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ABSTRACT
In order to reconstruct 3-D shape from two uncalibrated views,

one needs to resolve two problems: (i) the computed focal lengths
can be imaginary; (ii) the computation fails for fixated images. We
present a remedy for these by subsampling feature points and fix-
ing the focal length. We first summarize theoretical backgrounds
and then do simulations, which reveal a rather surprising fact that
when the focal length is actually fixed, not using that knowledge
yields better results for non-fixated images. We propose a hybrid
method switching the computation by judging whether or not the
images are fixated. Doing simulations and real image experiments,
we demonstrate the effectiveness of our method.

1. INTRODUCTION

Many techniques have been proposed for reconstructing
3-D shape from images [6]. They are classified into two
types: using separate images and using a continuous video
stream. Among the former, the two-view method using two
uncalibrated images [5, 13] is the simplest. Using three or
more images may improve the accuracy, but a large amount
of computation is necessary for matching multiple images
and estimating the camera positions and their internal pa-
rameters for all the frames [16]. In contrast, the two-view
method merely requires one to match feature points between
the two images and compute the fundamental matrix. To-
day, effective algorithms are available for robustly matching
two images [14, 18] and for accurately computing the fun-
damental matrix [3, 10, 15], making the two-view method
more and more practical for real applications.

However, this method has a serious drawback: since all
the computations are based on the feature point matches
over two images, the result is very sensitive to the qual-
ity of the matches. In particular, the focal lengths for the
two images are often computed to be imaginary [5] due to
matching inaccuracies; wrong points may be matched, or
the matched points may not exactly correspond to identical
points in the scene.

On top of that, the computation fails if the two images
are such that a point in the scene is fixated at their principal
points [2, 12]; we call such an image pairfixated images. In
order to do 3-D reconstruction, therefore, one must avert the
camera from the object in a different way for each image.
This is a big obstacle in practice, since for humans it is most
natural to take images of something by fixating it.

This paper analyzes these problems in detail and presents
a remedy. First, we avoid imaginary focal lengths by sub-
sampling feature points. To cope with fixated images, we
fix the focal length for the two images. It is known that 3-D
reconstruction is possible even from fixated images if the
two focal lengths are the same [2, 12]. This is not a serious
constraint, since the focus and zooming are usually fixed in
the course of taking pictures for 3-D reconstruction.

However, we reveal a rather surprising fact in this pa-
per: when the focal length is actually fixed,not using that
knowledge yields better results if the images are not fixated.
Exploiting this fact, we propose a hybrid method switching
the computation by judging whether or not the images are
fixated. Doing simulations and real image experiments, we
demonstrate the effectiveness of our method.

2. GEOMETRY OF FIXATED IMAGES

We first summarize our assumptions, terminologies, and no-
tations. We assume that the camera skew angle is0◦ and the
aspect ratio is 1. Most digital cameras today seem to satisfy
these conditions. If not, appropriate geometric correction is
not difficult.

Heyden andÅström [7] showed that if such a camera is
used, the 3-D reconstruction is possible without knowing
the focal length and the principal point location, but gener-
ally we need three or more images. Hartley [4] showed that
two images are sufficient if the principal point is given. We
assume that it is known (typically at the center of the image
frame) and take it as the image coordinate origin. However,
the focal length is assumed to be unknown.

If a point (x, y) in the first image corresponds to a
point(x′, y′) in the second, the followingepipolar equation
should be satisfied [6]:

(x, Fx′) = 0. (1)

Throughout this paper, we denote the inner product of vec-
torsa andb by (a, b). We define 3-D vectors
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
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Fig. 1. Two images are fixated if the optical axes intersect.

wheref0 (the unit is pixels) is a scale factor1 for stabilizing
numerical computation. The matrixF in eq. (1) is of rank
2 and called thefundamental matrix[6].

We say that two images arefixatedif the optical axes of
the cameras that took these images intersect in the scene
(Fig. 1). It follows that the origin of one image corresponds
to the origin of the other. In the vector representation of
eqs. (2), the origin is represented byk = (0, 0, 1)>. So, the
condition for fixation is

(k,Fk) = 0, (3)

or equivalentlyF33 = 0.

3. VARIABLE FOCAL LENGTH METHOD

We next summarize the method for computing the focal
lengthsf andf ′ of the two cameras from the fundamental
matrixF [1, 12]. First, we change the variables as follows:

ξ =
(f0

f

)2

− 1, η =
(f0

f ′

)2

− 1. (4)

Define the following fourth-order polynomialK(ξ, η):

K(ξ, η) = (k, Fk)4ξ2η2 + 2(k,Fk)2‖F>k‖2ξ2η

+2(k,Fk)2‖Fk‖2ξη2 + ‖F>k‖4ξ2

+ ‖Fk‖4η2 + 4(k,Fk)(k,FF>Fk)ξη

+2‖FF>k‖2ξ + 2‖F>Fk‖2η + ‖FF>‖2

− 1
2

(
(k,Fk)2ξη + ‖F>k‖2ξ

+ ‖Fk‖2η + ‖F ‖2
)2

. (5)

The unknownsξ andη are determined from the following
condition [12]:

K =
∂K

∂ξ
=

∂K

∂η
= 0. (6)

This appears to be overspecification, providing three equa-
tions for two unknowns. Under close scrutiny, however, it
turns out that the three equations are algebraically depen-
dent, only two among them being independent [12]. Geo-
metrically, the functionK(ξ, η) defines a locally nonneg-
ative concave surface that is tangent to theξη-plane with
minimum 0 (Fig. 2).

1We used the valuef = 600 in our experiment, but no practical differ-
ence should result by lettingf0 = 1.
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Fig. 2. The focal lengthsf andf ′ are determined by the tangent
point of the surfaceK(ξ, η) to the ξη-plane, at whichK(ξ, η)
takes its minimum 0.

SinceK(ξ, η) is a fourth degree polynomial, its mini-
mum can be easily computed by Newton iterations. Also,
many analytical formulae are known for the solution [12].
Among them, the simplest is the following formula of
Kanatani and Matsunaga [12] obtained by modifying Boug-
noux’s formula [1]:

ξ =
‖Fk‖2 − (k, FF>Fk)‖e′ × k‖2/(k, Fk)

‖e′ × k‖2‖F>k‖2 − (k,Fk)2
,

η =
‖F>k‖2 − (k, FF>Fk)‖e× k‖2/(k, Fk)

‖e× k‖2‖Fk‖2 − (k, Fk)2
. (7)

Here, e and e′ are, respectively, the unit eigenvectors of
FF> and F>F for eigenvalue2 0; they represent the
epipoles[6], pointing from the respective centers of pro-
jection to the centers of projection of the other images.

From eqs. (7), it is immediately seen that the computation
fails for fixated images, for which(k,Fk) vanishes, caus-
ing zero division. Otherwise, the focal lengthsf andf ′ are
given from eqs. (4) as follows:

f =
f0√
1 + ξ

, f ′ =
f0√
1 + η

. (8)

However, if the computed fundamental matrixF is not ac-
curate enough, the inside of one or both of the square roots
can be negative, resulting in imaginary focal lengths [5].

4. FIXED FOCAL LENGTH METHOD

We now describe our scheme for computing the focal
lengthsf andf ′ by using the knowledge that they are equal.
If we let ξ = η in eq. (5), we obtain the following fourth-
degree polynomialK(ξ):

K(ξ) = a1ξ
4 + a2ξ

3 + a3ξ
2 + a4ξ + a5, (9)

a1 =
1
2
(k, Fk)4,

a2 = (k, Fk)2(‖F>k‖2 + ‖Fk‖2),
a3 =

1
2
(‖F>k‖2 − ‖Fk‖2)2

2Even in the presence of noise, the fundamental matrixF is computed
to bedetF = 0, soFF> andF>F both have eigenvalue 0.
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Fig. 3. The focal length can be determined by the position at
which the curveK(ξ) takes its minimum 0. However, the mini-
mum is generally positive.

+(k,Fk)(4(k, FF>Fk)− (k, Fk)‖F ‖2),
a4 = 2(‖FF>k‖2 + ‖F>Fk‖2)

−(‖F>k‖2 + ‖Fk‖2)‖F ‖2,
a5 = ‖FF>‖2 − 1

2
‖F ‖4. (10)

Eq. (6) reduces to

K(ξ) = K ′(ξ) = 0. (11)

The solution is analytically obtained as follows [12]:

• If a1 6= 0,

– if 3a2
2−8a1a3 6= 0, compute the two solutions of

the quadratic equation

(3a2
2 − 8a1a3)x2 + 2(a2a3 − 6a1a4)x

+(a2a4 − 16a1a5) = 0. (12)

Let ξ be the one for which|K(x)| is smaller;

– if 3a2
2 − 8a1a3 = 0, let

ξ = − a2a4 − 16a1a5

2(a2a3 − 6a1a4)
. (13)

• If a1 = 0 anda2 6= 0, let

ξ = − a3a4 − 9a2a5

2(a2
3 − 3a2a4)

. (14)

• If a1 = a2 = 0 anda3 6= 0, let

ξ = − a4

2a3
. (15)

• If a1 = a2 = a3 = 0, no solution exists.

However, this analysis is based on the assumption that
the fundamental matrixF is exact. Eq. (11) gives two con-
straints on one variableξ. If F is computed from noisy data,
the two constraints are in general inconsistent.

Geometrically, eq. (11) states that the solution is given by
the position on theξ-axis at which the curveK(ξ) takes its
minimum 0. However, the minimum is in general positive
(Fig. 3), becauseK(ξ) is the cross section of the surface

K(ξ, η) in Fig. 2 with a plane perpendicular to theξη-plane
passing through the lineξ = η. It follows that the minimum
of K(ξ) is 0 when and only when the minimum ofK(ξ, η)
is on the lineξ = η. This condition is generally violated if
F is not exact.

Ueshiba and Tomita [17] analytically obtained a unique
solution by regarding the two principal points as extra un-
knowns, assuming that the images are fixated. However,
the camera must be rotated around the optical axis for the
solution to exist. Also, their method cannot be applied to
non-fixated images.

In order to avoid this difficulty, we compute the valueξ
at which the curveK(ξ) takes its minimum, i.e., we solve
K ′(ξ) = 0. SinceK ′(ξ) is a cubic polynomial, the solution
can be analytically obtained in theory. However, the com-
putation branches depending on whethera1 ∼ a3 are zero
or not, and there is no good way to set a suitable threshold
for that judgment.

This is resolved by numerically computing the solution
of K ′(ξ) = 0 by Newton iterations in the form

ξ ← ξ − K ′(ξ)
K ′′(ξ)

. (16)

We use eq. (15) as the initial value. This numerical scheme
completely avoids the zero/non-zero judgment of the coef-
ficients; usually the solution is obtained after two or three
iterations. From the computedξ, the focal lengthsf andf ′

are given by eqs. (8), namely,

f = f ′ =
f0√
1 + ξ

. (17)

In this case, too, the solution can be imaginary.

5. VARIABLE VS. FIXED FOCAL LENGTHS

The focal lengths can be imaginary in the presence of noise
whether we use the variable focal length method or the fixed
focal length method. But which is better if the ground truth
is f = f ′? We examined this by simulation.

Fig. 4 shows two simulated images of a cylindrical grid
surface. The image size is supposedly600 × 800 pixels;
the focal lengths arēf = f̄ ′ = 1000 (pixels). The center of

Fig. 4. Simulated images of a cylindrical grid surface (600×800
pixels). The focal lengths arēf = f̄ ′ = 1000 (pixels). The center
of the second frame is displaced byd (= 20 for the images shown
here) pixels from its fixated position.
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Fig. 5. The horizontal axis is for the noise standard deviationσ (pixels). The vertical axis shows the percentage of the occurrences of
imaginary focal lengths. The solid and dashed lines are for the variable and fixed focal length methods, respectively. The valued (pixels)
measures the deviation from fixation.

the second frame is displaced from its fixated position byd
pixels, which we varied over 0≤ d ≤ 30 (Fig. 4 shows the
images ford = 20).

We added Gaussian noise of mean 0 and standard devia-
tion σ (pixels) to thex andy coordinates of the 117 vertices
independently. In order to simulate realistic situations, we
randomly chose 10% of the vertices and increased the noise
magnitude five times there. From these noisy vertices, we
computed the fundamental matrix; we used an algorithm
calledrenormalization3 [10, 13], which is known to be sta-
tistically optimal [8].

Fig. 5 plots the percentage of the occurrences of imag-
inary focal lengths over 2000 trials for eachσ. The solid
and dashed lines are for the variable and fixed focal length
methods, respectively. Atd = 0 (fixated images), the values
for the variable focal length method are not plotted, because
they are out of the range; they are about 60% for allσ.

As d increases, the percentage for the variable focal
length method drops, while it stays almost the same for the
fixed focal length method. As a result, the relative order is
reversed neard = 20.

6. ACCURACY OF THE FOCAL LENGTHS

In order to see the comparative accuracy of the focal lengths
computed by the two methods, we need to avoid the occur-
rences of imaginary focal lengths.

To this end, Hartley and Silpa-Anan [5] used the knowl-
edge about the approximate focal length and its minimum
value: they optimized the fundamental matrix and the prin-
cipal points so that the computed focal lengths are close to
each other, close to their estimates, and close to their min-
imum values. The result depends on the estimates we use
and the measure of closeness used in the objective function.

Here, we adopt subsampling of feature points. If the com-
puted focal lengths are not both real, we randomly remove
one pair of corresponding feature points and recompute the
fundamental matrix. If we fail to obtain real focal lengths
for N/10 consecutive repetitions (N is the number of cor-
respondences), we randomly remove two pairs and do the
same. If this fails, we go on removing more pairs until real
focal lengths are obtained.

3The C++ source code is available at: http://www.img.tutkie.tut.ac.jp

Many other strategies can be conceivable. For example,
we may prefer those feature points whose distances from
their epipolar lines predicted by the fundamental matrixF
in the preceding step are small. We tried such methods in
many forms, but we were unable to find any method better
than the above straightforward one.

We evaluated the accuracy of the computed focal lengths
by the root-mean-square error

E =

√√√√ 1
2000

1000∑
a=1

(
(fa − f̄)2 + (f ′a − f̄ ′)2

)
(18)

over 1000 trials, wherefa andf ′a are the computed values
in theath trial, andf̄ andf̄ ′ are their true values. We com-
puted this for differentσ andd, using the simulated images
of Fig 4. Fig. 6 shows the results corresponding to Fig. 5.

From this, we see that the focal lengths computed by the
variable focal length method from fixated images (d = 0)
are meaningless, while the fixed focal length method can
successfully compute fairly accurate values. However, the
variable focal length method gradually gains in accuracy as
d increases, while the fixed focal length method has almost
the same accuracy. As a result, the relative accuracy is re-
versed aroundd = 20.

The low accuracy of the variable focal length method for
a smalld may be partly due to the numerical instability of
computing eqs. (7) and partly due to the high percentage
of imaginary focal lengths; subsampling of feature points
generally degrades the accuracy.

7. HYBRID METHOD

From the above results, we can expect high accuracy if
we use the fixed focal length method when the images are
nearly fixated and the variable focal length method when
they are not. Here, we adopt the following strategy.

The origins of the first and second images define their
epipolar lines

F13x + F23y + F33f0 = 0, F31x
′ + F32y

′ + F33f0 = 0
(19)

in the other images. If the images are fixated, the origins
should be on these epipolar lines. So, the degree of fixation
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Fig. 6. The horizontal axis is for the noise standard deviationσ (pixels). The vertical axis shows the root-mean-square error in the focal
lengths over 1000 trials. The solid and dashed lines are for the variable and fixed focal length methods, respectively. The valued (pixels)
measures the deviation from fixation.

can be measured by the distancesh andh′ (pixels) of these
lines from the origins, i.e.,

h =
|F33|f0√
F 2

13 + F 2
23

, h′ =
|F33|f0√
F 2

31 + F 2
32

. (20)

We judge that the images are fixated ifh ≤ hc andh′ ≤ hc

for a thresholdhc (pixels). This judgment is independent of
the scale ofF or the average magnitude of the error inF .

Many other switching schemes are conceivable. For ex-
ample, we may conduct statistical hypothesis testing based
on the covariance tensor of the computed fundamental ma-
trix, which can be obtained as a byproduct of the renormal-
ization computation [10, 13], or introduce model selection
using the geometric AIC or the geometric MDL [8, 9, 11].
However, it is very difficult to compute these criteria pre-
cisely. If we introduce approximations or use estimates, the
result is greatly influenced by the accuracy of the approx-
imations and estimates we use. After trying many alter-
natives, we have concluded that the above simple criterion
works the best.

In our experiments, we used the thresholdhc = 20 (pix-
els), partly because the relative accuracy of the variable and
fixed focal length methods is reversed aroundd = 20 (pix-
els) and partly because the deviation of about 20 pixels is
inevitable if humans try to take fixated images manually4.

Fig. 7 is the simulation result using the data of Fig. 4.
We incrementedd from 0 (fixated images) to 30 forσ = 0.3
(pixels). The vertical axis is for the root-mean-square error
E (pixels) in eq. (17). The solid and dashed lines are for the
variable and fixed focal length methods, respectively; dotted
line is for the hybrid method.

We can see that the hybrid method adopts the fixed focal
length method whend is small and switches to the variable
focal length method whend is large. The transition occurs
around the valued = 20, to which the threshold forh and
h′ is set. As a result, the method with higher accuracy is
automatically chosen irrespective of the valued.

4This value should be adjusted according to the image size, the image
resolution, and the focal length. According to our experiments, the critical
value corresponds to approximately 0.02 radians measured in the angle of
view in all cases.
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Fig. 7. The horizontal axis is for the deviationd (pixels) from
fixation. The vertical axis shows the root-mean square error in
the computed focal lengths for the noise standard deviationσ =
0.5 (pixels). The solid and dashed lines are for the variable and
fixed focal length methods, respectively; the dotted lines are for
the hybrid method.

8. REAL IMAGE EXAMPLES

In Fig. 8, the image pair (a) and (b) is fixated, while the
image (c) is taken by slightly averting the optical axis. We
chose 39 corresponding feature points as marked in the im-
ages. Algorithms for automatically detecting feature points
and matching them are available [14], but mismatches are
inevitable to some extent. Since our aim here is not to study
the matching performance, we chose the feature points by
hand.

We tested if the image pair (a) and (b) and the image pair
(a) and (c) are fixated. The computed values ofh andh′ are
listed in Table 1; the image pair (a) and (b) is judged to be
fixated, while the image pair (a) and (c) is not.

Table 1 also lists the focal lengthsf andf ′ computed us-
ing the two method (“variable” and “fixed” denote the vari-
able and fixed focal length methods, respectively). Accord-
ing to our calibration using a reference pattern, the true fo-
cal length isf = f ′ ≈ 1000 (pixels), from which the values
the variable focal length method computes from the fixated
image pair (a) and (b) are wide apart, while the fixed focal
length method estimates a reasonable value. For the non-
fixated image pair (a) and (c), both methods estimate rea-
sonable values, but the variable focal length method gives
a slightly better estimate, in agreement with the simulation
results.
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Fig. 8. Input images and selected feature points. The image pair (a) and (b) is fixated, while the image (c) is taken by slightly averting the
optical axis.

Table 1. Fixation test and focal length estimation for the image
pair (a) and (b) and for the image pair (a) and (c) of Fig. 8. The
unit is pixels.

fixation test variable fixed
h h′ f f ′ f = f ′

(a), (b) 1.03 1.03 436 443 811
(a), (c) 54.22 54.22 929 906 855

9. CONCLUDING REMARKS

In this paper, we have studied the occurrences of imaginary
focal lengths and the computational failure for fixated im-
ages that arise in reconstructing 3-D shape from two uncal-
ibrated views. We have presented a remedy for these by
subsampling feature points and fixing the focal length. We
first summarized theoretical backgrounds and then did sim-
ulations, which revealed a rather surprising fact that when
the focal length is actually fixed, not using that knowl-
edge yields better results for non-fixated images. We pro-
posed a hybrid method switching the computation by judg-
ing whether or not the images are fixated. Doing simula-
tions and real image experiments, we have demonstrated the
effectiveness of our method.
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