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A continuum theory for slow flows of granular materials was developed in
Part 1. The theory is extended in this part to include fast flows in which particle
collisions play an important role. The particle fluctuations are regarded as macro-
scopic “‘heat”, and a thermodynamic analogy is developed. The ‘‘equations of state”
are determined by assuming *‘local equilibrium™, and the normal stress effects due to
the *‘thermal dilatation’ are shown to exist. Finally, “‘entropy” is introduced, and
the law of “‘entropy” increase is formulated.

I. INTRODUCTION

In Part 1V, we have established a polar continuum model for the flow of granular
materials. The materials were assumed to consist of cohesionless rigid spheres of uniform
size and weight, and the flow was assumed to be fairly ordered, so that possible interactions
among particles were assumed to be those of friction alone. We term such flows slow flows.
In this part, we study those flows in which particle collisions play an important role. We
call such flows fast flows. The existence of these two distinct flow regimes has been revealed
by experiments of gravity flows in an inclined chute?=*. When the inclination angle is small,
the particles are rolling in an ordered manner. When the angle reaches a critical value, the
particles begin chaotic fluctuations, interacting vigorously with their neighbors. We regard
the particle fluctuations as macroscopic *‘heat”, and develop a thermodynamic analogy. We
assume “‘local equilibrium™ to deduce “‘equations of state”. “Entropy” is also defined, and
the law of “entropy” increase is formulated. We analyze the “thermal dilatation™ of the
flow due to the particle collisions, which demonstrates the normal stress effects of granular
materials observed by Bagnold®™ and Savage®. As we did in Part I, we adopt the index
notation of tensors and the rule of summation convention throughout this paper. The
coordinate system is always Cartesian, so that we do not make any distinction between
contravariant and covariant components of tensors.

II. PARTICLE FLUCTUATIONS AND A THERMODYNAMIC ANALOGY

Let v,(P) and w,,(P) be the velocity and the angular velocity, respectively, of a particle
at the point P. We put

v(P) = v, + v{(P), wu(P)= w; + wj(P), (1)

where v; and w,, are the averaged values over some neighborhood around the point P, while
v{(P) and w),(P) are random variables of zero mean representing the irregular fluctuations
due to the interparticle collisions. The kinetic energy averaged over the neighborhood is
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where p is the bulk density of the particle assembly, a is the radius of the particle, and the
bar means the average over the neighborhood. The first two terms of expression (2) are the
kinetic energy density of the material in the continuum description. The remaining terms
can be regarded as “internal energy” of the material. Being an averaged quantity, it is a
continuous quantity. We define the “internal energy’ per unit mass to be

1 1 ——
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The existence of the fluctuations does not affect the conservation laws (1)-(3) in Part
1, for they are expressions for the mean values. Hence, we have Eqgs. (4)-(6) in Part 1 also
for fast flows.

Consider the energy conservation law. We look on the irregular fluctuations of the
particles as “heat”. We have

= e i e C))
where d'W/dt and dK/d¢ are given by Eqgs. (8) and (9) in Part 1, respectively, and
dl
U= [peav, “&Q = [qav — [hngs. ), (6)

Here ¢ is the “heat™ supply per unit volume, i.e., —q is the rate of energy dissipation in a
unit volume, while /' is the “heat flux™, i.e., the transmission of the fluctuation energy to
neighboring particles. Substitution of these equations in (4) with application of integration
by parts yields

d
P = — P + B+ q— 3, 0

where p = —(1/3)a**, and & is the form defined by Eq. (10) in Part 1. Now we can expect
that the particle fluctuations soon grow up to an extent determined by the macroscopic
flow pattern. We say that the flow isin “local equilibrium”, if the “internal energy” ¢ depends
not on the history of motion but only on the present state of the flow in the form ¢ =
e(vy, 0,v;, Wy, Oroy).

In a “local equilibrium” flow, the work done by the stresses are classified into two
categories. One is the “thermal work™ done by the pressure p caused by the interparticle
collisions. This work directly changes the “internal energy’ of the material. The other is the
“dissipative work™ spent in the interparticle friction and collisions. We assume that, in
“local equilibrium”, the fluctuations of a particle are nearly the same as those of surrounding
ones, so that the “heat flux’ vanishesin “local equilibrium”. Equation (7) is then decomposed
into two parts such as
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III. EQUATIONS OF STATE AND CONSTITUTIVE EQUATIONS

We consider those flows whose bulk density p is close to p,, the bulk density of random-
ly packed spheres. This implies that each particle in the flow is almost always repeating
collisions to the nearest particles. Consider in the flow a region containing several particles.
If m is the mass of one particle, the volume of the region divided by the number of particles
in it is ¥ = m/p, which is the volume assigned to one particle. Let us call it the occupation
volume of the particle. Define the occupation radius r = (3V/4x)'® as the radius of a
sphere whose volume equals the occupation volume. Now, a particle is assumed to be
repeating collisions against a rigid spherical wall of radius r, the occupation radius, with
fluctuation velocity 2" (see Fig. 1). Let ry be the occupation radius of randomly packed
spheres. The particle travels without collisions over the distance 2(r — r,). Hence, it collides
against the wall 2'/2(r — r,) times per unit time. The momentum given to the wall is 2m’
for each collision. Hence, the pressure on the wall is p = mv'*/dnr?(r — ry) = ppv'?3
(po — p'p¥?). Since p = p,, we can expand the denominator; p, — p'*p§?® = (p, — p)/

3+ (po — p)*/9 + . . . . Retaining only the first term, we obtain
PPV
e 9
£ Po— P ©)

Next, consider the energy dissipation rate @ spent in the interparticle friction. We
assume, for simplicity’s sake, that contribution of the fluctuation term e}, can be neglected

in comparison to the main term w;,. Then, the argument in Part 1 can be applied again.
We finally have

&=,/ p (%) P, (10)

where p is the kinetic friction coefficient of particles, and & is the quantity defined by Eq.
(18) in Part 1.

Fig. 1. The scheme of wall approximation.
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Finally, we determine the “‘equation of state” for the “internal energy”. The form &(v,,
av;, @y, 0xwy) must be invariant to translations and rigid rotations of the coordinate
system. Hence, we can conclude that ¢ is a function of quantities E,;, R;, and 2, defined in
Part 1. As was discussed in Part 1, @d(E,, Ry, Q.;) is the quantity representing the
interparticle interactions. Hence, we can expect that ¢ is a function of @. Once the form of
¢ is so assumed, we have only to consider the special situation in which the average velocity
of the particles is zero. In this situation, the kinetic energy of rotation is (1/5)ma*@?* per one
particle, for @ coincides with the magnitude of the particle rotation in this situation. The
kinetic energy of the fluctuation mode is (1/2)mv'? in accordance with the scheme of wall
approximation. We can expect that in “local equilibrium™ the latter kinetic energy in-
creases as the former increases. We now postulate that the total kinetic energy of the
particle is partitioned into these two modes of motion in a fixed ratio in “local equilibrium”.
Thus, (1/2)mv'* = T,(1/5)ma*@?*, where T, is the proportionality constant. Hence, we have

e= 1 Tpaar, v=L /Tas (1), (12)

Substitution of this in (10) and (11) yields the following “equations of state” for the pressure
and the energy dissipation rate @ such as

2 PoP 4 25/560 PGP
=Tt @, op=227T1,- L0 g, 13), (14
A Po— P 5 rpo—p (13), (14)

The dissipative stresses are determined by the procedure discussed in Part 1 as follows
(See Part 1V):

&1 = 3 Cp)d@ vy — % 8,0:0%), (15)
ot = - C(p)B@yvs — @), (16)
W = 4 @O On0 + Bu0 — 000, a7

cpy =281, E;E‘-’i_"—p. (18)

IV. “THERMAL DILATATION” OF INCLINED GRAVITY FLOWS

Consider the inclined gravity flow shown in Fig. 2. We consider the case a/h << 1, where
h is the depth of the flow, and neglect the terms of €, in &. If the flow is steady and the
particle rotation is constrained to the velocity field, i.e., R;; = 0, the shear stress ¢** and the
pressure p are given by

Rl -G zoll] o
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Fig. 2. Inclined gravity tiow.

where u is the x-component of the velocity as is indicated in Fig.2. Both of the shear stress
and the pressure are proportional to the square of the velocity gradient (du/dy)* as was
derived and experimentally confirmed by Bagnold®. If the flow is the simple shear flow, the
equation of motion for the y-component of the velocity is easily integrated to give the form
of p(»). The integration constant is determined by the mass conservation relation

[ pdv = pod, (20)

where £, is the depth of the slab when all the particles are at rest. The result is expressed in
the following implicit form:

Yy Ap Po
—=1+A(l#lo — ) 21
hy SE B0 @)
. 3T ydm\
o= SOgthosO(dy) ’ ()

Figure 3 shows the density profile for the flow. It is seen that the increase of the shearing
leads to the increase of the “internal energy”, which in turn causes the ‘““thermal dilatation”
of the flow. This fact was observed by Ono®. Using this form of p(y), we can calculate the
acceleration profile du/dt from the equation of motion for w. If there is no slip at the bottom
»y = 0, we obtain the acceleration profile shown in Fig. 4. We can see that the acceleration is
especially large in the upper layer of the flow, as was also observed by Ono?. If the density
profile does not change rapidly, we obtain the time varying velocity profile shown in Fig. 5.

V. “ENTROPY” OF NON-EQUILIBRIUM FLOWS

Let us consider flows not in “local equilibrium™. In non-equilibrium flows, the “internal
energy” ¢ is an independent “thermodynamic™ quantity depending upon the history of the
motion. However, we can consider the “equation of state” (12) to be still valid, regarding
T,, instead, not as a constant but as a new independent quantity 7" which depends on the



490 K. KANATANI

- 0 05 du : 1
0 05  p/p, 1 d—t—/gsme
Fig. 3. Density profile for the fast flow. Fig. 4. Acceleration profile for the fast flow.
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Fig. 5. Velocity profile for the fast flow.

history of motion. The “equation of state” (13) for the pressure p is rewritten in terms of the
occupation volume V as

PV — Vo) = 2 Tmad, 23)
where V, is the occupation volume of randomly packed spheres. By analogy with the
equation of state for ideal gas, we can say that T plays the role of temperature. Hence, we
call T the “temperature” of the flow. From this viewpoint, the interpretation of Fig. 3 is
that the rise of “temperature’ causes the “thermal dilatation™.

Let de/dt be partitioned into two parts such as
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de dee  d*e dee
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x-a T P@ ot G4)
From (7), we obtain
*
p gd—ta =&+ qg— a,h. (25

By definition, the non-equilibrium part d*e/d¢ vanishes in “local equilibrium”. In order to
assure the approach to “local equilibrium”, we postulate that d*e/d¢ > 0 for T < T, and
that d*e/dt < O for T > T,. The “heat flux” A’ is assumed to be in the direction of lower
“temperature”. These assumptions are written as

;ff<0 h'o,T <0 (26)
Ty ? ! X

Let the “entropy” s per unit mass be defined as a quantity which obeys the following
equation.

ds @
Pa— = raT

@7

The initial value of s is irrelevant. Then, we have

Theorem
Let the “entropy production rate” # be defined by the following “entropy balance
equation”.

d h
= fpst £ fr;dV it J'T—_"—T dv — jm nds. (28)
Then
n>0. (29)
Proof
Integrating Eq. (28) by parts, we have
_ ds  q—0oh h'a, T
T=PH—~ r=9 T @—TP )
Substitution of Egs. (25) and (27) in this yields
_ 1 d*% _haT
I==F_gPa @-1Tp el

From Eq. (26) we have the theorem.
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VI. CONCLUDING REMARKS

We have presented a polar continuum model for fast flows of granular materials. We
have adopted notions of thermodynamics and presented a consistent description of the flow
in “local equilibrium”. The “thermal dilatation™ of the flow is analyzed to see the normal
stress effects, i.e.,the pressure caused by the velosity gradient of the flow. Finally, we have
obtained an “entropy’ formulation which is an extention of classical continuum thermo-
dynamics.
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