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Abstract. We compare algorithms for fundamental matrix computa-
tion, which we classify into “a posteriori correction”, “internal access”,
and “external access”. Doing experimental comparison, we show that
the 7-parameter Levenberg-Marquardt (LM) search and the extended
FNS (EFNS) exhibit the best performance and that additional bundle
adjustment does not increase the accuracy to any noticeable degree.

1 Introduction

Computing the fundamental matrix from point correspondences is the first step
of many vision applications including camera calibration, image rectification,
structure from motion, and new view generation [6]. To compute the fundamental
matrix accurately from noisy data, we need to solve optimization subject to the
constraint that it has rank 2, for which typical approaches are:

A posteriori correction. We first compute the fundamental matrix without
considering the rank constraint and then modify the solution so that it is
satisfied (Fig. 1(a)).

Internal access. We minimally parameterize the fundamental matrix so that
the rank constraint is always satisfied and do optimization in the reduced
(“internal”) parameter space (Fig. 1(b)).

External access. We do iterations in the redundant (“external”) parameter
space in such a way that an optimal solution that satisfies the rank constraint
automatically results (Fig. 1(c)).

The aim of this paper is to find the best method by thorough performance
comparison.

2 Mathematical Fundamentals

Fundamental matrix. Given two images of the same scene, a point (x, y) in
the first image and the corresponding point (x′, y′) in the second satisfy the
epipolar equation [6]
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where f0 is a scaling constant for stabilizing numerical computation [5] (In our
experiments, we set f0 = 600 pixels). Throughout this paper, we denote the
inner product of vectors a and b by (a, b). The matrix F = (Fij) in Eq. (1) is
of rank 2 and called the fundamental matrix . If we define

u = (F11, F12, F13, F21, F22, F23, F31, F32, F33)>, (2)
ξ = (xx′, xy′, xf0, yx′, yy′, yf0, f0x

′, f0y
′, f2

0 )>, (3)

Equation (1) can be rewritten as

(u, ξ) = 0. (4)

The magnitude of u is indeterminate, so we normalize it to ‖u‖ = 1, which is
equivalent to scaling F so that ‖F ‖ = 1. With a slight abuse of symbolism, we
hereafter denote by det u the determinant of the matrix F defined by u.

Covariance matrices. Given N observed noisy correspondence pairs, we rep-
resent them as 9-D vectors {ξα} in the form of Eq. (3) and write ξα = ξ̄α +∆ξα,
where ξ̄α is the true value and ∆ξα the noise term. The covariance matrix of ξα

is defined by
V [ξα] = E[∆ξα∆ξ>α ], (5)

where E[ · ] denotes expectation over the noise distribution. If the noise in the x-
and y-coordinates is independent and of mean 0 and standard deviation σ, the
covariance matrix of ξα has the form V [ξα] = σ2V0[ξα] up to O(σ4), where

V0[ξα] =




x̄2
α + x̄′2α x̄′αȳ′α f0x̄

′
α x̄αȳα 0 0 f0x̄α 0 0

x̄′αȳ′α x̄2
α + ȳ′2α f0ȳ

′
α 0 x̄αȳα 0 0 f0x̄α 0

f0x̄
′
α f0ȳ

′
α f2

0 0 0 0 0 0 0
x̄αȳα 0 0 ȳ2

α + x̄′2α x̄′αȳ′α f0x̄
′
α f0ȳα 0 0

0 x̄αȳα 0 x̄′αȳ′α ȳ2
α + ȳ′2α f0ȳ

′
α 0 f0ȳα 0

0 0 0 f0x̄
′
α f0ȳ

′
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0 0 0 0
f0x̄α 0 0 f0ȳα 0 0 f2

0 0 0
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0 0
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. (6)

In actual computations, the true positions (x̄α, ȳα) and (x̄′α, ȳ′α) are replaced by
their data (xα, yα) and (x′α, y′α), respectively.

We define the covariance matrix V [û] of the resulting estimate û of u by

V [û] = E[(P U û)(P U û)>], (7)

where P U is the linear operator projectingR9 onto the domain U of u defined by
the constraints ‖u‖ = 1 and det u = 0; we evaluate the error of û by projecting
it onto the tangent space Tu(U) to U at u.
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Fig. 1. (a) A posteriori correction. (b) Internal access. (c) External access.

Geometry of the constraint. The unit normal to the hypersurface defined by
detu = 0 is

u† = N [∇u detu], (8)

where N [ · ] denotes normalization into unit norm. It is easily shown that the
constraint det u = 0 is equivalently written as

(u†, u) = 0. (9)

Since the domain U is included in the unit sphere S8 ⊂ R9, the vector u is
everywhere orthogonal to U . Hence, {u, u†} is an orthonormal basis of the
orthogonal complement of the tangent space Tu(U). It follows that the projection
operator P U in Eq. (7) has the following matrix representation:

P U = I − uu> − u†u†>. (10)

KCR lower bound. If the noise in {ξα} is independent and Gaussian with
mean 0 and covariance matrix σ2V0[ξα], the following inequality holds for an
arbitrary unbiased estimator û of u [7]:

V [û] Â σ2
( N∑

α=1

(P U ξ̄α)(P U ξ̄α)>

(u, V0[ξα]u)

)−
8

. (11)

Here, Â means that the left-hand side minus the right is positive semidefinite,
and ( · )−r denotes the pseudoinverse of rank r. Chernov and Lesort [2] called the
right-hand side of Eq. (11) the KCR (Kanatani-Cramer-Rao) lower bound and
showed that Eq. (11) holds up to O(σ4) even if û is not unbiased; it is sufficient
that û → u as σ → 0.

Maximum likelihood. If the noise in {ξα} is independent and Gaussian with
mean 0 and covariance matrix σ2V0[ξα], maximum likelihood (ML) estimation
of u is to minimize the sum of square Mahalanobis distances

J =
N∑

α=1

(ξα − ξ̄α, V0[ξα]−2 (ξα − ξ̄α)), (12)
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subject to (u, ξ̄α) = 0, α = 1, ..., N . Eliminating the constraint by using Lagrange
multipliers, we obtain [7]

J =
N∑

α=1

(u, ξα)2

(u, V0[ξα]u)
. (13)

The ML estimator û minimizes this subject to ‖u‖ = 1 and (u†,u) = 0.

3 A Posteriori Correction

The a posteriori correction approach first minimizes Eq. (13) without considering
the rank constraint and then modifies the resulting solution ũ so as to satisfy it
(Fig. 1(a)). A popular method is to compute the singular value decomposition
(SVD) of the computed fundamental matrix and replace the smallest singular
value by 0, resulting in a matrix of rank 2 “closest” to the original one in norm
[5]. We call this SVD correction.

A more sophisticated method is the optimal correction [7, 11]. According to
the statistical optimization theory [7], the covariance matrix V [ũ] of the rank
unconstrained solution ũ can be evaluated, so ũ is moved in the direction of the
mostly likely fluctuation implied by V [ũ] until it satisfies the rank constraint
(Fig. 1(a)). The procedure goes as follows [7]:

1. Compute the 9× 9 matrices

M̃ =
N∑

α=1

ξαξ>α
(ũ, V0[ξα]ũ)

, (14)

and V0[ũ] = (P ũM̃P ũ)−8 , where P ũ = I − ũũ>.
2. Update the solution ũ as follows (ũ† is defined by Eq. (8) for ũ):

ũ ← N [ũ− 1
3

(ũ, ũ†)V0[ũ]ũ†

(ũ†, V0[ũ]ũ†)
]. (15)

3. If (ũ, ũ†) ≈ 0, return ũ and stop. Else, update the matrix V0[ũ] in the form

P ũ = I − ũũ>, V0[ũ] ← P ũV0[ũ]P ũ, (16)

and go back to Step 2.

Before doing this, we need to solve unconstrained minimization of Eq. (13),
for which many method exist: the FNS (Fundamental Numerical Scheme) of
Chojnacki et al. [3], the HEIV (Heteroscedastic Errors-in-Variable) of Leedan
and Meer [10], and the projective Gauss-Newton iterations of Kanatani and
Sugaya [8]. Their convergence properties were studies in [8].
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4 Internal Access

The fundamental matrix F has nine elements, on which the normalization ‖F ‖
= 1 and the rank constraint detF = 0 are imposed. Hence, it has seven degrees
of freedom. The internal access minimizes Eq. (13) by searching the reduced 7-D
parameter space (Fig. 1(b)).

Many types of 7-degree parameterizations have been proposed in the past [12,
14], but the resulting expressions are often complicated, and the geometric mean-
ing of the individual unknowns are not clear. This was overcome by Bartoli and
Sturm [1], who regarded the SVD of F as its parameterization. Their expression
is compact, and each parameter has its geometric meaning. They did tentative
3-D reconstruction using the assumed F and adjusted the reconstructed shape,
the camera positions, and their intrinsic parameters so that the reprojection
error is minimized; such an approach is known as bundle adjustment. Sugaya
and Kanatani [13] simplified this: adopting the parameterization of Bartoli and
Sturm [1], they directly minimized Eq. (13) by the Levenberg-Marquardt (LM)
method. Their 7-parameter LM search goes as follows:

1. Initialize F in such a way that det F = 0 and ‖F ‖ = 1, and express it as F
= Udiag(cos θ, sin θ, 0)V >.

2. Compute J in Eq. (13), and let c = 0.0001.
3. Compute the matrices F U and F V and the vector uθ as follows:

F U =




0 F31 −F21

0 F32 −F22

0 F33 −F23

−F31 0 F11

−F32 0 F12

−F33 0 F13

F21 −F11 0
F22 −F12 0
F23 −F13 0




, F V =




0 F13 −F12

−F13 0 F11

F12 −F11 0
0 F23 −F22

−F23 0 F21

F22 −F21 0
0 F33 −F32

−F33 0 F31

F32 −F31 0




, (17)

uθ =




U12V12 cos θ − U11V11 sin θ
U12V22 cos θ − U11V21 sin θ
U12V32 cos θ − U11V31 sin θ
U22V12 cos θ − U21V11 sin θ
U22V22 cos θ − U21V21 sin θ
U22V32 cos θ − U21V31 sin θ
U32V12 cos θ − U31V11 sin θ
U32V22 cos θ − U31V21 sin θ
U32V32 cos θ − U31V31 sin θ




. (18)

4. Compute the following matrix X:

X =
N∑

α=1

ξαξ>α
(u, V0[ξα]u)

−
N∑

α=1

(u, ξα)2V0[ξα]
(u, V0[ξα]u)2

. (19)
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5. Compute the first and (Gauss-Newton approximated) second derivatives of
J as follows:

∇ωJ = F>
UXu, ∇ω′J = F>

V Xu,
∂J

∂θ
= (uθ, Xu), (20)

∇2
ωJ = F>

UMF U , ∇2
ω′J = F>

V MF V , ∇ωω′J = F>
UMF V ,

∂J2

∂θ2
= (uθ, Muθ),

∂∇ωJ

∂θ
= F>

UMuθ,
∂∇ω′J

∂θ
= F>

V Muθ. (21)

6. Compute the following matrix H:

H =




∇2
ωJ ∇ωω′J ∂∇ωJ/∂θ

(∇ωω′J)> ∇2
ω′J ∂∇ω′J/∂θ

(∂∇ωJ/∂θ)> (∂∇ω′J/∂θ)> ∂J2/∂θ2


 . (22)

7. Solve the simultaneous linear equations

(H + cD[H])




ω
ω′

∆θ


 = −



∇ωJ
∇ω′J
∂J/∂θ


 , (23)

for ω, ω′, and ∆θ, where D[ · ] denotes the diagonal matrix obtained by
taking out only the diagonal elements.

8. Update U , V , and θ in the form U ′ = R(ω)U , V ′ = R(ω′)V , and θ′ =
θ + ∆θ, where R(ω) denotes rotation around N [ω] by angle ‖ω‖.

9. Update F to F ′ = U ′diag(cos θ′, sin θ′, 0)V ′>.
10. Let J ′ be the value of Eq. (13) for F ′.
11. Unless J ′ < J or J ′ ≈ J , let c ← 10c, and go back to Step 7.
12. If F ′ ≈ F , return F ′ and stop. Else, let F ← F ′, U ← U ′, V ← V ′, θ ←

θ′, and c ← c/10, and go back to Step 3.

5 External Access

The external access approach does iterations in the 9-D u-space in such a way
that an optimal solution satisfying the rank constraint automatically results
(Fig. 1(c)). The concept dates back to such heuristics as introducing penalties
to the violation of the constraints or projecting the solution onto the surface of
the constraints in the course of iterations, but it is Chojnacki et al. [4] that first
presented a systematic scheme, which they called CFNS (Constrained FNS ).
Kanatani and Sugaya [9] pointed out, however, that CFNS does not necessarily
converge to a correct solution and presented in a more general framework a new
scheme, called EFNS (Extended FNS ), which is shown to converge to an optimal
value. For fundamental matrix computation, it reduces to the following form:

1. Initialize u.
2. Compute the matrix X in Eq. (19).
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3. Computer the projection matrix Pu† = I−u†u†> (u† is defined by Eq. (8)).
4. Compute Y = P u†XP u† .
5. Solve the eigenvalue problem Y v = λv, and compute the two unit eigenvec-

tors v1 and v2 for the smallest eigenvalues in absolute terms.
6. Compute û = (u, v1)v1 + (u,v2)v2.
7. Compute u′ = N [P u†û].
8. If u′ ≈ u, return u′ and stop. Else, let u ← N [u + u′] and go back to Step

2.

6 Bundle Adjustment

The transition from Eq. (12) to Eq. (13) is exact ; no approximation is in-
volved. Strictly speaking, however, the minimization of the (squared) Maha-
lanobis distance in the ξ-space (Eq. (13)) can be ML only when the noise in the
ξ-space is Gaussian, because then and only then is the likelihood proportional to
e−J/constant. If the noise in the image plane is Gaussian, on the other hand, the
transformed noise in the ξ-space is no longer Gaussian, so minimizing Eq. (13)
is not strictly ML in the image plane. In order to test how much difference is
incurred, we also implemented bundle adjustment, minimizing the reprojection
error (we omit the details).

7 Experiments

Figure 2 shows simulated images of two planar grid surfaces viewed from different
angles. The image size is 600 × 600 pixels with 1200 pixel focal length. We
added random Gaussian noise of mean 0 and standard deviation σ to the x- and
y-coordinates of each grid point independently and from them computed the
fundamental matrix by 1) SVD-corrected LS, 2) SVD-corrected ML, 3) CFNS,
4) optimally corrected ML, 5) 7-parameter LM, and 6) EFNS.

“LS” means least squares (also called “8-point algorithm” [5]) minimizing∑N
α=1(u, ξα)2, which reduces to simple eigenvalue computation [8]. For brevity,
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Fig. 2. Simulated images of planar grid surfaces and the RMS error vs. noise level.
1) SVD-corrected LS. 2) SVD-corrected ML. 3) CFNS. 4) Optimally corrected ML. 5)
7-parameter LM. 6) EFNS. The dotted line indicates the KCR lower bound.
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Fig. 3. (a) The RMS error relative to the KCR lower bound. (b) Average residual
minus minus (N − 7)σ2. 1) Optimally corrected ML. 2) 7-parameter LM started from
LS. 3) 7-parameter LM started from optimally corrected ML. 4) EFNS. 5) Bundle
adjustment.

we use the shorthand “ML” for unconstrained minimization of Eq. (13), for
which we used the FNS of Chojnacki et al. [3]. The 7-parameter LM and CFNS
are initialized by LS. All iterations are stopped when the update of F is less
than 10−6 in norm.

On the right of Fig. 2 is plotted for σ on the horizontal axis the following root-
mean-square (RMS) error D corresponding to Eq. (7) over 10000 independent
trials:

D =

√√√√ 1
10000

10000∑
a=1

‖P U û(a)‖2. (24)

Here, û(a) is the ath value, and P U is the projection matrix in Eq. (10). The
dotted line is the bound implied by the KCR lower bound (the trace of the
right-hand side of Eq. (11)).

Preliminary observations. We can see that SVD-corrected LS (Hartley’s 8-
point algorithm) performs very poorly. We can also see that SVD-corrected ML
is inferior to optimally corrected ML, whose accuracy is close to the KCR lower
bound. The accuracy of the 7-parameter LM is nearly the same as optimally
corrected ML when the noise is small but gradually outperforms it as the noise
increases. Best performing is EFNS, exhibiting nearly the same accuracy as the
KCR lower bound. In contrast, CFNS performs as poorly as SVD-corrected ML.
The reason for this is fully investigated by Kanatani and Sugaya [9].

Doing many experiments (not all shown here), we have observed that i) EFNS
stably achieves the highest accuracy over a wide range of the noise level, ii)
optimally corrected ML is fairly accurate and very robust to noise but gradually
deteriorates as noise grows, and iii) 7-parameter LM achieves very high accuracy
when started from a good initial value but is likely to fall into local minima if
poorly initialized.

The robustness of EFNS and optimally corrected ML is due to the fact that
the computation is done in the redundant (“external”) u-space, where J has a
simple form of Eq. (13). In fact, we have never experienced local minima in our
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Fig. 4. Left: Real images and 100 corresponding points.
Right: Residuals and execution times (sec) for 1) SVD-
corrected LS, 2) SVD-corrected ML, 3) CFNS, 4) optimally
corrected ML, 5) direct search from LS, 6) direct search from
optimally corrected ML, 7) EFNS, 8) bundle adjustment.

residual time

1 45.550 . 000524

2 45.556 . 00652

3 45.556 . 01300

4 45.378 . 00764

5 45.378 . 01136

6 45.378 . 01748

7 45.379 . 01916

8 45.379 . 02580

experiments. The deterioration optimally corrected ML in the presence of large
noise is because linear approximation is involved in Eq. (15).

The fragility of 7-parameter LM is attributed to the complexity of the func-
tion J when expressed in seven parameters, resulting in many local minima in
the reduced (“internal”) parameter space, as pointed out in [12].

Thus, the optimal correction of ML and the 7-parameter ML have comple-
mentary characteristics, which suggests that the 7-parameter ML initialized by
optimally corrected ML may exhibit comparable accuracy to EFNS. We now
confirm this.

Detailed observations. Figure 3(a) compares 1) optimally corrected ML, 2)
7-parameter LM started from LS, 3) 7-parameter LM started from optimally
corrected ML, 4) EFNS, and 5) bundle adjustment. For visual ease, we plot
the ratio D/DKCR of D in Eq. (24) to the corresponding KCR lower bound.
Figure 3(b) plots the corresponding average residual J (minimum of Eq. (13).
Since direct plots of J nearly overlap, we plot its difference from (N − 7)σ2,
where N is the number of corresponding pairs. This is motivated by the fact
that to a first approximation Ĵ/σ2 is subject to a χ2 distribution with N − 7
degrees of freedom [7], so the expectation of Ĵ is approximately (N − 7)σ2.

We observe from Fig. 3 that i) the RMS error of optimally corrected ML
increases as noise increases, yet the corresponding residual remains low, ii) the
7-parameter LM started from LS appears to have high accuracy for noise levels
for which the corresponding residual high, iii) the accuracy of the 7-parameter
LM improves if started from optimally corrected ML, resulting in the accuracy
is comparable to EFNS, and iv) additional bundle adjustment does not increase
the accuracy to any noticeable degree.

The seeming contradiction that solutions that are closer to the true value
(measured in RMS) have higher residuals Ĵ implies that the 7-parameter LM
failed to reach the true minimum of the function J , indicating existence of lo-
cal minima located close to the true value. When initialized by the optimally
corrected ML, the 7-parameter LM successfully reaches the true minimum of J ,
resulting in the smaller Ĵ but larger RMS errors.

Real image example. We manually selected 100 pairs of corresponding points
in the two images in Fig. 4 and computed the fundamental matrix from them.
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The final residual J and the execution time (sec) are listed there. We used
Core2Duo E6700 2.66GHz for the CPU with 4GB main memory and Linux for
the OS.

We can see that for this example optimally corrected ML, 7-parameter LM
started from either LS or optimally corrected ML, EFNS, and bundle adjustment
all converged to the same solution, indicating that all are optimal. On the other
hand, SVD-corrected LS (Hartley’s 8-point method) and SVD-corrected ML
have higher residual than the optimal solution and that CFNS has as high a
residual as SVD-corrected ML.

8 Conclusions

We compared algorithms for fundamental matrix computation (the source code
is available from the authors’ Web page1), which we classified into “a posteriori
correction”, “internal access”, and “external access”.

We observed that the popular SVD-corrected LS (Hartley’s 8-point algo-
rithm) has poor performance and that the CFNS of Chojnacki et al. [4], a
pioneering external access method, does not necessarily converge to a correct
solution, while the EFNS always yields an optimal value.

After many experiments (not all shown here), we concluded that EFNS and
the 7-parameter LM started from optimally corrected ML exhibited the best per-
formance. We also observed that additional bundle adjustment does not increase
the accuracy to any noticeable degree.
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