criterion for Fig. 3. A counter-example of
friction on a plane. Drucker’s postulate.

to as Lagrange multipliers of the constraints. Hence, we must treat the constraining stresses
separately from the remaining potential and dissipative stresses. Drucker’s postulate is ap-
parently a demand for the dissipative stresses. We now propose a modification to Drucker’s
postulate: When a body is in an arbitrary equilibrium, the work done by any cycle of
application-and-removal of loading such that the constraining stresses are kept constant
is non-negative. The normal force N in Fig. | is the constraining force for slips on the
plane, and it is easily seen that this new postulate is satisfied by that system. The
constraining stress corresponding to the constraint of incompressibility is simply the
hydrostatic pressure p = —(1/3) o4 Following the previous procedure, we again obtain
inequality (2). However, the stress g;; on the yield surface is now linked with the initial
stress o by a special stress-path along which p is kept fixed. Hence, the choice of o} is not
arbitrary, and consequences (i) and (ii) do not follow this time. Let us write the deviators
of o), and ey, respectively, as

Al 1 x 1
Ojn =0y — 7 Oji Okrs €5 = €5 — =T Ot Cris C))
where J, is the Kronecker delta. Inequality (2) is rewritten as

Gu— D&+ 5 O — o) = 0. (5)

The second term vanishes according to our postulate. Hence, we have
(6p—60)E 20 (6)

for an arbitrary stress deviator o that gives equilibrium stress for a given fixed p. Write the
yield equation in the form f{&,,, p) = 0. Then we can conclude the normality condition

St O
=A5| ©

where 6/do ;| , designates the partial differentiation with fixed p. The fact that the right-hand
side gives the deviator components is readily seen from
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We have now reached a new expression of the associated flow rule for materials for which
only incompressible plastic deformations are admitted. Note that application of this new
rule to metal plasticity does not bring about any modifications to the existing theories, because
it has been assumed that the yield function for metals does not depend on the hydrostatic
pressure.

[11. EQUATIONS FOR PERFECT PLASTIC FLOWS OF GRANULAR
MATERIALS AND CHARACTERISTIC SURFACES

In the following, we denote the strain-rate tensor by £y, i.e.,
E; =03, (= é), )

where v, is the velocity vector and g, designates 6/dx;. Here, () indicates the symmetri-
zation of indices. We first investigate the perfect or rigid plastic flow, so that £}, is the plastic
strain-rate. As the yield equation, we adopt the extended von Mises equation

S(G,p) = J(l/Z) 6,0, —ap—k=0, (10)
which Drucker and Prager® introduced. Equation (10) is also a natural outcome of

Kanatani’s statistical theory of particle flow.?"” Application of the associated flow rule in
our sense to Eqg. (10) yields

E; =

A_ Gy
4 (i

ap + k'

The scalar quantity A is determined by solving Eq. (11) in terms of &, and substituting it
in Eq. (10). We obtain 4 = JZE,;EI,.. Thus, we have the following constitutive equation.

= ap + k

o1 = T DEsEn =
The right-hand side is a homogeneous form of degree 0 in E,, and hence there exists no
one-to-one correspondence between the stress and the strain-rate. Clearly, Saint Venant’s
principle and material incompressibility are satisfied.

Consider the plane motions in order to express the two constants @ and k in terms
of the internal friction angle ¢ and the cohesion constant ¢. We obtain, from the diagram
of the Mohr stress-cycle, @ = sing and k = ¢ cos¢. These expressions are different from
those of Drucker and Prager® because of our assumption of incompressibility. If « = 0in
Eq. (12), the effects of hydrostatic pressure vanish and Eq. (12) reduces to the Levi-Mises
equation of metal plasticity. If, on the other hand, the cohesion k is neglected, Eq. (12)
reduces to the equation of Kanatani'®?" derived for flows of cohesionless rigid particles by
a statistical method. We call Eq. (12) the extended Levi-Mises equation.

The equation of motion for a continuum in general has the form
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S =00+ pby (13)
where p is the density and b, is the body force per unit mass. Here d/d represents the Lag-
range derivative dfat + v,d,. Equation (13), into which Eq.(12) is substituted, and the
equation of incompressibility give a set of four equations for four independent variables
Uy, U, ¥, and p as follows:

d
Pgr=— 0P+ 5 Exdip + 37 P40 — 575 PEAERB D + pby B =0, (14)

where j = p + kfa, A = A/(1]2)E,;E,; and 4 is the Laplacian operator.

Characteristic surfaces for a set of partial differential equations are defined as follows
(¢f: Thomas*"): Suppose all the values of partial derivatives appearing in the equations
except those of the highest rank of differentiation for each quantity are specified on a certain
surface. In general, the set of equations determines the remaining values of the highest
derivatives. If they are indeterminate in particular, the surface is said to be a characteristic
surface for the given data. Then, one cannot integrate the equations by specifying boundary
conditions on that surface. This means that discontinuity in the highest derivatives can arise
across the surface even if all the remaining quantities are continuous. Hence, we can obtain
the characteristic surface by applying the geometrical conditions of discontinuity (cf.
Thomas®V). In the case of plane motions, we get

0 = + n/4, 4 (n/4 — ¢/2), (15)

where 0 is the angle between the surface normal and the principal axis of minimum com-
pression. (For details, see Kanatani.’”) We have thus obtained two types of characteristic
surfaces. One is the surfaces of maximum shearing stress which make the angle 7/4 to the
principal stress axes. The other is the characteristic surfaces of limit equilibrium. Now we
have shown that the material isotropy, the material incompressibility and the associated
flow rule, all of which the extended Levi-Mises equation exibits, are compatible with the
experimental fact that discontinuity is observed across the surfaces of maximum shearing
during plane motion. We can also show that the pressure discontinuity vanishes on the sur-
face of maximum shearing for plane motion. Hence, only discontinuity with regard to the
velocity field is possible across those surfaces, which again agrees with the consequences of
the statics of limit equilibrium.

IV. ELASTIC-PLASTIC THEORY OF GRANULAR MATERIALS AND
PROPAGATION OF SINGULAR SURFACES

We now extend the previous results to an elastic-plastic theory, incorporating the
elastic strain as well. Let the total strain-rate £, be decomposed into the elastic part Ef and
the plastic part Eg, i.e.,

E, = Ej; + Ef, (16)
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in such a way that the elastic strain-rate £ determines the stress-rate Dg;,/Dt. For simplici-
ty, we assume linearity and put

Do

T)T” = 2UEf; + 20, E&, (17
where # and A are constants. In order that this expression be invariant to translations and
rigid rotations of the coordinate system, the time derivative Do ;,/Dtf must be interpreted as

fole)
E{I + NOkOy — OriOpVyy — 0050, R

where [ ] designates the alternation of indices. This time derivative is called the covariant
time derivative (Thomas®”) or the Jaumann-Noll derivative (Eringen®®). Taking the
deviator and the trace of Eq. (17), we can rewrite it as

D&,

D
- B = — kE, (19)

= 2u Ef, Di

where (= (2u¢ + 34)/3) is the bulk modulus of the material. The plastic strain-rate is, on
the other hand, given by the associated flow rule in our sense, i.e.,

oy DR R il L
Bp=Ag-|  Ea=0. (20)
Combination of Egs. (19) and Eqs. (20) yields
Do, _ ( gl Do _
D7 =2 (B — A5 ﬁ), o = —  Eu. @1)

This set of equations is an extension of the Prandtl-Reuss equation of metal plasticity, and
hence we call them extended Prandtl-Reuss equations. The scalar A is determined by taking
the derivative Df/D¢ of the yield function. Then we get®?

e E,dfléa,,|, — (/2u) E,,,,Bﬂap‘

: 22
31100 1,0/]60 ], ()
The equation of continuity and the equations of motion are
dp dv,
a + po, = 0, Pa = afo'fl’ + pbi, (23)

respectively. Equations (21) and Eqs. (23) provide ten equations for ten unknown variables
P, v, p and &,

From this set of equations, we can investigate the propagation of singular surfaces. We
assume that the derivatives appearing in Egs. (21) and (23) are discontinuous across a
surface which is moving in the direction of its unit normal. Applying the kinematic com-
patibility conditions of discontinuity (¢f. Thomas,*” Eringen®¥), we can determine the
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velocity of propagation, adopting the extended von Mises equation (10) as the yield equ-
ation. (For details, see Kanatani.*®) If, in particular, the singular surface is stationary, we
have in the case of plane motions

cos 20 = 0, a, ax/(k + p/3), 249

where @ is the angle between the surface normal and the principal axis of minimum com-
pression in the deformation plane. The former two coincide with the characteristic surfaces
of perfect plastic flows. The angle @ determined by the last one approaches 4+ (7/4 — ¢/2)
in the limit of incompressibility, i.e., k/u — oo (or equivalently, v — 0.5, where v = A/
2(4 4+ p) = 3k — 2u)/2(3k + p) is the Poisson ratio). Especially, if the singular surface
separates a region of plastic flow from a region in elastic limit equilibrium, the surface must
be one of these three types.

V. CONCLUDING REMARKS

We have presented a plasticity theory for the kinematics of granular materials based
on a new interpretation of the associated flow rule with geometric constraints. Adopting the
extended von Mises equation as the yield equation, we have obtained the extended Levi-
Mises equation in the form of a three-dimensional tensor equation, which exibits perfect
plasticity, incompressibility, isotropy and Saint Venant’s principle. We have shown that the
characteristic surfaces obtained in the statics of granular materials are also the characteristic
surfaces of the velocity field. At the same time, we have shown that the surfaces of maximum
shearing stress in the case of plane motion are also the characteristic surfaces in accordance
with experimental observations. Then, we have extended the theory to an elastic-plastic
theory, incorporating the elastic strain as well, and have obtained the extended Prandtl-
Reuss equations. We have also discussed briefly the types of singular surfaces. Thus,
our theory is a straight extension of the statics of limit equilibrium to kinematics.
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