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The flow of granular materials is modeled by a polar continuum, the rotation of
particles being described as an additional tensor field. Kinematic equations are
derived by means of the couple-stress theory. In order to obtain constitutive equa-
tions, the microscopic particle friction is analyzed, and the macroscopic relations
are deduced by statistical averaging. Macroscopically equivalent stresses are deter-
mined for incompressible granular flows by the use of the energy dissipation relation.
Inclined gravity flows are studied to make clear the essential characteristics of the
granular flow. The existence of the similarity relation and the angle of repose are the
most remarkable consequences of our theory. Some numerical analyses are also
given.

I. INTRODUCTION

A granular material is an aggregate of a large number of particles, and its mechanical
properties have been studied in soil mechanics and powder mechanics. In soil mechanics,
static stress analysis, especially that of the limiting equilibrium, has been closely investigated
by both experimental and theoretical approaches.}=* Powder mechanics deals chiefly with
conveyance of granular materials by various equipments.®® However, general dynamic
theories of granular flows have not been fully developed due to the internal complexity of
the materials. Several authors described granular flows by models with some specific
characteristics taken into consideration. Goodman and Cowin®7 took the voidage of the
material as an additional field variables and developed a general continuum theory. How-
ever, though their theory is formally consistent, various material constants appearing in the
theory are not deducible on the basis of the microscopic properties of the constituent gran-
ules. In this paper, we take the statistical approach used in statistical mechanics: we first study
the microscopic interactions among particles and then deduce macroscopic relations by
statistical averaging. We assume that particles are rigid spheres of radius @ and mass m, and
that pneumatic or hydrodynamic effects are absent. The only possible interactions among
particles are assumed to be those of friction. Furthermore, the flow is assumed to be fairly
ordered, so that it can be approximately regarded as an incompressible flow. We regard the
rotation of particles as a tensor field quantity and derive basic kinematic equations by the
couple-stress theory of polar continua. Then, we analyze the microscopic friction among
particles and deduce macroscopic relations by means of the statistical method. Equivalent
stresses are determined by the macroscopic energy dissipation relation of the flow. Finally,
the inclined gravity flow is studied to make clear the essential characteristics of the granular
flow. The existence of the similarity relation and the angle of repose are the most remarka-
ble consequences of our theory. Some numerical analyses are also given.
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II. KINEMATIC EQUATIONS OF POLAR CONTINUUM

We choose the velocity v and the rotation velocity wj;, which is an antisymmetric ten-
sor, of particles as basic kinematic field variables, so that the continuum is regarded asa polar
continuum. The theory of polar continua, or the couple-stress theory, was first developed
as an extension of the classical theory of elasticity.8:® Oshima,'® Eringenl!12 and
others!3) applied the theory to flows of fluids. Let us first write down basic kinematic
equations, following these theories. The generalized forces corresponding to the kinematic
variables v! and wj;, are the usual force and the moment or the couple, respectively. These
forces are exerted as body forces and surface forces. We assume that the usual body force
pbtis that of gravity alone and that the body couple is absent. As the surface forces, we must
consider both the usual stress ¢7¢ and the couple-stress x*/t. The conservation laws for mass,
momentum and angular momentum are written as

%J‘ pdV = 0, ;_[If putdV :f pbidV +f alindsS, (1),(2)

j [mfwu"—m%ﬂdV f@fwuv+f 2xUa ¥y, + pkiing] dS,  (3)
where the region of integration is any part of the material moving in the flow and #»; is the
unit normal to the surface of the region. Throughout this paper, we adopt the rule of sum-
mation convention and denote d/dx? by d;. The coordinate system is always Cartesian, so
that we do not make any distinction between contravariant and covariant components of
tensors. As usual, we use ( ) and.[ ] to indicate the symmetric and the antisymmetric com-
onents of tensors respectively, i.e.,

1 1
Ay = 5 (Aj + Aij), Ay = > (A — Agy).

Applying Gauss’ theorem, we obtain the following differential equations:

d, dvt
F? -+ pak-yk =0, P ?'vt = Bjc;rﬁ -+ pbi, (4)s(5)
2 par 4% _ gy i 1. 201, ©

where d/dt = 8/t + v*0k.

Now, consider the conservation law for energy. Since there is no potential force acting
between particles and the particles are rigid, we need not consider any potential energy.
Hence, if d'W/dt is the rate of work done by external forces and K is the kinetic energy of
the region, we have

dW dK
7
= f®dV 7
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where @ is the rate of energy dissipation in a unit volume. We call @ the dissipation function,
though 2 is customarily so named. Substituting

%V = f pbividV +f [aﬁn;w + % Moy } ds, ®)
dK _ d [l !

into (7), and using Gauss’ theorem again, we finally obtain

D = 5’”&1?){ —_ O‘Ui](x)ﬁ -+ T,g_—/,!kﬂakw}'(,
Gl = gl — % SHoTE, (10)

In the usual theory of polar fluids, @ is formally assumed to be a quadratic form in
9501, wy and 0xw;j;. Then, linear constitutive equations are obtained. However, we take, in this
paper, the statistical approach; we first consider the microscopic energy dissipation due to
friction of particles and deduce @ by the statistical method. Suppose we get

& = (X1, Xo, . . ., Xn), (11)

where the arguments are generalized deformation rates. In general, if some particular me-
chanism of energy dissipation is assumed, the form of @ becomes homogeneous in its argu-
ments. The degree of homogeneity is characteristic to the corresponding mechanism of
dissipation. Let k£ be the degree of homogeneity. According to Euler’s theorem, we have

Xa. (12)

We can then define (1/k)d@/6X. as the generalized stress corresponding to the generalized
deformation rate X,. The stress thus defined is considered to well characterize the internal
dissipation mechanism. We call this procedure the Euler decomposition of the dissipation
function and & — 1 the degree of dissipation.

III. MICROSCOPIC MODEL OF PARTICLE FRICTION

Consider two rotating particles in contact with each other as shown in Fig. 1. We can
put, in the statistical average.

v; = v; + 2an;Dy, Wy = Wy + 2am2y 5, (13)
where

Dy = 0w;, Ry = drwys, (14)
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Fig. 2. The contact forces and the macroscopic pressure.

The average rate of energy dissipation at the x-th contact point can be approximated
by uf¢, where  is the kinetic friction coefficient. Then, the rate of energy dissipation for a
single particle is nu f¢. Multiplying p/m, the number of particles in a unit volume, and divid-
ing it by 2, because each contact is doubly counted, we finally obtain the energy dissipation
rate @ per unti volume in the form

b = 6 upd. (20)

Following the procedure discussed in the previous section, we have constitutive equa-
tions as follows:

Gt = 3‘/18 -[i dyvy — — 5;16;;?)")
/
gliil — 6” p (afjvﬂ i), (21

| v 6 ua®
ﬂk.ﬂ l p (dk[jaljwnij + akwji e a[.fwﬂk)

We can easily see that the degree of dissipation is zero and that the stresses have homogene-
ous forms of degree 0 in 9;v;, wy;, and 0wy

IV. INCLINED GRAVITY FLOW

Consider an infinite slab of granular material of thickness / inclined at an angle ¢ to the
gravity field and having a free upper surface while supported below by a flat plate as is shown
in Fig. 3. Let us take the natural units with respect to the density p, the thickness /1 and the
acceleration of gravity g, i.e., we measure all length in terms of 4, all masses in terms of ph3
and the time in terms of ///g. The equations of motion are reduced to

du _d (2 Y b _@ do 5 (o9
e sin 0 - e 0= — cost B gy g8 200291 |

duyzy
o) oy

The second one is integrated to yield p = (1 — p) cos 6, and hence the constitutive
equations become as follows:
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Fig. 3. The inclined gravity flow of granular materials.

X 1 ou 2 3 (du\? 2 o \2
= et libid PR s ) Nt oo 23
= «/(2 ay“”") E 20(6)') Mo (ay) ’ (@3)
gUT — —= ’(i g; el m),

el — _ J(I_ai, ay )

glyz JE i c090 T (24)

V6, 1 — yafu
.uyl'.} IO ‘uar ay

If the flow is seady, Egs. (22) are reduced, on substitution of (24), to

d{l—y/2du 1 tan 0
S

dy\” @ dy Vo
d l—ydw ﬁ@l—y(i(_fg 1 )
dy( @ a'y) Ta? @ \4d) o5 T (25)

From these equations, we can conclude:

Theorem of Similarity
If u and o satisfy the equations of steady flow, so do Au and Aw, where 4 is an arbi-

trary constant.
This theorem is one of the consequences of the fact that the internal energy dissipation
is caused by friction, whose magnitude does not depend upon the friction velocity.

Now, consider the simple shear flow with passive rotations of particles:

o e %A, (4 = const.) (26)
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Theorem of the Angle of Repose
Steady flow is possible only when 0, the angle of inclination, is equal to 0%, where

.
f* = tan™* (3—1'1(])—0,11) . (27)

If 0 > 0%, the flow is accleerated, and if 0 < 0%, the flow is damped.

Hence, the angle 0% is regarded as the kinetic angle of repose. If u = 0.7 for glass, then
0* = 33.6°, which is a quite reasonable value?d,

Suppose that the stresses at the lower boundary are given by (24), where du/dy, w and
dw/dy are replaced by u(0)/2a, «(0) and w(0)/2a respectively. Let 0 = 0* = 30°. Since equa-
tions (25) are non-linear and difficult to solve analytically, we execute computer simula-
tion of equation (22), taking the initial flow to be (26) with 4 = 1. The profiles of the velocity
and the rotation velocity are shown in Fig.4 and Fig.5, respectively. We can see that the
interaction at the boundary affects the flow near the boundary, and that the thickness of the
‘boundary layer’ increases as a// increases.
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Fig. 4. The velocity profile of the inclined Fig. 5. The rotation velocity profile of
gravity flow. the inclined gravity flow.

V. CONCLUDING REMARKS

We have established a polar continuum model for the flow of granular materials. Basic
kinematic equations are derived on the basis of the couple-stress theory. In order to obtain
constitutive equations, we examined a microscopic mechanism of energy dissipation due to
friction of particles. Then, we deduced macroscopic dissipation relations by the statistical
method. Macroscopic stresses are determined by the Euler decomposition of the dissipation
function. We studied the inclined gravity flow and showed that the existence of the similarity
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theorem and the angle of repose are natural consequences of our theory. Some numerical
analyses are given with regard to the effects of boundary conditions.
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