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Abstract. We present a new algorithm for optimally computing from
point correspondences over two images their 3-D positions when they are
constrained to be on a planar surface. We consider two cases: the case in
which the plane and camera parameters are known and the case in which
they are not. In the former, we show how observed point correspondences
are optimally corrected so that they are compatible with the homography
between the two images determined by the plane and camera parameters.
In the latter, we show how the homography is optimally estimated by
iteratively using the triangulation procedure.

1 Introduction

Computing the 3-D position of a point from its projection in two images is
called triangulation and is a fundamental tool of computer vision [4]. The basic
principle is to compute the intersection of the rays starting from the camera
lens center and passing through the corresponding image points. However, point
correspondence detection using an image processing operation incurs errors to
some extent, and the two rays may not intersect. A naive solution is to compute
the midpoint of the shortest segment connecting the two rays (Fig. 1(a)), but
Kanatani [7] and Hartley and Sturm [5] pointed out that for optimal estimation
the corresponding points should be displaced so that the rays meet in the scene
(Fig. 1(b)) in such a way that the sum of the square displaced distances, or
reprojection error , is minimized. For this, Hartley and Sturm [5] presented an
algorithm that reduces to solving a 6th degree polynomial, while Kanazawa and
Kanatani [13] gave a first approximation in an analytical form. Later, Kanatani
et al. [11] showed that the first approximation is sufficiently accurate and that a
few iterations lead to complete agreement with the Hartley-Sturm solution with
far more efficiency. Lindstrom [14] further improved this approach.
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The aim of this paper is to demonstrate that exactly the same holds when
the points we are viewing are constrained to be on a planar surface. This is
a common situation in indoor and urban scenes. If a 3-D point is constrained
to be on a known plane, the corresponding points must be displaced so that
the rays not merely intersect but also meet on that plane. We call this planar
triangulation after Chum et al. [3]. A first approximation solution was given
by Kanazawa and Kanatani [12], while Chum et al. [3] presented an algorithm
that reduces to solving an 8th degree polynomial. The purpose of this paper
is to demonstrate that a few iterations of the first approximation lead to an
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(a) (b)

Fig. 1. Triangulation. (a) The midpoint of the shortest segment connecting the rays.
(b) The points are optimally corrected so that their rays intersect.

optimal solution. We consider two cases: the case in which the plane and camera
parameters are known, and the case in which they are not. The algorithm of
Chum et al. [3] deals with the former. The latter case could be solved using the
bundle adjustment approach, as demonstrated by Bartoli and Sturm [1] for an
arbitrary number of images, but we show that a much simpler method exists. In
fact, we show that our optimal triangulation procedure for the former case can
easily be extended to the latter.

In Sec. 2, we summarize the fundamentals about planar projection and ho-
mographies. In Sec. 3 and 4, we present an iterative algorithm for optimal pla-
nar triangulation for known plane and camera parameters. In Sec. 5, we show
that our optimal triangulation procedure can be straightforwardly extended to
the case of unknown plane and camera parameters. In Sec. 6, we do numerical
simulation and demonstrate that our algorithm and the first approximation of
Kanazawa and Kanatani [12] give practically the same value.

2 Planar Surface and Homography

Consider a plane with a unit surface normal n at distance d from the origin
of an XY Z coordinate system fixed to the scene (Fig. 2(a)). We take images
of this plane from two positions. The ith camera, i = 1, 2, is translated from
the coordinate origin O by ti after rotated by Ri (Fig. 2(b)). We call {ti, Ri}
the motion parameters of the ith camera. We assume that by prior camera
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Fig. 2. (a) Plane and camera configuration. (b) The points are optimally corrected so
that their rays intersect on the plane.
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(x, y)
(x’, y’)

Fig. 3. Two images of the same planar surface are related by a homography.

calibration the image coordinate origin is placed at the principal point and that
the aspect ratio is 1 with no image skew.

The image of the plane taken from the first position, call it the “first image”,
and the image taken from the second position, call it the “second image”, are
related by the following homography (Fig. 3) [4, 7]:

x′ = f0
h11x + h12y + h13f0

h31x + h32y + h33f0
, y′ = f0

h21x + h22y + h23f0

h31x + h32y + h33f0
. (1)

Here, f0 is a scale factor of approximately the size of the image for stabilizing
numerical computation with finite length. The 3× 3 matrix H = (hij) is deter-
mined by the parameter {n, d} of the plane, the motion parameters {Ri, ti}
and the focal lengths fi, i = 1, 2, in the following form [4, 7]:

H = diag(1, 1,
f0

f2
)R>

2 (I − t2n
>

d
)(I +

t1n
>

d − (t1,n)
)R1diag(1, 1,

f1

f0
). (2)

Here, I is the unit matrix, and diag(a, b, c) denotes the diagonal matrix with
diagonal elements a, b, and c in that order. Throughout this paper, we denote
the inner product of vectors a and b by (a, b).

3 Triangulation for Known Plane and Cameras

We first consider the case in which we know {n, d}, {Ri, ti}, and fi, i = 1,
2, hence the homography H. In homogeneous coordinates, we can write (1) as
follow [4, 7]: x′/f0

y′/f0

1

 ∼=

h11 h12 h13

h21 h22 h23

h31 h32 h33

 x/f0

y/f0

1

 . (3)

The symbol ∼= denotes equality up to a nonzero constant. We can equivalently
write (3) as x′/f0

y′/f0

1

 ×

h11 h12 h13

h21 h22 h23

h31 h32 h33

 x/f0

y/f0

1

 =

0
0
0

 . (4)

The three components of this equation multiplied by f2
0 are

(ξ(1),h) = 0, (ξ(2), h) = 0, (ξ(3), h) = 0, (5)
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Fig. 4. The point p is orthogonally projected on to p̄ on S in the 4-D joint space.

where we define the 9-D vectors h, ξ(1), ξ(2), and ξ(3) by

h =
(
h11 h12 h13 h21 h22 h23 h31 h32 h33

)>
,

ξ(1) =
(
0 0 0 −f0x −f0y −f2

0 xy′ yy′ f0y
′ )> ,

ξ(2) =
(
f0x f0y f2

0 0 0 0 −xx′ −yx′ −f0x
′ )> ,

ξ(3) =
(
−xy′ −yy′ −f0y

′ xx′ yx′ f0x
′ 0 0 0

)>
. (6)

A corresponding point pair (x, y) and (x′, y′) can be identified with a point p
= (x, y, x′, y′)> in the 4-D xyx′y′ joint space. Each of the three equations in
(5) defines a hypersurface in this 4-D joint space. However, the identity x′ξ(1) +
y′ξ(2) + f0ξ

(3) = 0 holds, so (5) defines a 2-D variety (algebraic manifold) S in
the 4-D joint space.

In the presence of noise, the point p is not necessarily on S. Optimal planar
triangulation is to displace p to a point p̄ on S in such a way that the reprojection
error

E = ‖p − p̄‖2, (7)

is minimized subject to

(ξ(k)(p̄), h) = 0, k = 1, 2, 3. (8)

Geometrically, this means orthogonally projecting p onto the variety S in the 4-D
joint space (Fig. 4). Once such a p̄ = (x̄, ȳ, x̄′, ȳ′)> is obtained, the corresponding
3-D position (X,Y, Z) is determined by solving x̄/f0

ȳ/f0

1

 ∼= P 1


X
Y
Z
1

 ,

 x̄′/f0

ȳ′/f0

1

 ∼= P 2


X
Y
Z
1

 , (9)

where P 1 and P 2 are the 3 × 4 projection matrices defined as follows [4, 11]:

P 1 = diag(1, 1,
f0

f1
)R>

1

(
I −t1

)
, P 2 = diag(1, 1,

f0

f2
)R>

2

(
I −t1

)
. (10)

Four linear equations in X, Y , and Z are obtained from (9), but because (8) is
satisfied, a unique solution is obtained [11].
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4 Optimal Planar Triangulation

We now present a new procedure for minimizing (7) subject to (8). While un-
constrained triangulation [11] involves a single constraint describing the epipolar
geometry, planar triangulation is constrained by three equations in the form of
(8), not mutually algebraically independent. For this, the first approximation
has already been presented by Kanazawa and Kanatani [12]. We modify their
method so that an optimal solution is obtained by iterations. The procedure
is as follows (the derivation is omitted; it is a straightforward extension of the
unconstrained triangulation in [11]):

1. Let E0 = ∞ (a sufficiently large number), and define the 4-D vectors

p =

0

B

B

@

x
y
x′

y′

1

C

C

A

, p̂ =

0

B

B

@

x̂
ŷ
x̂′

ŷ′

1

C

C

A

, p̃ =

0

B

B

@

x̃
ỹ
x̃′

ỹ′

1

C

C

A

, (11)

where we let x̂ = x, ŷ = y, x̂′ = x′, ŷ′ = y′, and x̃ = ỹ = x̃′ = ỹ′ = 0.
2. Compute the following 9 × 4 matrices T (1), T (2), and T (3):

T (1) =

0

B

B

B

B

B

B

B

B

B

B

B

B

@

0 0 0 0
0 0 0 0
0 0 0 0

−f0 0 0 0
0 −f00 0
0 0 0 0
ŷ′ 0 0 x̂
0 ŷ′ 0 ŷ
0 0 0f0

1

C

C

C

C

C

C

C

C

C

C

C

C

A

, T (2) =

0

B

B

B

B

B

B

B

B

B

B

B

B

@

f0 0 0 0
0 f0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

−x̂′ 0 −x̂ 0
0 −x̂′ −ŷ 0
0 0 −f00

1

C

C

C

C

C

C

C

C

C

C

C

C

A

, T (3) =

0

B

B

B

B

B

B

B

B

B

B

B

B

@

−ŷ′ 0 0 −x̂
0 −ŷ′ 0 −ŷ
0 0 0−f0

x̂′ 0 x̂ 0
0 x̂′ ŷ 0
0 0 f0 0
0 0 0 0
0 0 0 0
0 0 0 0

1

C

C

C

C

C

C

C

C

C

C

C

C

A

.

(12)
3. Compute the following ξ(1)∗, ξ(2)∗, and ξ(3)∗:

ξ(1)∗ =
(
0 0 0 −f0x̂ −f0ŷ −f2

0 x̂ŷ′ ŷŷ′ f0ŷ
′ )> + T (1)p̃,

ξ(2)∗ =
(
f0x̂ f0ŷ f2

0 0 0 0 −x̂x̂′ −ŷx̂′ −f0x̂
′ )> + T (2)p̃,

ξ(3)∗ =
(
−x̂ŷ′ −ŷŷ′ −f0ŷ

′ x̂x̂′ ŷx̂′ f0x̂
′ 0 0 0

)> + T (3)p̃. (13)

4. Compute the following 9 × 9 matrices V
(kl)
0 [ξ]:

V
(kl)
0 [ξ] = T (k)T (l)>. (14)

5. Compute the 3 × 3 matrix W = (W (kl))

W =

 (h, V
(11)
0 [ξ]h) (h, V

(12)
0 [ξ]h) (h, V

(13)
0 [ξ]h)

(h, V
(21)
0 [ξ]h) (h, V

(22)
0 [ξ]h) (h, V

(23)
0 [ξ]h)

(h, V
(31)
0 [ξ]h) (h, V

(32)
0 [ξ]h) (h, V

(33)
0 [ξ]h)


−

2

, (15)

where ( · )−r denotes pseudoinverse constrained to rank r (the smallest eigen-
value is replaced by 0 in its spectral decomposition).
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6. Update p̃ and p̂ as follows:

p̃ =
3∑

k,l=1

W (kl)(ξ(l)∗, h)T (k)>h, p̂ ← p − p̃. (16)

7. Evaluate the reprojection error E by

E = ‖p̃‖2. (17)

If E ≈ E0, then return p̂ as p̄ and stop. Else, let E0 ← E and go back to
Step 2.

The use of the pseudoinverse constrained to rank 2 in (15) reflects the fact
that only two of the three constraints in (5) are algebraically independent. This
algorithm produces the same solution as that of Chum et al. [3], which solves
an 8th degree polynomial. However, our algorithm involves only a few iterations
of linear calculus without requiring any polynomial solver, which is sometimes
inefficient and numerically unstable.

5 Triangulation for Unknown Plane and Cameras

Next, we consider the case in which {n, d}, {Ri, ti}, i = 1, 2, are unknown.
As is well known [4, 7], these parameters can be estimated by computing the
homography H between the two images, provided that the focal lengths fi are
known; we assume that they are given by prior camera calibration. Since the
analytical procedure for computing the plane and camera parameters from a
homography H has been described by many researchers in different forms [6,
15, 18–20], the problem reduces to computing the homography H from point
correspondences over the two images. The simplest method is to minimize the
algebraic distance, which is known by many names such as least squares and DLT
(Direct Linear Transformation) [4], but the accuracy is low in the presence of
noise. A method known to be very accurate is what is called Sampson error
minimization [4], and an iterative scheme was presented by Scoleri et al. [17].
However, Sampson error minimization does not necessarily compute an exactly
optimal solution in the sense of maximum likelihood [9].

We now show that by combining the Sampson error minimization with the
optimal planar triangulation described in Sec. 4, we can obtain an exactly op-
timal H. The basic principle is already presented by Kanatani and Sugaya [9],
but their theory applies only for a single constraint, which is the case in ellipse
fitting and fundamental matrix computation. Here, we extend their procedure to
homographies constrained by multiple equations. Given N corresponding points
(xα, yα) and (x′

α, y′
α), α = 1, ..., N , we compute the 9-D vector h that encodes

the homography H. Omitting the derivation, we describe the procedure:

1. Let E0 = ∞ (a sufficiently large number), and give an initial guess of h in
(6) using any method, say least squares.
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2. Let pα, p̂α, and p̃α be the vectors in (11) for the αth pair (xα, yα), and
(x′

α, y′
α), α = 1, ..., N .

3. Let T (1)
α , T (2)

α , and T (3)
α be, respectively, the values of T (1), T (2), and T (3)

in (12) for the αth pair, α = 1, ..., N .
4. Compute the 9 × 9 matrices V

(kl)
0 [ξα] = T (k)

α T (l)>
α and the 3 × 3 matrices

W α = (W (kl)
α ) in (15) for the αth pair, and let the 9-D vectors ξ(1)∗

α , ξ(2)∗
α ,

and ξ(3)∗
α be the values of ξ(1)∗, ξ(2)∗, and ξ(3)∗ in (13) for the αth pair, α

= 1, ..., N .
5. Compute the 9-D unit vector h that minimizes

J =
1
N

N∑
α=1

3∑
k,l=1

W (kl)
α (ξ(k)∗

α , h)(ξ(l)∗
α , h). (18)

6. Update p̃α and p̂α, α = 1, ..., N , as follows:

p̃α =
3∑

k,l=1

W (kl)
α (ξ(l)∗

α , h)T (k)>
α h, p̂α ← pα − p̃α. (19)

7. Evaluate the reprojection error E =
∑N

α=1 ‖p̃α‖2. If E ≈ E0, then return h
and stop. Else, let E0 ← E and go back to Step 3.

This procedure is identical to the optimal planar triangulation in Sec. 4 except
for Step 5. The expression in (18) coincides with what is known as the Sampson
error [4] if ξ(k)∗

α and ξ(l)∗
α on the right-hand side are respectively replaced by ξ(k)

α

and ξ(l)
α (the values of (6) for the αth pair). It can be minimized by the scheme of

Scoleri et al. [17], but here we use a much simpler reformulation of Kanatani et
al. [16], which is a direct extension of the FNS (Fundamental Numerical Scheme)
of Chojnacki et al. [2]. The procedure goes as follows:

1. Provide an initial value h0 for h, e.g., by least squares.
2. Compute the matrices M and L as follows:

M =
1
N

N∑
α=1

W (kl)
α ξ(k)∗

α ξ(l)∗>
α , L =

1
N

N∑
α=1

N∑
k,l=1

v(k)
α v(l)

α V
(kl)
0 [ξα], (20)

where we define

v(k)
α =

3∑
l=1

W (kl)
α (ξ(l)∗

α , h). (21)

3. Solve the eigenvalue problem

(M − L)h = λh, (22)

and compute the unit eigenvector h for the smallest eigenvalue λ.
4. If h ≈ h0, return h and stop. Else, let h0 ← h, and go back to Step 2.
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For unconstrained triangulation, the optimal algorithm of Kanatani et
al. [11], which assumes a given fundamental matrix, can be automatically con-
verted to optimal fundamental matrix computation merely by inserting a Samp-
son error minimization step, as shown by Kanatani and Sugaya [8]. In contrast,
the polynomial solving algorithm of Hartley and Sturm [5] cannot be so easily
converted to optimal fundamental matrix computation. Similarly, the optimal
planar triangulation in Sec. 4, which assumes a given homography, can be au-
tomatically converted to optimal homography computation merely by inserting
a Sampson error minimization step. In contrast, the polynomial solving algo-
rithm of Chum et al. [3] cannot be so easily converted to optimal homography
computation.

6 Experiments

Figure 5(a) shows two images of a simulated grid. The image size is 500 × 500
pixels; the focal lengths are f1 = f2 = 600 pixels. We added Gaussian noise
of mean 0 and standard deviation 1 pixel to the x and y coordinates of each
of the N (= 121) grid points. Then, we reconstructed the 3-D position of each
grid point by unconstrained triangulation [11] and by our planar triangulation.
Figure 5(b) shows the 3-D positions of the grid points. We can see that by
planar triangulation (in blue) all the points are on the specified plane but not by
unconstrained triangulation (in red). For quantitative evaluation, we measured
the root mean square reprojection error

e =

√√√√ 1
N

N∑
α=1

(
(x̂α − xα)2 + (ŷα − yα)2 + (x̂′

α − x′
α)2 + (ŷ′

α − y′
α)2

)
, (23)

where (x̂α, ŷα) and (x̂′
α, ŷ′

α) are the corrected positions of the observations
(xα, yα) and (x′

α, y′
α), respectively. We also evaluated the 3-D reconstruction

error

D =

√√√√ 1
N

N∑
α=1

‖r̂α − r̄α‖2, (24)

where r̂α is the reconstructed position of the αth point, and r̄α its true position.
The table in Fig. 5 lists the values for unconstrained triangulation [11], the first
approximation of the planar triangulation (the iteration is terminated after the
first round), which corresponds to the result of Kanazawa and Kanatani [12],
and the exact values computed by our method.

From this table, we observe that the reprojection error e increases by as-
suming planarity. This is because the corresponding points need to be displaced
so that the rays not simply intersect but also intersect on the specified plane.
Statistical analysis [7] tells us that under maximum likelihood Ne2/σ2 is subject
to a χ2 distribution with N degree of freedom for unconstrained triangulation
and with 2N degrees of freedom for planar triangulation. Hence, e should be ap-
proximately σ and

√
2σ, respectively. The values in the table in Fig. 5 are very
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(a) (b)

reprojection
error

theoretical
expectation 3-D error

unconstrained 1.99503 2.00000 4.24466

planar 1st approx.
2.83127 — 0.95937

exact
2.83124 2.82843 0.95935

Fig. 5. (a) Simulated images of a planar grid taken from different places. (b) 3-D
position of the reconstructed grid. Points reconstructed by planar triangulation (in
blue) are on the specified plane, but those reconstructed by unconstrained triangulation
[11] (in red) are not necessarily on it. The table below lists the reprojection error, its
theoretical expectation, and the average 3-D reconstruction error.

plane reprojection
error

theoretical
expectation 3-D error

known 2.83124 2.82843 0.01919

unknown 1st approx.
2.81321 — 0.13643

exact
2.81323 2.78128 0.13660

Fig. 6. The reconstructed grid by estimating the plane and the camera positions (in
red) and its true position (in black). The table lists the reprojection error of planar
triangulation by estimating the plane and the camera positions, its theoretical expec-
tation, and the average 3-D reconstruction error.

close to the prediction. However, the increase in the reprojection error e does
not mean the increase in the 3-D reconstruction error D. In fact, the 3-D recon-
struction error D actually decreases with the knowledge of planarity. We also
see that the exact values are very close to the first approximation of Kanazawa
and Kanatani [12].

Next, we tested the case in which the plane and camera parameters are un-
known. Since the absolute scale is indeterminate, we scaled the relative displace-
ment between the cameras to unit length. Figure 6 shows the 3-D positions of
the reconstructed grid (in red) and its true position (in black). Due to the error
in estimating the plane, i.e., the homography, the computed position is slightly
different from its true position. The table in Fig. 6 compares the reprojection
error e and the 3-D reconstruction error D in the known and unknown plane
cases. The values in the known plane case are the same as in the table in Fig 5
except the normalization ‖t‖ = 1.
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We observe that the reprojection error e is smaller in the unknown plane
case than in the known plane case. This is because the parameters of the plane
are estimated so that the reprojection error is minimized. Statistical analysis [7]
tells us that under maximum likelihood Ne2/σ2 is subject to a χ2 distribution
with 2N − 8 degrees of freedom and hence has expectation 2N − 8. This reflects
the fact that the homography constraint has eight degrees of freedom with codi-
mension two [7]. Consequently, the reprojection error e should approximately be√

2(1 − 4/N)σ. The value in the table in Fig 5 is very close to the prediction.
We also see that the first approximation (using only a single Sampson error min-
imization step) and the exact maximum likelihood value are very close to each
other, as generally predicted in [9]. Again, the smaller reprojection error does
not mean more accurate 3-D reconstruction. Rather, the 3-D reconstruction ac-
curacy deteriorates because of the error in estimating the plane, as shown in the
table in Fig. 5.

Note that when the camera positions are unknown, the 3-D positions of
the points cannot be reconstructed without the knowledge of planarity. If the
points are in general position, their 3-D positions and the camera positions can
be reconstructed from two views [10], but that computation fails if the points
degenerate to be coplanar [4, 7].

7 Concluding Remarks

We have presented an optimal algorithm1 for computing the 3-D positions of
points viewed from two images by using the knowledge that they are constrained
to be on a planar surface. This is an extension of the unconstrained triangulation
of Kanatani et al. [11] without assuming planarity. Our algorithm automatically
encompass the case in which the plane and camera parameters are unknown;
they are estimated merely by inserting a Sampson error minimization step. As
a result, an exact maximum likelihood estimate is obtained for the homography
between the two images.

This is a complete parallel to the scheme of Kanatani and Sugaya [8] for
computing an exact maximum likelihood estimate of the fundamental matrix
between two images merely by inserting a Sampson error minimization step in
the unconstrained triangulation of Kanatani et al. [11]. In contrast, the optimal
triangulation of Hartley and Sturm [5], which solves a 6th degree polynomial,
is not so easily converted to optimal fundamental matrix estimation. Similarly,
the optimal planar triangulation of Chum et al. [3], which solves an 8th degree
polynomial, is not so easily converted to produce an optimal homography.

We have also confirmed experimentally that the first approximation is very
close to the exact maximum likelihood estimate. Thus, we conclude that our
optimal scheme is not really necessary in practice. In fact, that the Sampson error
minimization solution is known to coincide with the exactly optimal solution up
to several significant digits in many problems [9]. In our experiment, we used the

1 The code is available at http://www.suri.cs.okayama-u.ac.jp/~kanatani/e/.
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least squares, also known as the DLT, to compute the initial value h to start the
FNS procedure described in Sec. 5. We have observed that the Sampson error
minimization iterations may not converge in the presence of extremely large
noise and that the use of “HyperLS” or its “Taubin approximation” [16] can
significantly extend the noise level range of convergence.

Our optimal homography computation does not reach a global minimum of
the reprojection error if the Sampson error minimization in Step 5 does not
return a global minimum of the Sampson error. In fact, the FNS procedure
described in Sec. 5 is not theoretically guaranteed to return a global minimum h
of the Sampson error J , although it usually does. However, if the Sampson error
J can be globally minimized, e.g., using branch and bound, in each iteration, we
can obtain a global minimum solution h in the end, because the Sampson error
J coincides with the reprojection error when the iterations have converged [9].
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