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ABSTRACT tion is a permutation matrix with at most 1 in each row and

We present a new method for detecting point matches betweenc®/UMn and 0 elsewhere, this is a very difficult integer pro-

two images. While existing methods propagate local smoothnessgramming task.
by iterations, our method imposes non-local constraints that should In order to alleviate this, many approximation schemes

be approxima’[ely satisfied QCYOSS the |mage We define the “Confi-have been proposed |nclud|ng replac|ng the permuta“on
dence” of such “soft constraints” to all potential matches. The con- matrix by a real matrix [13, 14, 24], tensor voting [12]
fidence is progressively updated by “mean-field approximation”. < by . L : 9 ’
Finally, the “hard” epipolar constraint is imposed by RANSAC. €ombining the distant transform with h|er§1rch|ca! search
Using real images, we demonstrate that our method is robust to[15], relaxation of graph labels [25], multiresolution ap-
camera rotations and zooming changes. proaches [2], and graph partition algorithms [16]. Still, a
large amount of computations is necessary. Also, because
o _1' INTRODUCTION o _local similarity is iteratively propagated, we cannot impose
Establishing point correspondences over multiple images isglobal conditions on spatially apart matches directly.
the first step of many computer vision applications. Two  |n this paper, we present an algorithm that does not in-
approaches exist for this purpose: tracking correspondencegolve such iterative propagation. Instead, global consis-
over successive frames, and direct matching between sepaency is imposed on all potential matches directly. We re-
rate frames. This paper focuses on the latter. quire correct matches to be spatially smooth, assuming that
The basic principle is local correlation measurement. EX- the scene is more or less planar or in the distance.
tracting feature points in the first and second images sepa- The main difficulty is how to deal with requirements that
rately using a corner detector [3, 5, 17, 19, 20, 21], we mea-should be satisfied “approximately”. For example, if two
sure the correlation between the neighborhoods of the tWOpointS have low image correlations, we cannot deny the
points for each candidate pair and match those that have gossibility that they may match. Similarly, non-smooth or
high correlation. This works very well if one image is a seemingly inconsistent matches can be correct. We say such
translated copy of the other. For images taken from differ- violable constraints areoft while inviolable constraints
ent positions, however, the corresponding parts in the im-such as the epipolar equation d.
ages may be locally deformed. In particular, the correla-  Qur strategy is to define tall potential matcheson-
tion significantly diminishes if camera rotations or zooming fidence valuethat measure the degree of satisfaction of
changes take place. the constraints. Then, we select high confidence matches
It follows that additional constraints are necessary. If the and estimate from them the g|0ba| properties] from which
scene is a planar surface or in the distance, the two imageshe confidence values of all potential matches are updated.
are related by aomographyf6]. This strong constraint can  This scheme resembles theean-field approximationsed
be combined with voting techniques such as LMedS [18] in physics. Finally, the hard epipolar constraint is strictly
and RANSAC [4] for robust image matching [7, 10, 11].  imposed by RANSAC. Using real images, we demonstrate

For a general scene, the only available constraint is thethat our method is robust to camera rotations and zooming
epipolar equatior{6], and various types of voting schemes changes.

based on it have been proposed [1, 6, 22, 23, 25]. However,

the epipolar equation is a very weak constraint, admitting 2. TEMPLATE MATCHING

many unnatural and inconsistent matches. We measure the local correlations between pgingsd ¢
To resolve this, some global consistency condition that by theresidual(sum of squarés

favors “natural” matches is necessary. A typical approach is

to define a local similarity measure and search for a global J(p,q) = Z T, (3, 5) — Tq(z‘,j)|2, (1)

match that maximizes the total similarity. Since the solu- (L) EN



whereT, (i, j) andT,(i,j) are the intensity values of the where we define
templates defined by cutting oirut anx w pixel region N/ N
centered omp andg, respectively. If we normalize them to B N sy
Z(i,j)e]\f Tp(iaj)2 =1 andZ(i,j)eN Tq(l’,j)2 - 1, eq. (1) (I)(S) Z(J)\ J)e . (5)
is equivalent to the use of thermalized correlation

We extractN points py, ..., py in the first image and
M pointsqy, ..., qp7 in the second, using a corner detec-
tor. Then, we compute the residugl$(p., ¢s)}, =1, ...,
N, 3=1,...,M, for all their N M combinations and search 4. CONFIDENCE OF SPATIAL CONSISTENCY

the N x M table of {J(pa,qp)} for the minimum value  Next, we introduce the confidence of spatial consistency, as-
J(pa+, qp+), establishing the match between poipts and  suming that the scene does not have an extraordinary 3-D
qp-- Then, we remove from the table the column and row shape. We first choose candidate matches by enforcing

that contain the valug (p.-, ¢4-) and do the same proce- | niqueness with respect " to those pairs that satisfy
dure to the resultingN — 1) x (N — 1) table. Repeating

this, we end up with, = min(N, M) matches. We call this pO ey 6

) : N > e ) (6)
unigueness enforcemenith respect to the residudl.

However, this procedure cannot be done directly, since\ye enumerate the resulting matches by the index 1,
the selected pairs may not be all correct while some of the ,, “in an arbitrary order. Lef, be the 2-dimensional
discarded pairs may be correct. In order to take all potential yector that connects the two points of il match, starting
matches into consideration, we introduce confidence valuesom the one in the firstimage and ending at the other in the
to all pairs. second. We call it the “flow vector” of theth match.

3. CONFIDENCE OF LOCAL CORRELATIONS Our strategy is to view those matches which are consis-

We define the confidence of local correlations for the pair tent with the resultlng .optlcal flow{7, } as more Ilk_ely
to be correct. Specifically, we compute the confidence

(p, q) via theGibbs distributionin the form weighted mear,,, and the confidence weighted covariance

A=1

Let PA(O) be the confidence of local correlations for thid
pair thus defined.

P = o570 @) matrix V' of the optical flow by
so that high confidence is given for a smaller residual Fo= 1 iP(O)ﬁ“ 7 - iP(O),
J(p,q). Physicists usually put = 1/kT and callT tem- Ze " ="
perature wherek is the Boltzmann constant. #=0 (orT o
= o0), we have uniformlyP = 1 irrespective of the residual vt > PO, = ) (7 — ) T (7
J(p,q). As s increases (of" decreases), the confidence of Z =1

those with large residuals quickly decreases, and ultimately

the confidence concentrates only on the smallest residual. ~ Then, we go back to the original M potential matches.
Here, we determine the attenuation constejor temper- ~ We define their confidence of spatial consistency via the

atureT) as follows. Among all theV A/ pairs{(pa, gs)}, Gaussian distribution in the form

at mostL (= min(N, M)) can be correct. We require that

. 1) _ = (Fa—Tm, VT H(Fr—Tm

the average of thd, smallest residuals equal the overall P>(\ =e ™ Vo meTm) (8)
weighted average with respect to the confidence (2). If the - _ ) B
N M potential matchegp,,, ¢5) are sorted in ascending or- \ivhere(a, b) designates the inner product of vectarand
der of J(p., qs) and thexth residual is abbreviated a&, b. 'I_'hus, a flow vectqﬂ has low confidence if it largely
this condition is written in the form deviates from the optical floy, }.

| Vv 5. CONFIDENCE OF GLOBAL SMOOTHNESS

7 Z Jae M =17, 3 We then introduce the confidence of global smoothness, as-

A=1

suming that the scene is more or less planar or in the dis-
tance so that the image transformation can be roughly ap-
NM 1 L proximated by a homography.
7 = Z e J= 7 Z Jx. 4) First, we choose candidate matches. This time, we en-
A=1 A=1 force uniqueness with respectﬁéO)PA(l) to those pairs that
The solution of eq. (3) is easily computed by Newton itera- Satisfy
tions to search for the zero df(s) = 0, starting froms = 0, PPN > 22, 9)

where

1We letw = 9 in our experiments. 2we letk = 3 in our experiment.



We enumerate the resulting matches by the index1, ..., 6. VOTING THE EPIPOLAR CONSTRAINT

ny in an arbitrary ordfar. / _ Finally, we strictly enforce thepipolar constraint For a
Let (2., y,) and(z;,,y,,) make theuth pair. We repre-  matching paif{z, z'}, theepipolar equatioris
sent these two points by 3-D vectors

(z, Fx') = 0. a7
xu/fo JUL/JIO . ) .
z,= | vu/fo |, w/u = v./fo |, (10) The. matrixF' is called thg‘undamental matrif6]. _ _
1 1 First, we choose candidate matches by enforcing unique-

ness with respect tBiO)Pil)Pf) to those pairs that satisfy
wheref; is an appropriate scale factor, e.g., the image size.

A homography is written in the form POPI PR 5 =3k /2, (18)

x' = Z[Hzx), (11) We enumerate the resulting matches by the index 1,
..., No in an arbitrary order. From these candidate matches,
whereZ[ -] means normalization to make the third compo- we robustly fit the epipolar equation (17) using RANSAC
nent 1. We optimally fit a homography to the candidate [4, 6]. Letting S,,, = 0 andF',,, = O as initial values, we do

matches. Let the true positions ¢t} and{z],} be, re- the following computation:
spectively,{:E!L]_» a_nd{ﬁ;;,,}. Taking account of their confi- 1. Randomly choose eight among thepairs.
dence, we minimize 2. From them, compute the fundamental maffix
n1 3. For each of the,, pairs, compute
_ 0 1 =~ |12 =/ 112
J—;Pé POl — &, + 12, - @), (12) . (0, Fal, o
. . . " ||PF Ty |2 + | PuFa |2
with respecttdz,, }, {z], }, andH subject to the constraint
), = Z[Hz,), 1= 1, ...n1. The solution is easily obtained whereP) = diag(1,1,0) (the diagonal matrix with di-
by modifying existing optimization techniques. We used the agonal elements 1, 1, and O in that order).
method of Kanatani and OFt]. 4. LetS the sum of the confidende!” P P{?) of those
Then, we go back to the origin& M potential matches. pairs that satisfy
The discrepancy of each potential match from the estimated o2
homography is measured by Df <= (20)
0
DY = |l — Z[Hz,]|%, (13)

whered (pixel) is a user definable threshold
wherex, andx/, represent the two points of theh pair, A 5. If § > S,,, updateS,, — S andF,, — F.

=1, ..,NM. We define the confidence of global smooth- e repeat this a sufficient number of tifi¢s find the ma-
ness via the Gibbs distribution in the same way as the con-trix F,, that gives the largest total confidensg .

fidence of local correlations. Namely, we let Then, we go back to the original M potential matches.
. We measure the degree of fit to the epipolar equation by
P = e PV, (14) DY in eq. (19) after replacing:,, and =, respectively,
) ) ) by , andx/, that represent thath pair, A = 1, ..., NM.
The constant is determined by solving We choose from among th& M pairs those that satisfy
NM eg. (20). The resulting pairs are thresholded by the crite-
1 Z Di-lefth - DM (15) rion (18). Finally, We enfo-rce unigueness with respect to
Z = P{” PV P(?) to obtain the final matches.
Note that the confidence for different types of constraint
where can be compared or multiplied on an equal footing, because
NM Lz it is normalized into the interval [0,1] in such a way that
7 Z e—th7 pH — = Z Df. (16) the L most fayorable mat_ch.es have approximately the same
= L~ level of confidence. This is the reason why we used the

Gibbs distribution in the form of egs. (2) and (14) and deter-
The solution is easily obtained by doing Newton iterations mined the attenuation constantandt¢ from the conditions
to eq. (5) aftet/,, is replaced byD¥'. (3) and (15).

3We used the program code placed at: 4We letd = 3 in our experiment.
http://www.ail.cs.gunma-u.ac.jp/Labo/programs-e.html 5We stopped when no update occurred for 100 consecutive iterations.
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Fig. 1. Upper row: Input images and 3-D reconstruction. Bottom row: (a) Initial matches based on local correlations. (b) Matches with
spatial consistency incorporated. (c) Matches with global smoothness added. (d) Final matches with the epipolar constraint imposed. (e)
The method of Zhang et al. [25].
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Fig. 2. Upper row: Input images and the generated panoramic image. Bottom row: (a) Initial matches based on local correlations. (b)
Matches with spatial consistency incorporated. (c) Matches with global smoothness added. (d) Final matches with the epipolar constraint
imposed. (e) The method of Zhang et al. [25]

7. REAL IMAGE EXAMPLES and obtained the flow shown in Fig. 1(e). As can be seen,
our method produces denser matches than theirs. This is
because matches once discarded can gain high confidence in
the later stages. The upper right of Fig. 1(c) is the 3-D shape
reconstructed from the computed fundamental matrix. We
used the method described in [9].

Using the two images in the upper left of Fig. 1, we ex-
tracted 300 feature points separately using the Harris oper
ator [5], as marked there. Fig. 1(a) is the “optical flow” of
the initial candidate matches based on local correlations (we
used the normalized correlation for this example). Since this
scene has many periodic patterns, many mismatches exist. Fig. 2 shows another example similarly arranged. A small
Fig. 1(b) shows the matches after spatial consistency iscamera rotation exists between the left and rightimages, and
imposed; Fig. 1(c) shows the matchers after global smooth-the scene has many similar textures. In the end, however,
ness is added. As we can see, the accuracy increases as vaenser correct matches are obtained (Fig. 2(d)) than by the
impose more constraints. Doing RANSAC to the matches method of Zhang et al. [25] (Fig. 2(e)). The upper right of

in Fig. 1(c), we obtained the final matches in Fig. 1(d). Fig. 2 is the panoramic image generated by the computed
For comparison, we used the method of Zhang &f2#) homography.
We used the program from placed at; We then examined the effects of camera rotations. The

http://www-sop.inria.fr/robotvis/personnel/zzhang/softwares.html upper row of Figs. 3 shows the left image and two right im-
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Fig. 3. Upper row: Input images. The right images 1 and 2 are rotated approximateély &yd 10°, respectively, relative to the left
image. Middle row: Results using the left image and the right image 1. Bottom row: Results using the left image and the right image 2. (a)
Initial matches based on local correlations. (b) Matches with spatial consistency incorporated. (c) Matches with global smoothness added.
(d) Final matches with the epipolar constraint imposed. (e) The method of Zhang et al. [25].

ages. Right images 1 and 2 are rotated approximately byupdated by “mean-field approximation”. Finally, the “hard”

5 and 10 degrees, respectively, relative to the left image.epipolar constraint is imposed by RANSAC. Using real im-
The middle row shows the results using the left image and ages, we have demonstrated that our method is robust to
the right image 1; The bottom row shows the results us- camera rotations and zooming charfges

ing the left image and the right image 2. In both,~&) Because of our assumptions, our method works very well
correspond to (a)(e) in Figs. 1 and 2. As we can see, for smooth surfaces and distant scenes. To cope with large
our method successfully generated sufficiently many cor- discontinuities is left for future research.

rect matches even in the presence of camera rotations, butcknowledgments: This work was supported in part by the
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Fig. 4. Upper row: Input images. The right images 1 and 2 are zoomed out approximately by 80% and 65%, respectively, relative to the
left image. Middle row: Results using the left image and the right image 1. Bottom row: Results using the left image and the right image
2. (a) Initial matches based on local correlations. (b) Matches with spatial consistency incorporated. (c) Matches with global smoothness
added. (d) Final matches with the epipolar constraint imposed. (e) The method of Zhang et al. [25].
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