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ABSTRACT

We present a new method for detecting point matches between
two images. While existing methods propagate local smoothness
by iterations, our method imposes non-local constraints that should
be approximately satisfied across the image. We define the “confi-
dence” of such “soft constraints” to all potential matches. The con-
fidence is progressively updated by “mean-field approximation”.
Finally, the “hard” epipolar constraint is imposed by RANSAC.
Using real images, we demonstrate that our method is robust to
camera rotations and zooming changes.

1. INTRODUCTION

Establishing point correspondences over multiple images is
the first step of many computer vision applications. Two
approaches exist for this purpose: tracking correspondences
over successive frames, and direct matching between sepa-
rate frames. This paper focuses on the latter.

The basic principle is local correlation measurement. Ex-
tracting feature points in the first and second images sepa-
rately using a corner detector [3, 5, 17, 19, 20, 21], we mea-
sure the correlation between the neighborhoods of the two
points for each candidate pair and match those that have a
high correlation. This works very well if one image is a
translated copy of the other. For images taken from differ-
ent positions, however, the corresponding parts in the im-
ages may be locally deformed. In particular, the correla-
tion significantly diminishes if camera rotations or zooming
changes take place.

It follows that additional constraints are necessary. If the
scene is a planar surface or in the distance, the two images
are related by ahomography[6]. This strong constraint can
be combined with voting techniques such as LMedS [18]
and RANSAC [4] for robust image matching [7, 10, 11].

For a general scene, the only available constraint is the
epipolar equation[6], and various types of voting schemes
based on it have been proposed [1, 6, 22, 23, 25]. However,
the epipolar equation is a very weak constraint, admitting
many unnatural and inconsistent matches.

To resolve this, some global consistency condition that
favors “natural” matches is necessary. A typical approach is
to define a local similarity measure and search for a global
match that maximizes the total similarity. Since the solu-

tion is a permutation matrix with at most 1 in each row and
column and 0 elsewhere, this is a very difficult integer pro-
gramming task.

In order to alleviate this, many approximation schemes
have been proposed including replacing the permutation
matrix by a real matrix [13, 14, 24], tensor voting [12],
combining the distant transform with hierarchical search
[15], relaxation of graph labels [25], multiresolution ap-
proaches [2], and graph partition algorithms [16]. Still, a
large amount of computations is necessary. Also, because
local similarity is iteratively propagated, we cannot impose
global conditions on spatially apart matches directly.

In this paper, we present an algorithm that does not in-
volve such iterative propagation. Instead, global consis-
tency is imposed on all potential matches directly. We re-
quire correct matches to be spatially smooth, assuming that
the scene is more or less planar or in the distance.

The main difficulty is how to deal with requirements that
should be satisfied “approximately”. For example, if two
points have low image correlations, we cannot deny the
possibility that they may match. Similarly, non-smooth or
seemingly inconsistent matches can be correct. We say such
violable constraints aresoft while inviolable constraints
such as the epipolar equation arehard.

Our strategy is to define toall potential matchescon-
fidence valuesthat measure the degree of satisfaction of
the constraints. Then, we select high confidence matches
and estimate from them the global properties, from which
the confidence values of all potential matches are updated.
This scheme resembles themean-field approximationused
in physics. Finally, the hard epipolar constraint is strictly
imposed by RANSAC. Using real images, we demonstrate
that our method is robust to camera rotations and zooming
changes.

2. TEMPLATE MATCHING

We measure the local correlations between pointsp andq
by theresidual(sum of squares)

J(p, q) =
∑

(i,j)∈N
|Tp(i, j)− Tq(i, j)|2, (1)



whereTp(i, j) andTq(i, j) are the intensity values of the
templates defined by cutting out anw × w pixel regionN
centered onp andq, respectively1. If we normalize them to∑

(i,j)∈N Tp(i, j)2 = 1 and
∑

(i,j)∈N Tq(i, j)2 = 1, eq. (1)
is equivalent to the use of thenormalized correlation.

We extractN points p1, ..., pN in the first image and
M points q1, ..., qM in the second, using a corner detec-
tor. Then, we compute the residuals{J(pα, qβ)}, α = 1, ...,
N , β = 1, ...,M , for all theirNM combinations and search
the N × M table of {J(pα, qβ)} for the minimum value
J(pα∗ , qβ∗), establishing the match between pointspα∗ and
qβ∗ . Then, we remove from the table the column and row
that contain the valueJ(pα∗ , qβ∗) and do the same proce-
dure to the resulting(N − 1) × (N − 1) table. Repeating
this, we end up withL = min(N, M) matches. We call this
uniqueness enforcementwith respect to the residualJ .

However, this procedure cannot be done directly, since
the selected pairs may not be all correct while some of the
discarded pairs may be correct. In order to take all potential
matches into consideration, we introduce confidence values
to all pairs.

3. CONFIDENCE OF LOCAL CORRELATIONS

We define the confidence of local correlations for the pair
(p, q) via theGibbs distributionin the form

P = e−sJ(p,q), (2)

so that high confidence is given for a smaller residual
J(p, q). Physicists usually puts = 1/kT and callT tem-
perature, wherek is the Boltzmann constant. Ifs = 0 (orT
=∞), we have uniformlyP = 1 irrespective of the residual
J(p, q). As s increases (orT decreases), the confidence of
those with large residuals quickly decreases, and ultimately
the confidence concentrates only on the smallest residual.

Here, we determine the attenuation constants (or temper-
atureT ) as follows. Among all theNM pairs{(pα, qβ)},
at mostL (= min(N, M)) can be correct. We require that
the average of theL smallest residuals equal the overall
weighted average with respect to the confidence (2). If the
NM potential matches(pα, qβ) are sorted in ascending or-
der ofJ(pα, qβ) and theλth residual is abbreviated asJλ,
this condition is written in the form

1
Z

NM∑

λ=1

Jλe−sJλ = J̄ , (3)

where

Z =
NM∑

λ=1

e−sJλ , J̄ =
1
L

L∑

λ=1

Jλ. (4)

The solution of eq. (3) is easily computed by Newton itera-
tions to search for the zero ofΦ(s) = 0, starting froms = 0,

1We letw = 9 in our experiments.

where we define

Φ(s) =
NM∑

λ=1

(Jλ − J̄)e−sJλ . (5)

Let P
(0)
λ be the confidence of local correlations for theλth

pair thus defined.

4. CONFIDENCE OF SPATIAL CONSISTENCY

Next, we introduce the confidence of spatial consistency, as-
suming that the scene does not have an extraordinary 3-D
shape. We first choose candidate matches by enforcing
uniqueness with respect toP (0)

λ to those pairs that satisfy2

P
(0)
λ > e−k2/2. (6)

We enumerate the resulting matches by the indexµ = 1,
..., n0 in an arbitrary order. Let~rµ be the 2-dimensional
vector that connects the two points of theµth match, starting
from the one in the first image and ending at the other in the
second. We call it the “flow vector” of theµth match.

Our strategy is to view those matches which are consis-
tent with the resulting “optical flow”{~rµ} as more likely
to be correct. Specifically, we compute the confidence
weighted mean~rm and the confidence weighted covariance
matrixV of the optical flow by

~rm =
1
Z

n0∑
µ=1

P (0)
µ ~rµ, Z =

n0∑
µ=1

P (0)
µ ,

V =
1
Z

n0∑
µ=1

P (0)
µ (~rµ − ~rm)(~rµ − ~rm)>. (7)

Then, we go back to the originalNM potential matches.
We define their confidence of spatial consistency via the
Gaussian distribution in the form

P
(1)
λ = e−(~rλ−~rm,V −1(~rλ−~rm)), (8)

where(~a,~b) designates the inner product of vectors~a and
~b. Thus, a flow vector~rλ has low confidence if it largely
deviates from the optical flow{~rµ}.

5. CONFIDENCE OF GLOBAL SMOOTHNESS

We then introduce the confidence of global smoothness, as-
suming that the scene is more or less planar or in the dis-
tance so that the image transformation can be roughly ap-
proximated by a homography.

First, we choose candidate matches. This time, we en-
force uniqueness with respect toP

(0)
λ P

(1)
λ to those pairs that

satisfy

P
(0)
λ P

(1)
λ > e−2k2/2. (9)

2we letk = 3 in our experiment.



We enumerate the resulting matches by the indexµ = 1, ...,
n1 in an arbitrary order.

Let (xµ, yµ) and(x′µ, y′µ) make theµth pair. We repre-
sent these two points by 3-D vectors

xµ =




xµ/f0

yµ/f0

1


 , x′µ =




x′µ/f0

y′µ/f0

1


 , (10)

wheref0 is an appropriate scale factor, e.g., the image size.
A homography is written in the form

x′ = Z[Hx], (11)

whereZ[ · ] means normalization to make the third compo-
nent 1. We optimally fit a homography to then1 candidate
matches. Let the true positions of{xµ} and{x′µ} be, re-
spectively,{x̄µ} and{x̄′µ}. Taking account of their confi-
dence, we minimize

J =
n1∑

µ=1

P (0)
µ P (1)

µ (‖xµ − x̄µ‖2 + ‖x′µ − x̄′µ‖2), (12)

with respect to{x̄µ}, {x̄′µ}, andH subject to the constraint
x̄′µ = Z[Hx̄µ], µ = 1, ...,n1. The solution is easily obtained
by modifying existing optimization techniques. We used the
method of Kanatani and Ohta3 [8].

Then, we go back to the originalNM potential matches.
The discrepancy of each potential match from the estimated
homography is measured by

DH
λ = ‖x′λ − Z[Hxλ]‖2, (13)

wherexλ andx′λ represent the two points of theλth pair,λ
= 1, ...,NM . We define the confidence of global smooth-
ness via the Gibbs distribution in the same way as the con-
fidence of local correlations. Namely, we let

P
(2)
λ = e−tDH

λ . (14)

The constantt is determined by solving

1
Z

NM∑

λ=1

DH
λ e−tDH

λ = D̄H , (15)

where

Z =
NM∑

λ=1

e−tDH
λ , D̄H =

1
L

L∑

λ=1

DH
λ . (16)

The solution is easily obtained by doing Newton iterations
to eq. (5) afterJλ is replaced byDH

λ .
3We used the program code placed at:

http://www.ail.cs.gunma-u.ac.jp/Labo/programs-e.html

6. VOTING THE EPIPOLAR CONSTRAINT

Finally, we strictly enforce theepipolar constraint. For a
matching pair{x, x′}, theepipolar equationis

(x, Fx′) = 0. (17)

The matrixF is called thefundamental matrix[6].
First, we choose candidate matches by enforcing unique-

ness with respect toP (0)
λ P

(1)
λ P

(2)
λ to those pairs that satisfy

P
(0)
λ P

(1)
λ P

(2)
λ > e−3k2/2. (18)

We enumerate the resulting matches by the indexµ = 1,
..., n2 in an arbitrary order. From these candidate matches,
we robustly fit the epipolar equation (17) using RANSAC
[4, 6]. LettingSm = 0 andF m = O as initial values, we do
the following computation:

1. Randomly choose eight among then2 pairs.
2. From them, compute the fundamental matrixF .
3. For each of then2 pairs, compute

DF
µ =

(xµ, Fx′µ)2

‖P kF>xµ‖2 + ‖P kFx′µ‖2
, (19)

whereP k = diag(1, 1, 0) (the diagonal matrix with di-
agonal elements 1, 1, and 0 in that order).

4. LetS the sum of the confidenceP (0)
µ P

(1)
µ P

(2)
µ of those

pairs that satisfy

DF
µ ≤ 2d2

f2
0

, (20)

whered (pixel) is a user definable threshold4.
5. If S > Sm, updateSm ← S andF m ← F .

We repeat this a sufficient number of times5 to find the ma-
trix F m that gives the largest total confidenceSm.

Then, we go back to the originalNM potential matches.
We measure the degree of fit to the epipolar equation by
DF

λ in eq. (19) after replacingxµ and x′µ, respectively,
by xλ andx′λ that represent theλth pair,λ = 1, ...,NM .
We choose from among theNM pairs those that satisfy
eq. (20). The resulting pairs are thresholded by the crite-
rion (18). Finally, we enforce uniqueness with respect to
P

(0)
λ P

(1)
λ P

(2)
λ to obtain the final matches.

Note that the confidence for different types of constraint
can be compared or multiplied on an equal footing, because
it is normalized into the interval [0,1] in such a way that
theL most favorable matches have approximately the same
level of confidence. This is the reason why we used the
Gibbs distribution in the form of eqs. (2) and (14) and deter-
mined the attenuation constantss andt from the conditions
(3) and (15).

4We letd = 3 in our experiment.
5We stopped when no update occurred for 100 consecutive iterations.



Left image. Right image. 3-D reconstruction.

(a) (b) (c) (d) (e)
Fig. 1. Upper row: Input images and 3-D reconstruction. Bottom row: (a) Initial matches based on local correlations. (b) Matches with
spatial consistency incorporated. (c) Matches with global smoothness added. (d) Final matches with the epipolar constraint imposed. (e)
The method of Zhang et al. [25].

Left image. Right image. Panoramic image.

(a) (b) (c) (d) (e)
Fig. 2. Upper row: Input images and the generated panoramic image. Bottom row: (a) Initial matches based on local correlations. (b)
Matches with spatial consistency incorporated. (c) Matches with global smoothness added. (d) Final matches with the epipolar constraint
imposed. (e) The method of Zhang et al. [25]

7. REAL IMAGE EXAMPLES

Using the two images in the upper left of Fig. 1, we ex-
tracted 300 feature points separately using the Harris oper-
ator [5], as marked there. Fig. 1(a) is the “optical flow” of
the initial candidate matches based on local correlations (we
used the normalized correlation for this example). Since this
scene has many periodic patterns, many mismatches exist.

Fig. 1(b) shows the matches after spatial consistency is
imposed; Fig. 1(c) shows the matchers after global smooth-
ness is added. As we can see, the accuracy increases as we
impose more constraints. Doing RANSAC to the matches
in Fig. 1(c), we obtained the final matches in Fig. 1(d).

For comparison, we used the method of Zhang et al.6 [25]

6We used the program from placed at:
http://www-sop.inria.fr/robotvis/personnel/zzhang/softwares.html

and obtained the flow shown in Fig. 1(e). As can be seen,
our method produces denser matches than theirs. This is
because matches once discarded can gain high confidence in
the later stages. The upper right of Fig. 1(c) is the 3-D shape
reconstructed from the computed fundamental matrix. We
used the method described in [9].

Fig. 2 shows another example similarly arranged. A small
camera rotation exists between the left and right images, and
the scene has many similar textures. In the end, however,
denser correct matches are obtained (Fig. 2(d)) than by the
method of Zhang et al. [25] (Fig. 2(e)). The upper right of
Fig. 2 is the panoramic image generated by the computed
homography.

We then examined the effects of camera rotations. The
upper row of Figs. 3 shows the left image and two right im-



Left image. Right image 1. Right image 2.

(a) (b) (c) (d) (e)
Fig. 3. Upper row: Input images. The right images 1 and 2 are rotated approximately by5◦ and10◦, respectively, relative to the left
image. Middle row: Results using the left image and the right image 1. Bottom row: Results using the left image and the right image 2. (a)
Initial matches based on local correlations. (b) Matches with spatial consistency incorporated. (c) Matches with global smoothness added.
(d) Final matches with the epipolar constraint imposed. (e) The method of Zhang et al. [25].

ages. Right images 1 and 2 are rotated approximately by
5 and 10 degrees, respectively, relative to the left image.
The middle row shows the results using the left image and
the right image 1; The bottom row shows the results us-
ing the left image and the right image 2. In both, (a)∼(e)
correspond to (a)∼(e) in Figs. 1 and 2. As we can see,
our method successfully generated sufficiently many cor-
rect matches even in the presence of camera rotations, but
the method of Zhang et al. [25] failed.

We also examined the effects of zooming changes, and
the results are similarly arranged in Figs. 4. This time, right
images 1 and 2 are zoomed out approximately by 80% and
65%, respectively, relative to the left image. Again, our
method produced a sufficient number of correct matches,
while the method of Zhang et al. [25] failed.

For our examples, the total computation time (including
loading image files, feature point extraction, and outputting
debug information) was 23 sec on average. We used Pen-
tium III 700MHz for the CPU with 768MB main memory
and Linux for the OS.

8. CONCLUSIONS

We have presented a new method for detecting point
matches between two images. Our strategy for preserving
the global consistency is to impose non-local “soft” con-
straints on all potential matches via their “confidence val-
ues” that normalize the degree of satisfaction of different
types of constraint. The confidence values are progressively

updated by “mean-field approximation”. Finally, the “hard”
epipolar constraint is imposed by RANSAC. Using real im-
ages, we have demonstrated that our method is robust to
camera rotations and zooming changes7.

Because of our assumptions, our method works very well
for smooth surfaces and distant scenes. To cope with large
discontinuities is left for future research.
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