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Abstract
Contrasting “geometric fitting”, for which the noise level
is taken as the asymptotic variable, with “statistical infer-
ence”, for which the number of observations is taken as the
asymptotic variable, we give a new definition of the “ge-
ometric AIC” and the “geometric MDL” as the counter-
parts of Akaike’s AIC and Rissanen’s MDL. We discuss
various theoretical and practical problems that emerge from
our analysis. Finally, we experimentally show that the ge-
ometric AIC and the geometric MDL have very different
characteristics.

1. Introduction

The problem of inferring the geometric structure of
the scene from noisy data is one of the central themes of
computer vision. This problem has been generalized in
abstract terms as geometric fitting , for which a general
theory of statistical optimization has been developed
[8, 9]. Also, the geometric AIC has been proposed
for model selection [8, 11, 13] and applied to many
problems [10, 14, 15, 18, 19, 22, 26, 38]. Similar but
different criteria have also been proposed [33, 34, 35,
36, 37].

The geometric AIC was motivated by Akaike’s AIC
(Akaike information criterion) [1]. Naturally, interests
arose about using Rissanen’s MDL (minimum descrip-
tion length) [28, 29], since it is regarded by many as
superior to Akaike’s AIC for statistical inference. It is
anticipated that a criterion like Rissanen’s MDL would
outperform the geometric AIC for geometric fitting,
too.

In the past, Rissanen’s MDL often appeared in the
literature of computer vision, but the use was lim-
ited to such applications that have the form of stan-
dard statistical inference such as linear/nonlinear re-
gression [3, 25]. Also, many MDL-like criteria were
introduced, but often the solution having a shorter de-
scription length was simply chosen with an arbitrary
definition of the complexity [7, 21, 24].

The main contributions of this paper are as follows:
1. We give a new definition of the geometric AIC and

show that the final form agrees with the already
proposed form. This new definition clarifies the
ambiguities that existed in the original derivation
[8, 11, 13]. At the same time, this definition refutes
the existing misunderstanding that the geometric
AIC and Akaike’s AIC are the same thing.

2. We give a new definition of the geometric MDL us-
ing the logic introduced by Rissanen [28, 29, 30].
The final form is slightly different from the already

proposed form [22]. Again, this new definition
makes it clear how the geometric MDL is different
from Rissanen’s MDL. It also reveals some prob-
lems that have been overlooked so far.

3. We experimentally test if the geometric MDL re-
ally outperforms the geometric AIC as anticipated.
Our conclusion is negative. We also show that
these two criteria have very different characteris-
tics.

The basic principle behind our approach is that we
take the noise level as what we call the asymptotic
variable and define geometric model selection that cor-
responds to stochastic model selection, where the num-
ber of observations is taken as the asymptotic variable.
In this sense these two formalisms are dual to each
other, and in this light the geometric MDL is “dual” to
Rissanen’s MDL. The similarity between the geometric
AIC and Akaike’s AIC can be viewed as “self-duality”.

There have been heated arguments among statisti-
cians and information theorists for and against Akaike’s
AIC, Rissanen’s MLD, and the philosophies behind
them. Also, many similar criteria purported to be bet-
ter than them have been proposed. In this paper, we
neither endorse either of Akaike’s AIC and Rissanen’s
MLD nor justify their derivations and philosophies be-
hind them. We regard them simply as they are and
focus only on the question of how they should be rede-
fined in the framework of geometric fitting .

In Sec. 2, we formulate geometric fitting as con-
straint satisfaction of geometric data in the presence of
noise, taking the noise level as the asymptotic variable.
In Sec. 3 and 4, we define the geometric AIC and the
geometric MDL as counterparts of Akaike’s AIC and
Rissanen’s MDL. We also discuss various theoretical
and practical problems that emerge from our analysis.
In Sec. 6, we experimentally test if the geometric MDL
really outperforms the geometric AIC. In Sec. 7, our
conclusion is given.

2. Definitions

2.1 Geometric fitting

Given N data x1, ..., xN , which are m-dimensional
vectors, we view each xα as perturbed from its true
value x̄α by Gaussian noise of mean 0 and covariance
matrix V [xα] independently. The true values x̄α are
supposed to satisfy r constraint equations

F (k)(x̄α, u) = 0, k = 1, ..., r, (1)



parameterized by a p-dimensional vector u. We call
the domain X of the data {xα} the data space, and
the domain U of the vector u the parameter space. The
number r of the constraint equations is called the rank
of the constraint. The r equations F (k)(x, u) = 0, k
= 1, ..., r, are assumed to be mutually independent,
defining a manifold S of codimension r parameterized
by u in the data space X . Eq. (1) requires that the
true values {x̄α} be all in the manifold S. Our task is
to estimate the parameter u from the noisy data {xα}.

This problem can be extended to the case where
the data {xα} are constrained to be in a manifold in
the data space X and the parameter u is constrained
to be in a manifold in the parameter space U , en-
abling us to deal with the situation where xα and u
are, say, normalized to unit vectors. Also, the r equa-
tions F (k)(x, u) = 0, k = 1, ..., r, need not be mutu-
ally independent. The subsequent argument still holds
if (Moore-Penrose) generalized inverses and projection
operations are introduced (see [8] for the details).

We write the covariance matrix V [xα] in the form

V [xα] = ε2V0[xα], (2)

and call the constant ε the noise level and the matrix
V0[xα] the normalized covariance matrix . One reason
for this separation is that the absolute magnitude of
noise is unknown in many practical problems while its
qualitative characteristics can be relatively easily esti-
mated or determined from the gray levels of the input
images [20].

Another reason is that the maximum likelihood solu-
tion is not affected in geometric fitting if the covariance
matrix is multiplied by a positive constant. Hence, it
suffices to know only the normalized covariance matrix
V0[xα]. In fact, the geometric fitting problem as de-
fined above can be solved by minimizing the sum of
the square Mahalanobis distances

J =
N∑

α=1

(xα − x̄α, V0[xα]−1(xα − x̄α)) (3)

subject to the constraint (1), where and hereafter we
denote the inner product of vectors a and b by (a, b).

If we assume that the noise is small, we can eliminate
the constraint (1), using first order approximation and
Lagrange multipliers, in the following form [8]:

J =
N∑

α=1

r∑

k,l=1

W (kl)
α F (k)(xα,u)F (l)(xα, u). (4)

Here, W
(kl)
α is the (kl) element of the inverse of the r×r

matrix whose (kl) element is (∇xF
(k)
α , V [xα]∇xF

(l)
α ),

where the subscript α in ∇xF
(k)
α means x = xα is

substituted.

2.3 Asymptotic variables

It can be shown that the covariance matrix V [û]
of the maximum likelihood solution û that minimizes

eq. (4) not only converges to O as ε → 0 but also
satisfies the theoretical accuracy bound within terms
of O(ε4) [8, 9].

This corresponds to the fact that in statistical in-
ference the covariance matrix of the maximum likeli-
hood solution not only converges to O as the number
n of observations goes to infinity (consistency) but also
satisfies the Cramer-Rao lower bound within terms of
O(1/n2) (asymptotic efficiency).

In general, a complicated problem for which exact
analysis is difficult often has a simple form that elu-
cidates the underlying mathematical structure if some
variable is very large or very small. Let us tentatively
call such a variable an asymptotic variable.

In statistical inference, the number n of observations
is usually taken as the asymptotic variable. This re-
flects the fundamental paradigm of statistical inference
that the truth that underlies apparent random phe-
nomena can be uncovered by repeated observations. It
follows that an estimation method whose performance
improves rapidly as n → ∞ is desirable, since such a
method requires a smaller number of observations to
reach acceptable accuracy.

In geometric fitting, we take the noise level ε as the
asymptotic variable. This reflects the requirement that
a desirable estimation method should improve its per-
formance rapidly as ε → 0, since such a method can
tolerate a higher noise level to maintain acceptable ac-
curacy [8, 12].

It is thus anticipated that all the properties of sta-
tistical inference in the limit n →∞ of a large number
of observations hold in geometric fitting in the limit ε
→ 0 of an infinitesimal noise. Indeed, this can be justi-
fied by the following thought experiment. Suppose we
observe an image many times. In reality, the result is
always the same as long as the image and image pro-
cessing algorithms involved are the same. It is, there-
fore, impossible to observe a different occurrence of the
“noise”, by which we mean the inaccuracy due to the
limited resolution and imperfection of the processing
algorithms. In this sense, the number n of observa-
tions is always 1. However, if we hypothetically imag-
ine that noise occurrence changes independently each
time we observe the same image. Then, we could ob-
tain more accurate data by taking the average of the n
observations. This means that increasing the number n
of hypothetical observations is equivalent to effectively
reducing the noise level ε [12].

2.3 Models and model selection

The goal of statistical inference is to explain the
data-generating mechanism of apparent random phe-
nomena. Hence, an observation x is expressed as a
composite of deterministic and random parts. In ab-
stract terms, the problem is to estimate from a given
sequence of data {xi} the parameter θ of the density
P (x|θ) according to which the data {xi} are assumed
to have been sampled. The parameter θ consists of the
deterministic part (e.g., the coefficients of the equation
that generates the data in the absence of noise) and the
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random part (e.g., noise characteristics such as means
and variances). If we hypothesize for the density multi-
ple possibilities P1(x|θ1), P2(x|θ2), ..., each is called a
(stochastic) model ; the task of choosing an appropriate
one is (stochastic) model selection.

In contrast, the goal of geometric fitting is to esti-
mate the parameter u of the constraint F (x, u) = 0
that the data {xα} are supposed to satisfy. The param-
eter u is purely of geometric nature; it does not contain
any characteristics of random noise. If we hypothesize
for the constraint multiple possibilities F 1(x, u1) = 0,
F 2(x, u2) = 0, ..., each is called a (geometric) model ;
the task of choosing an appropriate one is (geometric)
model selection [8, 12].

In geometric fitting, the characteristics of the noise
are assumed a priori, independently of the constraint
(i.e., the model). In particular, the noise level ε is a
characteristic of the image and image processing algo-
rithms involved, independent of our interpretation of
the image.

3. Geometric AIC

The derivation of Akaike’s AIC [1], which is tuned
to statistical inference, is tailored to geometric fitting
as follows.

3.1 Goodness of a model

Under the model (1), the data can be regarded as
one sample from the following density (we use upper-
cases for random variables and lowercases for their in-
stances; | · | denotes the determinant):

P ({Xα}) =
N∏

α=1

e−(Xα−x̄α,V [xα]−1(Xα−x̄α))/2

√
(2π)m|V [xα]| . (5)

The true values {x̄α} are constrained by eq. (1). The
measure of the goodness of this model adopted by
Akaike is the Kullback-Leibler distance (or divergence)
from this density to the true density PT ({Xα})

D =
∫
· · ·

∫
PT ({Xα}) log

PT ({Xα})
P ({Xα}) dX1 · · · dXN

= E[log PT ({Xα})]− E[log P ({Xα})], (6)

where E[ · ] denotes expectation with respect to the
true density PT ({Xα}). The assumed model is re-
garded as good if D is small. The first term on the last
right-hand side does not depend on individual models,
so we regard the model as good if

−E[log P ({Xα})]

=
1

2ε2
E[

N∑
α=1

(Xα − x̄α, V0[xα]−1(Xα − x̄α))]

+
mN

2
log 2πε2 +

1
2

N∑
α=1

log |V0[xα]| (7)

is small, where we have substituted eq. (2). The last
two terms do not depend on individual models. So,

multiplying the first term by 2ε2, we seek a model that
minimizes the expected residual

E = E[
N∑

α=1

(Xα − x̄α, V0[xα]−1(Xα − x̄α))]. (8)

This is the well known least-squares criterion under
Gaussian noise. Note that ε is not a model parame-
ter and hence multiplication of positive quantity that
depends only on ε does not affect model selection.

3.2 Evaluation of expectation

The difficulty of using eq. (8) as a model selection
criterion is that the expectation E[ · ] must be evalu-
ated with respect to the true density, which we do not
know. How to deal with this will lead to the fundamen-
tal difference between geometric fitting and statistical
inference.

In statistical inference, we can assume that we could,
at least in principle, observe as many data as desired.
If we are allowed to sample independent instances x1,
x2, ..., xn according to a density PT (X), the expec-
tation

∫
Y (X)PT (X)dX of a statistic Y (X) can be

approximated by (1/n)
∑n

i=1 Y (xi) (the Monte-Carlo
method), which converges to the true expectation in
the limit n → ∞ (the law of large numbers). Akaike’s
AIC is based on this principle.

In geometric fitting, in contrast, we can obtain only
one instance {xα} of {Xα}, so it is impossible to
replace expectation by sample average. But we can
assume that we could, at least in principle, use de-
vices of as high resolution as desired. In our frame-
work, therefore, it suffices to find an approximation
that holds in the limit ε → 0. Evidently, the ex-
pectation

∫ · · · ∫ Y ({Xα})PT ({Xα})dX1 · · · dXN of
Y ({Xα}) can be approximated by Y ({xα}) (note
that we do not need 1/N), because as ε → 0
we have PT ({Xα}) → ∏N

α=1 δ(Xα − x̄α), where
δ( · ) denotes the Dirac delta function. Thus,∫ · · · ∫ Y ({Xα})PT ({Xα})dX1 · · · dXN and Y ({xα})
both converge to Y ({x̄α}).

It follows that we can approximate E by

J =
N∑

α=1

(xα − x̄α, V0[xα]−1(xα − x̄α)). (9)

3.3 Bias removal

There is still a difficulty using eq. (9) as a crite-
rion: the model parameters {x̄α} and u need to be
estimated. If we are to view eq. (9) as a measure of
the goodness of the model, we should choose for {x̄α}
and u their maximum likelihood estimators {x̂α} and
û that minimize eq. (9) subject to the constraint (1).
A naive idea is to substitute {x̂α} and û for {x̄α} and
u in eq. (9) and use as a model selection criterion

Ĵ =
N∑

α=1

(xα − x̂α, V0[xα]−1(xα − x̂α)), (10)
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which is called the residual (sum of squares). However,
a logical inconsistency arises.

Eq. (1) does not define a particular model. Rather,
it defines a class of models parameterized by {x̄α}
and u. If we choose particular values {x̂α} and û,
we are given a particular model. According to the
logic in Sec. 3.1, its goodness should be evaluated by
E[

∑N
α=1(Xα−x̂α, V0[xα]−1(Xα−x̂α))]. According to

the logic in Sec. 3.2, the expectation can be approxi-
mated using a typical instance of {Xα}.

However, {x̂α} and û were computed from {xα}, so
{xα} cannot be a typical instance of {Xα} due to the
correlation with the assumed model. In fact, Ĵ is gen-
erally smaller than E[

∑N
α=1(Xα− x̂α, V0[xα]−1(Xα−

x̂α))], because {x̂α} and û were determined so as to
minimize Ĵ .

This is the difficulty that Akaike encountered in the
derivation of his AIC. His strategy for resolving this
can be translated in our setting as follows.

Ideally, we should approximate the expectation us-
ing an instance {x∗α} of {Xα} generated independently
of the current data {xα}. In other words, we should
evaluate

J∗ =
N∑

α=1

(x∗α − x̂α, V0[xα]−1(x∗α − x̂α)). (11)

Let us call {x∗α} the future data; they are “another”
instance of {Xα} that might occur if we did a hypo-
thetical experiment. In reality, however, we have the
current data {xα} alone at hand1. So, we try to com-
pensate for the bias in the form

Ĵ∗ = Ĵ + bε2. (12)

It is easily seen that Ĵ∗ and Ĵ are both O(ε2) and hence
b is O(1). Since Ĵ∗ and Ĵ are random variables, so is
b. It can be proved [8, 11] that

E∗[E[b]] = 2(Nd + p) + O(ε2), (13)

where E[ · ] and E∗[ · ] denote expectations with respect
to {xα} and {x∗α}, respectively. From this, we obtain
an unbiased estimator of Ĵ∗ in the first order in the
form

G-AIC = Ĵ + 2(Nd + p)ε2, (14)

where d = m−r is the dimension of the manifold S de-
fined in the data space X by the constraint F (k)(x,u)
= 0, k = 1, ..., r. This criterion is the geometric AIC
proposed by Kanatani [8, 11, 13].

3.4 Duality of asymptotic analysis

Although the final form is the same, Kanatani’s orig-
inal derivation starting from eq. (11) with a heuristic

1If such data {x∗α} actually exist, the test using them is called
cross-validation. We can also generate equivalent data by a com-
puter. Such a simulations is called bootstrap [5].

reasoning [8, 11, 13]. This has caused a lot of confusion
as to whether the geometric AIC and Akaike’s AIC are
the same or not. The present formulation makes clear
where they are the same and from where they depart.

In Akaike’s derivation, the following facts play a fun-
damental role:
• The maximum likelihood estimator converges to

its true value as n→∞ (the law of large numbers).
• The maximum likelihood estimator asymptotically

obeys a Gaussian distribution as n →∞ (the cen-
tral limit theorem).

• A quadratic form in standardized Gaussian ran-
dom variables is subject to a χ2 distribution,
whose expectation equals its degree of freedom.

In the derivation of eq. (13), the following facts play
a crucial role [8, 11]:
• The maximum likelihood estimator converges to

its true value as ε → 0.
• The maximum likelihood estimator obeys a Gaus-

sian distribution under linear constraints, because
the noise is assumed to be Gaussian. For nonlinear
constraints, linear approximation can be justified
in the neighborhood of the solution if ε is suffi-
ciently small .

• A quadratic form in standardized Gaussian ran-
dom variables is subject to a χ2 distribution,
whose expectation equals its degree of freedom.

We observe a kind of “duality” between geometric
fitting and statistical inference. In particular, we see
that the noise level ε in geometric fitting plays the same
role as the number n of observations in statistical in-
ference. This is obvious if we recall the thought exper-
iment in Sec. 2.2: reducing the noise is equivalent to
increasing the number of hypothetical observations.

The confusion about the relationship between the
geometric AIC and Akaike’s AIC originates from the
apparent similarity of their forms, which is due to the
fact that the correction term in Akaike’s AIC is inde-
pendent of the number n of observations. If n were
involved, the corresponding form for geometric fitting
would have a very different form, as we will show subse-
quently. In this sense, the similarity, or “self-duality”,
between the geometric AIC and Akaike’s AIC is a mere
accident, which has hidden the difference underneath
geometric fitting and statistical inference.

4. Geometric MDL

We now derive in our framework the counterpart of
Rissanen’s MDL (minimum description length) [28, 29,
30].

4.1 MDL principle

Rissanen’s MDL measures the goodness of the model
by the information theoretic code length. The basic
idea is simple, but the following difficulties must be
resolved for applying it in practice:

• Encoding a problem involving real numbers re-
quires an infinitely long code length.
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• The probability density, from which a minimum
length code can be obtained, involves unknown pa-
rameters.

• Obtaining an exact form of the minimum length
code is very difficult.

Rissanen [28, 29] avoided these difficulties by quan-
tizing the real numbers in a way that does not depend
on individual models and substituting the maximum
likelihood estimators for the parameters. They, too, are
real numbers, so they are also quantized. The quan-
tization width is chosen so as to minimize the total
description length (the two-stage encoding). The re-
sulting code length is asymptotically evaluated by tak-
ing the data length n as the asymptotic variable. This
idea of Rissanen can be translated into our framework
as follows.

If the data {xα} are sampled according to the prob-
ability density (5), they can be encoded, after their
domain is quantized, in a shortest prefix code of length

− log P =
J

2ε2
+

mN

2
log 2πε2 +

1
2

N∑
α=1

log |V0[xα]|,
(15)

up to a constant that depends only on the domain and
the width of the quantization. Here, J is the sum of the
square Mahalanobis distances given by eq. (3). Using
the natural logarithm, we take log2 e bits as the unit
of length.

4.2 Two-stage encoding

In order to do encoding using eq. (5), we need the
true values {x̄α} and the parameter u. Since they are
unknown, we use their maximum likelihood estimators
that minimize eq. (15) (specifically J). The last two
terms of eq. (15) do not depend on individual (geomet-
ric) models (recall that ε is not a model parameter),
so the minimum code length is Ĵ/2ε2 up to a constant
that does not depend on individual models, where Ĵ
is the residual given by eq. (10). For brevity, we here-
after call the code length determined up to a constant
that does not depend on individual models simply the
description length.

Since the maximum likelihood estimators {x̂α} and
û are real numbers, they must also be quantized. If
we use a large quantization width, their code lengths
become short, but the description length Ĵ/2ε2 will
increase. So, we take the width that minimizes the
total description length. The computation is based on
the fact that eq. (4) can be written as follows [8]:

J = Ĵ +
N∑

α=1

(xα − x̂α, V0[x̂α]−(xα − x̂α))

+(u− û, V0[û]−1(u− û)) + O(ε3). (16)

Here, the superscript − denotes the (Moore-Penrose)
generalized inverse, and V0[x̂α] and V0[ûα] are, respec-
tively, the a posteriori covariance matrices of the max-
imum likelihood estimators x̂α and û given as follows

[8]:

V0[x̂α] = V0[xα]

−
r∑

k,l=1

W (kl)
α (V [xα]∇xF (k)

α )(V [xα]∇xF (k)
α )>,

V0[û] =
( N∑

α=1

r∑

k,l=1

W (kl)
α (∇uF (k)

α )(∇uF (l)
α )>

)−1

. (17)

The symbol W
(kl)
α has the same meaning as in eq. (4).

4.3 Encoding parameters

In order to quantize û, we quantize the p-
dimensional parameter space U by introducing appro-
priate (generally curvilinear) coordinates and defining
a grid of width δui. Suppose û is in a rectangular re-
gion of size Li. There are

∏p
i=1(Li/δui) grid vertices

inside, so specifying one from these requires the code
length

log
p∏

i=1

Li

δui
= log Vu −

p∑

i=1

log δui, (18)

where Vu =
∏p

i=1 Li is the volume of the rectangular
region. We could reduce this code length using a large
width δui, but eq. (16) implies that replacing û by the
nearest vertex would increase the description length
Ĵ/2ε2 by (δu, V0[û]−1δu)/2ε2 in the first order in ε,
where we define δu = (δui). Differentiating the sum
of this and eq. (18) with respect to δui and letting the
result be 0, we obtain

1
ε2

(
V0[û]−1δu

)
i
=

1
δui

, (19)

where ( · )i designates the ith component. If the coor-
dinate system of U is taken in such a way that V0[û]−1

is diagonalized, we obtain

δui =
ε√
λi

, (20)

where λi is the ith eigenvalue of V0[û]−1. It follows
that the volume of one cell of the grid is

vu =
p∏

i=1

δui =
εp

√
|V0[û]−1| . (21)

Hence, the number of cells inside the region Vu is

Nu =
∫

Vu

du

vu
=

1
εp

∫

Vu

√
|V0[û]−1|du. (22)

Specifying one from these requires the code length

log Nu = log
∫

Vu

√
|V0[û]−1|du− p

2
log ε2. (23)
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4.4 Encoding true values

In order to quantize {x̂α}, we need to quantize their
domain. Although the domain of the data {xα} is the
m-dimensional data space X , their true values are con-
strained to be in a d-dimensional manifold Ŝ parame-
terized by û, which we have already encoded. So, we
introduce appropriate curvilinear coordinates in Ŝ and
define a (curvilinear) grid of width δξiα. Since each
x̂α has its own normalized covariance matrix V0[x̂α]
(see eqs. (17)), we quantize each x̂α differently, using
different curvilinear coordinates for each.

Suppose x̂α is in a (curvilinear) rectangular region of
size liα. There are

∏d
i=1(liα/δξiα) grid vertices inside,

so specifying one from these requires the code length
d∑

i=1

log
liα
δξiα

= log Vxα −
d∑

i=1

log δξiα, (24)

where Vxα =
∏d

i=1 liα is the volume of the rectangu-
lar region. We could reduce this code length using a
large width δξiα, but replacing x̂α by its nearest ver-
tex would increase the description length Ĵ/2ε2. Let
δx̄α be the m-dimensional vector that expresses the
displacement {δξiα} on Ŝ with respect to the coordi-
nate system of X . Eq. (16) implies that the increase
in Ĵ/2ε2 is (δx̄α, V0[x̂α]−δx̄α)/2ε2 in the first order in
ε. Differentiating the sum of this and eq. (24) with
respect to δξiα and letting the result be 0, we obtain

1
ε2

(
V0[x̂α]−δx̄α

)
i
=

1
δξiα

. (25)

Note that V0[x̂α]− is a singular matrix of rank d whose
domain is the tangent space to Ŝ at x̂α. We define the
curvilinear coordinates in Ŝ in such a way that the p
basis vectors at x̂α form an orthonormal system. Sup-
pose the coordinate system of X is defined in such a
way that its basis vectors consist of the p basis vectors
of Ŝ at x̂α plus an orthonormal system of m−p vectors
orthogonal to them. If, moreover, we choose the curvi-
linear coordinates of Ŝ in such a way that V0[x̂α]− is
diagonalized, we obtain the solution δξiα of eq. (25) in
the form

δξiα =
{

ε/
√

λiα i = 1, ..., d
0 i = d + 1, ...,m

, (26)

where λ1α, ..., λdα are the d positive eigenvalues of
V0[x̂α]−. It follows that the volume of one cell of the
grid is

vxα =
d∏

i=1

δξiα =
εd

√
|V0[x̂α]−|d

, (27)

where |V0[x̂α]−|d denotes the product of its d positive
eigenvalues. Hence, the number of cells inside the re-
gion Vxα is

Nα =
∫

Vxα

dx

vxα
=

1
εd

∫

Vxα

√
|V0[x̂α]−|d dx. (28)

Specifying one from these requires the code length

log Nα = log
∫

Vxα

√
|V0[x̂α]−|d dx− d

2
log ε2. (29)

4.5 Geometric MDL

From eqs. (23) and (29), the total code length for
{x̂α} and û becomes

N∑
α=1

log
∫

Vxα

√
|V0[x̂α]−|d dx + log

∫

Vu

√
|V0[û]−1|du.

− Nd + p

2
log ε2 (30)

The resulting increase in the description length Ĵ/2ε2

is (δx̄α, V0[x̂α]−δx̄α)/2ε2 + (δu, V0[û]−1δu)/2ε2 in the
first order in ε. If we substitute eqs. (20) and (26)
together with V0[x̂α]− = diag(1/λ1α, ..., 1/λdα, 0, ..., 0)
and V0[û]−1 = diag(1/λ1, ..., 1/λp), this increase in the
description length is

(δx̄α, V0[x̂α]−δx̄α)
2ε2

+
(δu, V0[û]−1δu)

2ε2
=

Nd + p

2
(31)

if higher order terms in ε are omitted. Since eqs. (20)
and (26) are obtained by omitting terms of o(ε), the
omitted terms in eq. (31) are o(1). It follows that the
total description length is

Ĵ

2ε2
− Nd + p

2
log ε2 +

N∑
α=1

log
∫

Vxα

√
|V0[x̂α]−|d dx

+ log
∫

Vu

√
|V0[û]−1|du +

Nd + p

2
+ o(1). (32)

Since ε is not a model parameter, multiplication by a
positive quantity that depends only on ε does not affect
model selection. So, we multiply the above expression
by 2ε2 and write

G-MDL = Ĵ − (Nd + p)ε2 log ε2

+2ε2
( N∑

α=1

log
∫

Vxα

√
|V0[x̂α]−|d dx

+ log
∫

Vu

√
|V0[û]−1|du

)

+(Nd + p)ε2 + o(ε2), (33)

which we call the geometric MDL.

4.6 Scale choice

In practice, it is difficult to use eq. (33) as a criterion
because of the difficulty in evaluating the third term
on the right-hand side. First, the matrices V0[x̂α] and
V0[û] given by eqs. (17) have complicated forms, so it is
difficult to integrate them. But a more serious problem
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is that the regions Vxα and Vu must be finite so that
the integrations exist. If the data space X and the
parameter space U are unbounded, we must specify in
them finite regions in which the true values are likely
to exist. This is nothing but the Bayesian standpoint
that requires prior distributions for parameters to be
estimated.

After all, reducing model selection to code length
requires the Bayesian standpoint, because if the pa-
rameters can be anywhere in unbounded regions, it is
impossible to obtain a code of finite length unless some
information about their likely locations is given. An
expedient for this is to omit diverging quantities and
higher order terms as long as they do not affect the
model selection very much, so that the final form is
independent of prior distributions.

If we note that − log ε2 À 1 as ε → 0, we may omit
terms of O(ε2) in eq. (33). Then, we obtain

G-MDL = Ĵ − (Nd + p)ε2 log ε2. (34)

This is the form proposed by Matsunaga and Kanatani
[22] by a heuristic reasoning. One need not worry about
integration in this form, but instead the problem of
scale arises. If we multiply the unit of length by, say, 10,
both ε2 and Ĵ are multiplied by 1/100. Since N , d, and
p are nondimensional constants, G-MDL should also
be multiplied by 1/100. But log ε2 reduces by log 100,
meaning that model selection could be affected by the
unit of length we use. In eq. (33), in contrast, the
influence of scale is canceled between the second and
third terms on the right-hand side.

The inconsistency in eq. (34) comes from the term
log ε2. Since the logarithm can be defined only for a
nondimensional quantity, eq. (34) should have the form

G-MDL = Ĵ − (Nd + p)ε2 log
( ε

L

)2

, (35)

where L is a reference length. In theory, it can be de-
termined from the third term on the right-hand side of
eq. (33), but its evaluation is difficult. So, we adopt
a practical compromise, choosing a scale L such that
xα/L is O(1). This can be roughly interpreted as giv-
ing a prior distribution in a region of volume Lm in the
data space X . For example, if {xα} are image pixel
data, we can take L to be the image size.

Since we are assuming that the noise is much smaller
than the data, we have − log(ε/L)2 À 1. Hence, if we
use a different scale L′ = γL, we have log γ2 ≈ 0 as long
as γ ≈ 1. Hence, − log(ε/L′)2 = − log(ε/L)2 +log γ2 ≈
− log(ε/L)2, so the model selection is not affected very
much as long as we use the scale of the same order of
magnitude.

Nevertheless, the need of such a reference length is
certainly a handicap as compared with the geometric
AIC. However, this is unavoidable, because it originates
from the very MDL principle of Rissanen, as we now
argue.

4.7 MDL in statistical inference

The difficulties and expedients described above may

appear to be peculiar to the geometric MDL and may
cast doubt on its legitimacy. In truth, however, the
same situation arises for Rissanen’s MDL, for which the
data length n is the asymptotic variable. Originally,
Rissanen presented his MDL in the following form [28]:

MDL = − log
n∏

α=1

P (xα|θ̂) +
k

2
log n + O(1). (36)

Here, the data {xα} are assumed to be sampled inde-
pendently from a (stochastic) model (i.e., the probabil-
ity density) P (x|θ) parameterized by a k-dimensional
vector θ; θ̂ is its maximum likelihood estimator. The
symbol O(1) denotes terms of order 0 in the limit n
→ ∞. The geometric MDL (34) of Matsunaga and
Kanatani [22] was inspired by this form.

This form evokes the problem of the unit of the data
{xα}. If we regard a pair of data as “one” datum, view-
ing (x1, x2), (x3,x4), ... as sampled from P (x, y|θ)
= P (x|θ)P (y|θ), the data length is apparently halved
though the problem is the same. As a result, the sec-
ond term on the right-hand side of eq. (36) reduces by
(k/2) log 2, and this could affect the model selection.
Rissanen’s MDL was criticicized for this defect (and
others). Later, Rissanen presented the following form
[30]:

MDL = − log
n∏

α=1

P (xα|θ̂) +
k

2
log

n

2π

+ log
∫

Vθ

√
|I(θ)|dθ + o(1). (37)

Here, I(θ) is the Fisher information matrix of P (xα|θ).
In this form, the effect of scale change is canceled by
the corresponding change in the Fisher information ma-
trix. However, the problem of integration arises if the
domain Vθ of the parameter θ is unbounded, just as in
the case of eq. (33), so an appropriate expedient such as
assuming a prior distribution becomes necessary. This
has been criticized by some as a handicap over Akaike’s
AIC while welcomed by others as giving extra freedoms
to adjust.

Thus, the geometric MDL and Rissanen’s MDL
share the same problem whether the asymptotic vari-
able is the noise level ε or the data length n; the proper-
ties of the one are faithfully mirrored in the other. This
is obvious if we recall that ε is effectively related to the
number n of hypothetical observations (Sec. 2.2).

5. Noise Level Estimation

In order to use the geometric AIC or the geometric
MDL, we need to know the noise level ε. If it is not
known, it must be estimated. Since ε is a constant
predetermined by the image and the image processing
algorithms independently of our interpretation, it must
be estimated independently of individual models.

If we know the true model, it can be estimated from
the residual Ĵ using the knowledge that Ĵ/ε2 is subject
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to a χ2 distribution with rN − p degrees of freedom in
the first order [8]. This can be intuitively understood
as follows. Recall that Ĵ can be viewed as the sum of
square distances from {xα} to the manifold Ŝ defined
by the constraint F (k)(x, u) = 0, k = 1, ..., r, in the
data space X . Since Ŝ has codimension r (the dimen-
sion of the orthogonal directions to it), the residual Ĵ

should have expectation rNε2. However, Ŝ is fitted so
as to minimize Ĵ by adjusting its p-dimensional param-
eter u, so the expectation of Ĵ reduces to (rN − p)ε2.
Thus, we obtain an unbiased estimator of ε2 in the form

ε̂2 =
Ĵ

rN − p
. (38)

The validity of this formula has been confirmed by
many simulations.

One may wonder if model selection is necessary at
all when the true model is known. In practice, however,
the situation that requires model selection most is de-
generacy detection. In 3-D analysis from images, for
instance, the constraint (1) corresponds to our knowl-
edge about the scene such as rigidity of motion. How-
ever, the computation fails if degeneracy occurs (e.g.,
the motion is zero). Even if exact degeneracy does
not occur, the computation may become numerically
unstable when the condition nearly degenerates. In
such a case, the computation can be stabilized by
detecting degeneracy by model selection and switch-
ing to a specific model that describes the degeneracy
[12, 18, 19, 22, 26, 38].

Degeneracy means addition of new constraints, such
as some quantity being zero. As a result, the manifold
S defined by the general constraint degenerates into a
submanifold S ′ of it. Since the general model holds
irrespective of degeneracy (i.e., S ′ ⊂ S), we can esti-
mate the noise level ε̂ from the residual Ĵ of the general
model S by eq. (38).

In statistical inference, on the other hand, the noise
variance is a model parameter, because by “noise” we
mean the random effects that account for the discrep-
ancy between the assumed model and the actual obser-
vation. Hence, the noise variance must be estimated, if
it is not known, according to the assumed model. This
is one of the most different aspects between statistical
inference and geometric fitting.

6. Is theGeometricMDLReallyBetter?

We experimentally test if the geometric MDL really
outperforms the geometric AIC as anticipated. Our
conclusion is negative. We also show that these two
criteria have very different characteristics.

6.1 Rank estimation

Given a sequence of images of points from multiple
objects independently moving in the scene, we can es-
timate the number of objects by computing the rank of
a matrix consisting of the image coordinates of these

points if there is no image noise [4, 14, 15]. In the
presence of noise, we can estimate the rank by trun-
cating smaller singular values, but it is difficult to set
an appropriate threshold.

The rank r of an n × m matrix is the dimension
of the subspace spanned by its m columns in Rn, or
of the subspace spanned by its n rows in Rm. In the
presence of image noise, each matrix element undergoes
Gaussian noise of mean 0 and a constant variance ε2

[14, 15]. The degree of freedom of an r-dimensional
subspace in Rn is2 r(n− r). Hence, the geometric AIC
and the geometric MDL are respectively given by

G-AIC = Ĵr + 2r(m + n− r)ε2,

G-MDL = Ĵr − r(m + n− r)ε2 log
( ε

L

)2

. (39)

The same form is obtained if we calculate the degree
of freedom of an r-dimensional subspace in Rm. Thus,
the expressions are symmetric with respect to n and
m, as they should be.

Let ν = min(n,m). The residual Ĵr is given by

Ĵr =
ν∑

i=r+1

σ2
i , (40)

where {σi} are the singular values, in descending order,
of the matrix. Evaluating eqs. (39) for r = 1, 2, ..., we
choose the value r that minimizes them.

If the noise variance ε2 is not known, we need to
estimate it. It can be estimated if the rank r is known
to be less than an upper bound rmax. From (38), we
obtain

ε̂2 =
Ĵrmax

(n− rmax)(N − rmax)
. (41)

We defined a 10 × 20 matrix whose elements were
randomly generated uniformly over [−1, 1]. We com-
puted its singular value decomposition in the form
V diag(σ1, ..., σ10)U>, the singular values σ1, ..., σ5 be-
ing, respectively, 3.81, 3.58, 3.09, 2.98, 2.75. Then, we
defined the matrix

A = V diag(σ1, ..., σ5, γσ5, 0, ..., 0)U>. (42)

We added Gaussian noise of mean 0 and variance ε2

to each element of A independently and estimated its
rank with rmax = 6. Fig. 1 plots the ratio of the num-
ber of times the rank was estimated to be 5 over 200
trials for each γ. We used the reference length L = 1.
Fig. 1(a) shows the case where ε is known; Fig. 1(b)
shows the case where it is estimated.

The geometric AIC predicts the rank to be 6 with
some probability even when the true rank is 5 (γ = 0).
It predicts the rank to be definitely 6 even for a small
value of γ. The geometric MDL almost always guesses

2An r-dimensional subspace of Rn is specified by r points in
Rn, but the r points can move freely within that subspace. So,
the degree of freedom is rn− r2.
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Figure 1: The ratio (%) of estimating the rank to be 5 by the geometric AIC (solid line) and the geometric MDL (dashed
line) using (a) the true noise level and (b) the estimated noise level.

Figure 2: Fitting a line, a circle, and an ellipse.

the rank to be 5 when the true rank is 5 (γ = 0), but
it keeps guessing the rank to be 5 for a wide range of
γ for which the true rank is 6.

6.2 Detection of circles and lines

Consider an ellipse that is tangent to the x-axis at
the origin O with radius 50 in the y direction and ec-
centricity 1/β. On it, we take eleven points that have
equally spaced x coordinates. Adding random Gaus-
sian noise of mean 0 and variance ε2 to the x and y co-
ordinates of each point independently, we fit an ellipse,
a circle, and a line in a statistically optimal manner by
a technique called renormalization [8, 16, 17]. Fig. 2
shows one instance for β = 2.5 and ε = 0.1. Note that
a line and a circle are both special cases (degeneracies)
of an ellipse.

Lines, circles, and ellipses define one-dimensional
(geometric) models with 2, 3, and 5 degrees of free-
dom, respectively. Hence, their geometric AIC and the
geometric MDL for N points are given as follows:

G-AICl = Ĵl + 2(N + 2)ε2,

G-AICc = Ĵc + 2(N + 3)ε2,

G-AICe = Ĵe + 2(N + 5)ε2,

G-MDLl = Ĵl − (N + 2)ε2 log
( ε

L

)2

,

G-MDLc = Ĵc − (N + 3)ε2 log
( ε

L

)2

,

G-MDLe = Ĵe − (N + 5)ε2 log
( ε

L

)2

. (43)

The subscripts l, c, and e refer to lines, circles, and
ellipses, respectively. For each β, we compute the
geometric AIC and the geometric MDL of the fitted
line, circle, and ellipse and choose the one that has
the smallest geometric AIC or the smallest geometric
MDL. We used the reference length L = 1.

Fig. 3(a) shows the percentage of choosing a line for
ε = 0.01 after 1000 independent trials for each β in
the neighborhood of β = 0. If there were no noise,
it should be 0% for β 6= 0 and 100% for β = 0. In
the presence of noise, the geometric AIC gives a sharp
peak, indicating a high capability of distinguishing a
line from an ellipse. However, it judges a line to be
an ellipse with some probability. The geometric MDL
judges a line to be a line almost 100% for small noise
but judges an ellipse to be a line over a wide range of
β.

In Fig. 3(a), we used the true value of the noise vari-
ance ε2. If it is unknown, it can be estimated from the
residual of the general ellipse model. Fig. 3(b) shows
the result using its estimate. Although the sharpness is
somewhat lost, we observe similar performance charac-
teristics of the geometric AIC and the geometric MDL.

Fig. 4 shows the percentage of choosing a circle for
ε = 0.01 in the neighborhood of β = 1. If there were
no noise, it should be 0% for β 6= 1 and 100% for β =
1. In the presence of noise, as we see, it is difficult to
distinguish a small circular arc from a small elliptic arc
for β < 1. Yet, the geometric AIC can detect a circle
very sharply, although it judges a circle to be an ellipse
with some probability. In contrast, the geometric MDL
almost always judges an ellipse to be a circle for β <
1.1.

6.4 Virtual studio

We now do virtual studio experiments, taking im-
ages of moving objects such as persons by a mov-
ing camera and superimposing them in a graphics-
generated background [6, 27, 32].

In order to generate a background image that is com-
patible to the moving viewpoint, we need to compute,
at each frame in real time, the position and zooming of
the camera, which can arbitrarily change in the course
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Figure 3: The ratio (%) of detecting a line by the geometric AIC (solid lines) and the geometric MDL (dashed lines) using
(a) the true noise level and (b) the estimated noise level.
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Figure 4: The ratio (%) of detecting a circle by the geometric AIC (solid lines) and the geometric MDL (dashed lines)
using (a) the true noise level and (b) the estimated noise level.

of the shooting. A typical technique for this is to place
a grid pattern colored in light and dark blue behind the
object and separate the object image from the pattern
image by a chromakey technique. With the true geom-
etry of the grid pattern known, the position and the
focal length of the camera can be determined if four or
more grid points are detected in the grid pattern image
[22, 27, 31]. However, the following two problems must
be resolved:

1. When the camera optical axis is perpendicular to
the pattern, the 3-D position and focal length of
the camera are indeterminate because zooming out
and moving the camera forward cause the same
visual effect.

2. Some unoccluded grid points become occluded
while some occluded points become unoccluded as
the object moves in the scene. As a result, the
computed camera position fluctuates even if the
camera is stationary or moving very slowly.

These problems, often dealt with by ad hoc measures
in the past, can be resolved by model selection: we
model various modes of camera motion and zooming
that are likely to occur and choose at each frame the
most appropriate one by model selection [22].

Fig. 5 shows five sampled frames from a real image
sequence. Unoccluded grid points in the image were
matched to their true positions in the pattern by ob-
serving the cross ratio of adjacent points. This pattern
is so designed that the cross ratio is different every-
where in such a way that matching can be done in a

statistically optimal way in the presence of image noise
[23].

Fig. 6 shows the estimated focal lengths and the
estimated camera trajectory viewed from above. Here,
we used the following models (see [22] for the details of
the computation):
• The camera is stationary with fixed zooming.
• The camera rotates with fixed zooming.
• The camera linearly moves with fixed zooming.
• The camera moves arbitrarily with fixed zooming.
• The camera moves arbitrarily with linearly chang-

ing zooming.
• Everything changes.
Degeneracy was detected in the 15th frame, and the

frame-wise estimation failed thereafter. We can ob-
serve that the geometric MDL tends to select a simpler
model and define a more rigid trajectory than the ge-
ometric AIC, which tends select a general model and
define a more flexible trajectory.

6.5 Observations

From the experiments we have done, we can observe
that the geometric AIC has a higher capability for dis-
tinguishing degeneracy than the geometric MDL, but
the general model is chosen with some probability when
the true model is degenerate. In contrast, the percent-
age for the geometric MDL to detect degeneracy when
the true model is really degenerate approaches 100%
as the noise decreases. This is exactly the dual state-
ment to the well known fact, called the consistency of
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Figure 5: Sampled frames from a real image sequence.
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Figure 6: (a) Estimated focal lengths. (b) Estimated camera trajectory. In (a) and (b), the solid lines are for
model selection by the geometric AIC; the thick dashed lines are for model selection by the geometric MDL; the
thin dotted lines are for estimation without model selection.

the MDL, that the percentage for Rissanen’s MDL to
identify the true model converges to 100% in the limit
of an infinite number of observations. Rissanen’s MDL
is regarded by many as superior to Akaike’s AIC be-
cause the latter lacks this property.

At the cost of this consistency, however, the geomet-
ric MDL regards a wide range of non-degenerate mod-
els as degenerate. This is natural, since the penalty
for one degree of freedom is heavier in the geometric
MDL than in the geometric AIC (see. eqs. (14) and
(35)). Thus, the geometric AIC is more faithful to the
data than the geometric MDL, which is more likely to
choose a degenerate model.

In the virtual studio example, the estimation by the
geometric MDL appears more consistent with the ac-
tual camera motion than the geometric AIC. But this
is because we fixed the zooming and moved the camera
smoothly. If we added variations to the zooming and
the camera motion, the geometric MDL would still pre-
fer a smooth motion. So, we cannot say which solution
should be closer to the the true solution; it depends
on what kind of solution we expect is desirable for the
application in question.

7. Concluding Remarks

In this paper, we formulated geometric fitting as
constraint satisfaction of geometric data in the pres-
ence of noise, taking the noise level as the asymptotic
variable, in contrast to statistical inference whose aim
is to give a good description of random phenomena in
terms of deterministic mechanisms and random noise
with the number of observations taken as the asymp-
totic variable. Then, we gave a new definition of the
geometric AIC and the geometric MDL as counterparts
of Akaike’s AIC and Rissanen’s MDL. We discussed

various problems in using them in practical situations.
Finally, we experimentally showed that the geometric
MDL does not necessarily outperform the geometric
AIC and that the two criteria have very different char-
acteristics.

If we take in geometric fitting the number N of data
{xα} as the asymptotic variable, the number of un-
known parameters {x̄α} (true values of the data) in-
creases as N increases. In other words, if we add one
datum xN+1, we have a new problem with a new set
of unknowns, whose instance we observe once. As a
result, the asymptotic behavior of estimation in the
limit N → ∞ becomes very anomalous. For this rea-
son, {x̄α} are often called the nuisance parameters.
One way to avoid such an anomaly is to view {x̄α}
as “random samples” from a yet unknown distribu-
tion and regard, instead of {x̄α} themselves, the (hy-
per)parameters of that distribution as the unknowns to
be estimated. Such a description is called a semipara-
metric model [2].

Such an approach is effective for dealing with prob-
lems where one can observe, at least in principle, as
many data as possible, a typical situation being time
series analysis. For example, the problem of estimating
the number of signal sources from time series data can
be reduced to estimating the rank of a matrix deter-
mined from the time series, and one can use Akaike’s
AIC or Rissanen’s MDL for that purpose [39]. In such
a problem, the goal is to estimate something with max-
imum accuracy using a minimum number of data. In
many computer vision problems, in contrast, the goal is
to estimate something with maximum accuracy using
devices with minimum resolution. The theory in this
paper is intended to such applications as illustrated in
the examples we have given.
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