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Abstract
We study the problem of estimating the number of indepen-
dent motions for segmentation based on feature tracking.
We elucidate the mathematical structure of the problem and
present an estimation method using model selection by the
geometric AIC, the geometric MDL, and the OIC. We com-
pare their performance using synthetic and real data. We
also present techniques for evaluating the reliability of seg-
mentation a posteriori, using the standard F test and model
selection by the geometric AIC and the geometric MDL.

1. Introduction

1.1 Motion segmentation

Segmenting individual objects from backgrounds is
one of the most important of computer vision tasks.
An important clue is provided by motion; humans can
easily discern independently moving objects by see-
ing their motions without knowing their identities. To
solve this problem, Costeira and Kanade [1] presented
a segmentation algorithm based on feature tracking.
Since then, various extensions and applications have
been proposed [2, 3, 4, 10].

Costeira and Kanade [1] attributed their algorithm
to the Tomasi-Kanade factorization [14], but the un-
derlying principle is a simple fact of linear algebra:
the image motion of points that belong to an object
moving rigidly in the scene is constrained to be in a
four-dimensional subspace [2, 7].

In an attempt to improve the Costeira-Kanade algo-
rithm, Ichimura [3] introduced the discrimination cri-
terion of Otsu [12]. Kanatani [7] introduced model se-
lection and robust estimation to the Costeira-Kanade
algorithm and showed that his method, which he called
subspace separation, far outperforms the Costeira-
Kanade algorithm and Ichimura’s method.

1.2 Number of motions

In the subspace separation method of Kanatani
[7], the number of independent motions is assumed—
usually two (the background and one moving object).
It has been reported that estimating the number of mo-
tions is more difficult than segmentation itself [1, 2].

Gear [2] attempted a complicated statistical analy-
sis for estimating the number of motions and concluded
that individual points were likely to be judged as in-

dependently moving. This is natural because saying
that each point is moving independently (but coinci-
dentally in unison) is, as long as the judgment is based
on statistical likelihood alone, always a more likely in-
terpretation than saying that the motions of different
points are constrained

It follows that it is impossible to infer the number of
motions unless some criterion that favors a small num-
ber of motions is introduced. Costeira and Kanade [1]
dealt with the problem by introducing ad-hoc thresh-
olds, but no guiding principle exists for setting them.
In this paper, we show that the problem can be solved
by model selection without introducing any empirical
thresholds.

There is, however, a subtle problem underneath.
How can we “compare” different criteria? Usually, an
estimation method is regarded as better if the output
is closer to the “true value”. But what is the “true
value”?

1.3 What is the true number of motions?

Suppose six objects are moving in the scene in three
ways, say, objects 1 and 2 are moving rigidly as a whole,
and so are objects 3 and 4 and objects 5 and 6. What
is the correct answer for the number of motions? Ob-
viously, we expect it to be 3, but if we say that it is
6, what is wrong? After segmenting the points into 6
groups, we can compute their 3-D shapes and motions
by applying a structure-from-motion algorithm to each
group separately. We may find a posteriori that the
motion of one group is very similar to another, etc.,
concluding that there are three motions in total. This
3-D interpretation is correct. Should we assign penalty
to this “overestimation”?

By the same token, saying that the number of mo-
tions is 5 is also correct, and so are the answers 4 and
3. But the answer 2 is wrong. In other words, the
correct answers form a spectrum, the lower bound be-
ing 3 and the upper bound being the number of points
observed. The surest answer is the upper bound, but
our intuition is that the smaller the answer is, the bet-
ter it is unless it steps over the lower bound . In other
words, we want to minimize the overestimation, but
at the same time some “safety margin” is desired. We



must take this into consideration in comparing model
selection criteria.

1.4 A posteriori evaluation

Once the number m of motions is given, we can seg-
ment the points into m groups by subspace separation
[7], but the result may not always be correct. In this
paper, we also study the method for evaluating the
correctness of the segmentation a posteriori without
knowing the true answer. Again, model selection plays
an important role.

1.5 Organization of this paper

In Sec. 2, we show that the image motion of points
that belong to an object moving rigidly in the scene is
constrained to be in a four-dimensional subspace and
hence estimating the number of motions reduces to es-
timating the rank of points. In Sec. 3, we summarize
standard methods for computing the rank of points. In
Sec. 4, we compare different model selection criteria for
estimating the rank of a matrix. Sec. 5 describes the
standard F -test for testing the correctness of segmen-
tation. Sec. 6 describes the model selection procedure
for the same test. In Sec. 7, we show an example using
real images. Sec. 8 gives our conclusion.

2. Motion Subspaces

Suppose we track N rigidly moving feature points
over M images. Let (xκα, yκα) be the image coordi-
nates of the αth point in the κth frame. If we stack
the image coordinates over the M frames vertically into
a 2M -dimensional vector in the form

pα =
(

x1α y1α x2α y2α · · · yMα

)>
, (1)

the image motion of the αth point is represented by a
single point pα in a 2M -dimensional space.

We regard the XY Z camera coordinate system as
the world coordinate system with the Z-axis taken
along the optical axis. We fix an arbitrary object coor-
dinate system to the object and let tκ and {iκ, jκ, kκ}
be, respectively, its origin and orthonormal basis in the
κth frame. Let (aα, bα, cα) be the object coordinates
of the αth point. Its position in the κth frame with
respect to the world coordinate system is given by

rκα = tκ + aαiκ + bαjκ + cαkκ. (2)

If we assume orthographic projection, we have
(

xκα

yκα

)
= t̃κ + aαĩκ + bαj̃κ + cαk̃κ, (3)

where t̃κ, ĩκ, j̃κ, and k̃κ are the 2-dimensional vec-
tors obtained from tκ, iκ, jκ, and kκ, respectively, by
chopping the third components. If we stack the vec-
tors t̃κ, ĩκ, j̃κ, and k̃κ over the M frames vertically

into 2M -dimensional vectors m0, m1, m2, and m3,
respectively, the vector pα has the form

pα = m0 + aαm1 + bαm2 + cαm3. (4)

Thus, the N points {pα} belong to the 4-dimensional
subspace spanned by the vectors {m0, m1, m2, m3}.
This fact holds for all affine camera models including
weak perspective and paraperspective [13].

It follows that if there are m independent mo-
tions, the points {pα} are constrained to be in a 4m-
dimensional subspace of Rn (n = 2M). Hence, esti-
mating the number of motions reduces to estimating
the rank of a set of vectors, i.e., the dimension of the
subspace they span.

We also observe that discerning m independent mo-
tions requires 2m or more images. If we are observing
2-D rigid motions within the image plane, the vector
m3 in eq. (3) is identically 0. Hence, the rank of {pα}
is 3m for m independent motions; we need 1.5m or
more images for discerning them.

3. Rank Estimation

Mathematically, there are basically three ways for
computing the rank r of a set {pα} of N n-dimensional
vectors.

1. Define the n× n moment matrix M by

M =
N∑

α=1

pαp>α . (5)

Let λ1 ≥ · · · ≥ λn be its eigenvalues, and {u1, ...,
un} the corresponding orthonormal set of eigen-
vectors. The rank r equals the number of positive
eigenvalues, i.e., the rank of M .

2. Define the N ×N metric matrix G = (Gαβ) by

Gαβ = (pα, pβ). (6)

Throughout this paper, (a, b) denotes the inner
product of vectors a and b. Let λ1 ≥ · · · ≥ λN be
its eigenvalues, and {v1, ..., vN}, the correspond-
ing orthonormal set of eigenvectors. The rank r
equals the number of positive eigenvalue, i.e., the
rank of G.

3. Define the n×N observation matrix W by

W =
(

p1 · · · pN

)
. (7)

If n > N , let its singular value decomposition be

W = Un×Ndiag(σ1, σ2, ..., σN )V >
N×N , (8)

where Un×N and V N×N are, respectively, n×N
and N ×N matrices having orthonormal columns.
The symbol diag( · · · ) designates the diagonal ma-
trix with · · · as its diagonal elements in that order.
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If N ≥ n, let the singular value decomposition of
W> be

W> = V N×ndiag(σ1, σ2, ..., σn)U>
n×n, (9)

where V N×n and Un×n are, respectively, N × n
and n × n matrices having orthonormal columns.
In either case, the rank r equals the number of
positive singular values, i.e., the rank of W and
W>.

However, all these are in theory only : they can be
applied only when no noise exists in the data and the
computation can be done with infinite accuracy. In the
presence of noise and with finite computation accuracy,
all eigenvalues and singular values are nonzero in gen-
eral. Hence, we need to truncate small eigenvalues and
singular values, but it is difficult to set an appropriate
threshold.

4. Model Selection for Rank Estimation

A naive idea for estimating the rank of a set {pα} of
N n-dimensional vectors is to fit subspaces of different
dimensions to them and to adopt the dimension of the
subspace having the smallest residual , i.e., the sum of
the square distances of the points {pα} in Rn from the
fitted subspace. This does not work, however, because
the residual becomes smaller as we fit a higher dimen-
sional subspace. In particular, the residual is zero if
we fit the n-dimensional subspace (= the entire space).
Also, the residual becomes smaller if the subspace to
fit has more parameters to adjust.

Thus, we need to balance the residual against the
dimension and the degree of freedom of the subspace.
Typical criteria that take this into account are the ge-
ometric AIC [5, 6] and the geometric MDL [9, 11].

4.1 Geometric AIC and geometric MDL

We assume that each image coordinate of the feature
points undergoes independent Gaussian noise of mean 0
and a constant variance ε2 at each frame. The degree of
freedom of an r-dimensional subspace inRn is1 r(n−r).
Hence, the geometric AIC and the geometric MDL are
respectively given as follows (see [8] for the details):

G-AIC = Ĵr+2r(m+n−r)ε2,

G-MDL = Ĵr−r(m+n−r)ε2 log
( ε

L

)2

. (10)

Here, L is a reference length for the data. We can use
for it an arbitrary value whose order is approximately
the same as the data, say the image size; the model
selection result is not much affected as long as it has
the same order of magnitude.

1An r-dimensional subspace of Rn is specified by r points
in Rn, but they can move freely within the subspace. So, the
degree of freedom is rn− r2.

Let ν = min(n,m). The residual Ĵr is given by

Ĵr =
ν∑

i=r+1

σ2
i , (11)

where {σi} are the singular values, in descending order,
of the observation matrix W . Evaluating eqs. (10) for
r = 1, 2, ..., we choose the value r that minimizes them.

If the noise variance ε2 is not known, we need to
estimate it. If an upper bound rmax on the rank r is
known, we have the following estimate [5]:

ε̂2 =
Ĵrmax

(n− rmax)(N − rmax)
. (12)

This can be intuitively understood as follows. If we fit
an rmax-dimensional subspace, the codimension (= the
dimension of the orthogonal directions to it) is n−rmax.
Hence, the sum of square distances Ĵrmax of the N
points from it should have expectation (n− rmax)Nε2.
However, the subspace is fitted so as to minimize
Ĵrmax by adjusting its rmax(n − rmax) degrees of free-
dom. Hence, the expectation of Ĵrmax reduces to (n −
rmax)Nε2−rmax(n−rmax)ε2 = (n−rmax)(N−rmax)ε2.

4.2 Otsu-Ichimura criterion

The geometric AIC and the geometric MDL ef-
fectively truncate the eigenvalues and singular values
without using any threshold. A well known automatic
thresholding scheme is the discrimination criterion of
Otsu [12], which Ichimura [3] used for thresholding
matrix elements for motion segmentation using the
Costeira-Kanade algorithm. If this is applied to thresh-
old the singular values {σi} of the observation matrix
W given by eq. (7) or (8), we obtain the following cri-
terion, which we call the Otsu-Ichimura criterion:

OIC =
r(ν − r)(µ1 − µ2)2∑r

i=1(σi − µ1)2 +
∑ν

i=r+1(σi − µ2)2
. (13)

Here, we define

µ1 =
1
r

r∑

i=1

σi, µ2 =
1

ν − r

ν∑

i=1+r

σi. (14)

The number r that maximizes eq. (13) is chosen as the
number of the nonzero singular values.

4.3 Rank estimation experiment

We defined a 10 × 20 matrix with random ele-
ments uniformly generated over [−1, 1]. We com-
puted its singular value decomposition in the form
V diag(σ1, ..., σ10)U>, the singular values σ1, ..., σ5 be-
ing, respectively, 3.81, 3.58, 3.09, 2.98, 2.75. Then, we
defined the matrix

A = V diag(σ1, ..., σ5, γσ5, 0, ..., 0)U>. (15)
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Figure 1: Average estimated rank. The solid lines are for
the geometric AIC; the broken lines are for the geometric
MDL; the dotted lines are for the OIC.

We added Gaussian noise of mean 0 and standard de-
viation 0.05 to each element of A independently and
estimated its rank with rmax = 6. Fig. 1 plots the aver-
age number of the rank over 200 trials for each γ. We
used the reference length L = 1.

The geometric AIC predicts the rank to be 6 with
some probability even when the true rank is 5 (γ = 0),
and it mostly predicts the rank to be 6 even for a small
value of γ. The geometric MDL almost always guesses
the rank to be 5 when the true rank is 5 (γ = 0), but
it keeps guessing the rank to be 5 for a wide range of
γ for which the true rank is 6. The OIC is likely to
threshold smaller singular values to zero and predict
the rank to be 5 up to a fairly large value of γ.

Thus, the geometric AIC tends to be faithful to
noise and overestimate the rank, while the geometric
MDL tends to ignore noise and underestimate the rank.
Their contrasting behavior like this can be seen in other
applications, too [9, 11].

In doing our experiment, we have found that if we
use a large upper bound for rmax, the residual Ĵrmax in
eq. (12) becomes so small that the lack of significance
digits causes underestimation of ε̂2, often regarding it
as zero. Hence, the upper bound rmax should be taken
to be as small as possible.

4.4 Motion number estimation experiment

Fig. 2 shows five simulated images of 20 background
points, 9 object points, and another 9 object points,
each independently moving rigidly within the image
plane. The object points are linked by edges for the
ease of visulalization. The image size is supposed to
be 512× 512. We added Gaussian noise of mean 0 and
standard deviation ε to the coordinates of the 38 points
independently and estimated the number of indepen-
dent motions.

Fig. 3 plots the average number of detected motions
over 500 trials for each ε with the upper bound mmax

= 4. We used the reference length L = 600. The
geometric AIC (solid line) tends to overestimate the
number of motions but is stable. The geometric MDL
(broken line) estimates the correct number of motions
when the noise is very small but tends to underestimate

it as the noise increases. The OIC (dotted lines) always
estimates the number of motions to be 1.

The irregular behavior at the left end of the plot is
due to the lack of significant digits for computing too
small residuals.

5. F Test for Subspace Separation

Even if a segmentation technique is proved to have
high performance by simulations, there is no guarantee
that a particular segmentation is correct. So, we need
some means for an a posteriori evaluation.

Suppose the N points {pα} that represent the fea-
ture motion history are segmented into m groups hav-
ing Ni points, i = 1, ..., m. Let Ĵi be the residual of
fitting a d-dimensional subspace Li to the ith group.
The subspace Li has codimension n − d and d(n − d)
degrees of freedom. Hence, Ĵi/ε2 should be subject to
a χ2 distribution with

φi = (n− d)Ni − d(n− d) = (n− d)(Ni − d) (16)

degrees of freedom [5].
If we let Ĵt be the residual of fitting an md-

dimensional subspace Lt to the entire N points {pα},
Ĵt/ε2 should be subject to a χ2 distribution with

φt =
m∑

i=1

(n−md)Ni−md(n−md) = (n−md)(N−md)

(17)
degrees of freedom irrespective of the correctness of the
segmentation.

The residual Ĵi is the sum of square distances of the
points of the ith group from the subspace Li, which
is the sum of their distances from the subspace Lt and
the distances of their projections onto Lt from the sub-
space Li (Fig. 4). Let us call the former the external
distances, and the latter the internal distances. The
sum of the square internal distances for all the points
is

∑m
i=1 Ĵi−Ĵt; the sum of the square external distances

is Ĵt.
If this segmentation is correct (the null hypothesis),

(
∑m

i=1 Ĵi − Ĵt)/ε2 should also be subject to a χ2 dis-
tribution. The noise that contributes to the internal
distances and the noise that contributes to the exter-
nal distances are orthogonal to each other and hence
independent. So, (

∑m
i=1 Ĵi − Ĵt)/ε2 has

m∑

i=1

φi − φt = (m− 1)d(N −md) (18)

degrees of freedom [5]. It follows that

F =
(
∑m

i=1 Ĵi − Ĵt)/(m− 1)d(N −md)

Ĵt/(n−md)(N −md)
(19)
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Figure 2: Points moving two-dimensionally.
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Figure 3: Average estimate number of motions. The solid
lines are for the geometric AIC; the broken lines are for the
geometric MDL; the dotted lines are for the OIC.

should be subject to an F distribution with (m −
1)d(N − md) and (n − md)(N − md) degrees of free-
dom. If this segmentation is not correct (the alternative
hypothesis), the internal distances will increase on av-
erage while the external distances are not affected. It
follows that if

F
(m−1)d(N−md)
(n−md)(N−md)(α) < F, (20)

this segmentation is rejected with significance level α,
where F

(m−1)d(N−md)
(n−md)(N−md)(α) is the upper α% percentail of

the F distribution with (m − 1)d(N − md) and (n −
md)(N −md) degrees of freedom.

6. Model Selection for Segmentation

The result of an F test depends on the significance
level, which we can arbitrarily set. The use of the geo-
metric AIC and the geometric MDL can dispense with
any thresholds.

The geometric AIC and the geometric MDL for the
model that the segmentation is correct are, respec-
tively,

∑m
i=1 G-AICi and

∑m
i=1 G-MDLi, where G-AICi

and G-MDLi are the the geometric AIC and the geo-
metric MDL of the ith group given as follows:

G-AICi = Ĵi+2
(
dNi+d(n−d)

)
ε2,

G-MDLi = Ĵi−
(
dNi+d(n−d)

)
ε2 log

( ε

L

)2

. (21)

The geometric AIC and the geometric MDL for the
model that the points {pα} can be somehow segmented

i
-

Ĵi Ĵt

Ĵi Ĵt

Figure 4: The residual of subspace fitting.

into m motions are given as follows:

G-AICt = Ĵt+2
(
mdNi+md(n−md)

)
ε2,

G-MDLt = Ĵt−
(
mdNi+md(n−md)

)
ε2 log

( ε

L

)2

. (22)

Since the latter model is correct irrespective of the seg-
mentation result, we can estimate the square noise level
ε2 from it as follows:

ε̂2 =
Ĵt

(n−md)(N −md)
. (23)

The condition that the segmentation is not correct
is given by G-AICt <

∑m
i=1 G-AICi or G-MDLt <∑m

i=1 G-MDLi, which are rewritten, respectively, as

2 < F, − log
( ε

L

)2

< F, (24)

where F is the F statistic given by eq. (19). Thus,
model selection using the geometric AIC and the ge-
ometric MDL has the same form as the standard
F test, the only difference being that the threshold
F

(m−1)d(N−md)
(n−md)(N−md)(α) is given automatically without spec-

ifying any significance level . When the noise is small,
− log(ε/L)2 is usually larger than 2. This implies that
the geometric AIC is more conservative than the geo-
metric MDL, which is more confident of the particular
result.

7. Real image experiment

Fig. 5 shows a sequence of perspectively projected
images (above) and manually selected feature points
from them (below). Three objects are fixed in the
scene, moving rigidly with the scene, while one ob-
ject is moving relative to the scene. The image size
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Figure 5: Real images of moving objects (above) and the selected feature points (below).

is 512× 768 pixels. Letting2 mmax = 2, we found that
the number of independent motions was 2 according to
both the geometric AIC and the geometric MDL but
was 1 according to the OIC. By subspace separation
[7] with m = 2, we obtained a correct segmentation,
detecting the independently moving object correctly.

The five images shown here were decimated from a
motion sequence. Adding five intermediate images, we
estimated the number of motions from the ten images
with mmax = 3, 4, using the geometric AIC and the
geometric MDL. In all cases, the computed number of
motions was m = 3. However, the OIC always esti-
mated the number of motions to be m = 1.

Applying subspace separation with m = 3, we de-
tected the independently moving object correctly. In
this sense, the estimation by the geometric AIC and
the geometric MDL is correct, while the estimation by
the OIC cannot be correct (see Sec. 1.3).

We then evaluated the reliability of the segmenta-
tion. The F statistic of eq. (19) was computed to be F
= 0.893. The upper 5% percentile is 1.346 in this case,
so the correctness of the segmentation is not rejected
with significance level 5%. The geometric AIC also
selects this segmentation. Using the reference length
L = 600, we have − log(ε/L)2 = 13.5, so the geomet-
ric MDL also selects this segmentation, but it allows a
much wider margin than the geometric AIC.

8. Concluding Remarks

In this paper, we studied the problem of estimating
the number of independent motions for segmentation
based on feature tracking. We elucidated the mathe-
matical structure of the problem and presented an esti-
mation method using model selection by the geometric
AIC, the geometric MDL, and the OIC.

From our experiments, we conclude that the geo-
metric AIC sometimes overestimates the number of
motions but this does not affect the correctness of the
segmentation, while the geometric MDL sometimes un-
derestimates the number of motions. The OIC always
returns an incorrect answer. So, the geometric AIC
seems to be a practical choice.

2In order to let mmax = 3, we need seven or more images (see
Sec. 2).

Then, we presented techniques for evaluating the re-
liability of segmentation a posteriori , using the stan-
dard F test and model selection by the geometric AIC
and the geometric MDL. The use of model selection
has the advantage that no significance level needs to
be assigned. Again, the geometric AIC seems to be a
feasible choice.
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