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ABSTRACT

A new approach is given to detect the surface orientation and motion from the texture on the surface
by making use of a mathematical principle called ‘stereology’. Information about the surface
orientation is contained in *features' computed by scanning the image by parallel lines and counting
the number of intersections with the curves of the texture. A synthetic example is given to illustrate the
technique. This scheme can also detect surface motions relative to the viewer by computing features of
its texture at one time and a short time later. The motion is specified by explicit formulae of the
computed features.

1. Introduction

The detection of surface orientation from texture is one of the most important
topics (or ‘modules’) of computer vision (e.g., [1]). One approach is to compute
the ‘gradient’ obtained by differentiating the apparent density on the assump-
tion that the true surface texture is ‘spatially homogeneous’. This approach was
initiated by Gibson [2, 3], and there have been several works on this line. For
instance, Bajcsy and Lieberman [4] tried a heuristic use of the two-dimensional
Fourier spectrum to detect the gradient. This approach is also viewed in terms
of actual human perception (e.g., see [5]). On the other hand, Witkin [6]
recently presented a statistical approach without assuming spatial homogeneity.
Instead, he assumed ‘directional isotropy’, i.e., the assumption that the
peripheral contours of the figures in the true texture have line segments of all
possible orientations and that their distribution is uniform over all orientations.
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This is based on the following observation. Motivated to simulate human
perception, he confines the surfaces under consideration to only those whose
orientations could be easily perceived from the texture by human eye. If the
true texture is not isotropic and has a preferred orientation, it ‘mimics’ a
projected image and thus makes it impossible to detect the true orientation
even by human eye. His procedure is summarized as follows. Suppose a given
texture image is transformed into lines and curves, say, by convolution of VG
and application of the ‘zero-crossing’ [1]. Then:

(1) dissect all the curves in the texture into small line segments by tracing
them;

(i1) classify the line segments according to their orientations and make a
histogram;

(i) Assume the true angles of the ‘slant’ and the ‘tilt’ and compute the
‘statistical likelihood’ that the observed histogram is obtained from a uniform
population distribution;

(iv) compute the likelihood for all possible angle pairs of the slant and the
tilt and search the two-dimensional domain for the pair that maximizes the
likelihood.

All (iy-(iv) are time-consuming processes, and, as is well known, the his-
togram is sensitively affected by the choice of the class interval. It must be
neither too large nor too small. In this paper, we will show that none of them is
necessary at all, if we are to adopt the same statistical assumption and to
pursue the same objective. The basic principle is stated in general terms as
follows. Suppose that the object is described by a model involving several free
parameters and that our purpose is to determine the values of these parameters
from its projected image. Given an image as input data, we first extract a small
number of values characteristic of the image, which we call ‘features’. Then, we
study mathematical relationships between these features and the object
parameters and derive a set of algebraic equations involving them. The rest of the
job is to solve them either analytically or numerically. This is a familiar approach
in pattern recognition problems. (See [7, 8] for a general framework.) The most
crucial point in this approach is a good choice of features with which enough
mathematical vigor is associated.

Our method is based on a mathematical principle called ‘integral geometry’
or ‘stereology’ [9-18]. Application of this branch of mathematics to extract
information about deformation of a given pattern was fully studied by Kanatani
[19]. In this paper, we show that a two-dimensional version of his theory serves
the above-mentioned purpose. The features we use are a pair of second Fourier
harmonics of the data of intersections between the texture and parallel scan-
ning lines. Our technique is illustrated by a synthetic example. Moreover, we
show that the same technique can be used to detect from the projected texture
alone the motion of a surface which rotates relative to the viewer. In this case,
even the directional isotropy need not be assumed. This is a good example that
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an abstract mathematical study gives rise to effective computer algorithms to
problems which otherwise require long and tedious processes and furthermore
leads to discoveries of completely new applications. This also unveils the fact
that seemingly unrelated branches of science are often closely interwoven in
terms of mathematics.

2. Two-dimensional Buffon Transform

In the following, we use polar coordinates to describe orientations, assuming a
fixed reference xy-coordinate system. Suppose curves are distributed on the
plane. The ‘distribution density’ f(8) is defined as follows. Dissect the curves
into infinitesimal line clements of length dl. The orientation of each line
element is specified by the angle 6 from the reference x-axis. Since there are
two possibilities, i.e., # and 8+ 7, choose either of them randomly with
probability 3. Let f(#) be defined in such a way that f(#)d# is the total length
per unit area of those line elements whose orientations arc between 6 and
6 + d@. Obviously f(6) is ‘symmetric’, i.e., f(6) = f(0 + ), and [§7 f(6) d6 is the
total length of the curves per unit area. (Caution: The dissection of the curves
and the random selection of orientation described above are merely mathema-
tical conceptions and are not performed actually. We could have alternatively
defined f(0) for 0 = 0 < m, copying it for 7 =< 6 <27 and dividing it by 2.)
Place a line of orientation ¢ randomly on the plane and consider the
expected number of intersections with the curves. The probability that a line
element of orientation between 6 and 6 + d@ intersects the line is equal to the
probability that the center of the line element falls within a strip of width
|sin(¢p — 0)| dl along the line (Fig. 1). Since there are f(8)dé/d! such line
elements per unit area, that probability is equal to |sin(¢ — 6)| f(8) d@ per unit
length of the probe line. The probability of finding an intersection is equal to

FiG. 1. A line element intersects the probe line when its center falls within a strip of width
|sin(¢p — )] d along the probe line.
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the expected number of intersections, so that the expected number of inter-
sections per unit length is given by

N(¢)= f” [sin(¢p — 0)| f(0) d@. (1)

This derivation is rigorous because we are not concerned with the ‘spatial
correlations’. This relation has long been well known. Kanatani [19] called it
the ‘Buffon transform’ after the pioneer more than two centuries ago [20].
Equation (1) expresses the expected value, but if we repeat the ‘line dropping’
independently a large number of times it is interpreted as the average over
those trials due to the ‘law of large numbers’. It is in this sense that (1) has a
realistic meaning.

3. Inverse Buffon Transform

If we have an inversion formula of (1), we can determine the distribution
density f(0) from the data of intersection counting. This is done by expanding
N(¢) into Fourier series

N($)= % [: LS (L G Bl mj))] : )
Gy n=s

C= L N(¢)dg, (3)
2 [2m 9 (2w .

A= % J’“ N(¢p)cos ngp dop , B, = é , N(¢)sin nep dep , (4)

where 2 designates summation of even-indexed terms only. (Terms of odd n
do not appear because N(¢) is ‘symmetric’, i.e., N(¢ + 7)= N(¢).) Then, the
distribution density f(@) is given by

1 -
f(8)= i€ [I - 2' (n*=1)(A, cos n + B, sin n())] : (5)

2 |

(See Appendix A for derivation.) Here, one might think that application of the
Fast Fourier Transform (FFT) would provide an efficient algorithm for this
conversion. But that is not the case. The FFT is an algorithm to compute all of
the prescribed N (discrete) Fourier coefficients simultaneously by an effective
scheme (e.g., [21]). Here, however, we need to compute only a few low
harmonics, and high harmonics are unnecessary or even hazardous. This is
because statistical fluctuations are inevitable for observed data and the inverse
Buffon transform drastically amplifies high harmonics. Hence, the observed
N (¢) must be properly ‘smoothed’ beforehand, say, by applying an appropriate
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low-pass filter. But application of a low-pass filter means nothing but neglecting
high harmonics of the Fourier expansion.

To be specific, only A, and B, are necessary to detect the orientation of the
surface, as will be shown later. The idea behind this is as follows. As is familiar
in differential geometry, any smooth deformation of the space is characterized
by a tensor field of second rank. On the other hand, A, and B, form, if
properly arranged, a two-dimensional tensor of second rank (cf. [22]). Hence,
these two tensors of the same rank must be related by a tensor equation
invariant to coordinate translations and rotations.

As an example, consider the pattern of Fig. 2, which is obtained after
distorting an initially isotropic random pattern drawn by random numbers. The
count of intersections are shown by the circular diagram of Fig. 3, where the
scale is chosen so that the average value becomes 1/27. We used equally
spaced parallel lines whose spacing is 1/22 of one side of the square frame for
orientations wk/N, k=0, 1,..., N —1, and we chose N to be 16, i.e., at 11.25°
intervals. Let N, be the number of intersections per unit length at ¢ = wk/N. In
view of (3) and (4), the coefficients C, A, and B, are computed respectively by

C=27 > N./N, (6)
k=0

N;l N-=1
A;=23 NicosQwk/N)/ > N

k=0 k=0

N-1 Nt (7
B, =2 > NisinRwk/N)/ > Ni.

k=0 k=0

N(8)/§3™N(8)do

F1G. 2. An artificial pattern obtained after dis- Fi1G. 3. Normalized data of intersection counting
torting an initially isotropic random pattern  on Fig. 2 and the curve fitted up to the second
drawn by random numbers. harmonics.
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f(8)/f3™(e)de

FIG. 4. The distribution density of line segments of Fig. 2 obtained by the inverse Buffon transform
of the curve of Fig. 3.

(Note the angle 27k/N. We are computing ‘second’ Fourier coefficients. First
coefficients are zero by definition.) The solid curve in Fig. 3 is
N()F N(d)dp = 1+ Aycos 2¢ + Bysin 2¢p obtained by neglecting higher
harmonics. In this case we obtain A, = —0.172 and B, = 0.068. Fig. 4 plots the
normalized distribution density

f(B)/ i f(8)do = 1—=3(A;cos 20 + B, sin 26)
0

obtained by the inverse Buffon transform. This is the ‘smoothed” distribution
density. In other words, application of a low-pass filter is automatically in-
corporated in this process. This saves all the processes of tracing curves,
executing their segmentation, classifying the segments according to their orien-
tations, making a histogram, which is very sensitive to the choice of the class
interval, and applying a low-pass filter.

4. Texture Change Due to Surface Rotation

Now, we give an algorithm to calculate the surface orientation explicitly from
the data of intersection counting. To this end, we must first introduce
parameters to describe the surface orientation. As in [6], we consider only
‘orthographic’ distortions and neglect ‘projective’ distortions. We define the
‘slant’ and the ‘tilt" as follows. Consider a plane with a texture on it, and take
an xy-coordinate system on it. Put a line passing the origin on it, and let 7 be
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its angle made from the x-axis. Rotate the plane around the line by angle o (in
whichever sense) and project the rotated plane orthographically onto the
original plane. As is seen easily, this process distorts the texture in such a way
that it shrinks by cos ¢ in the direction normal to the rotation axis but not in
the direction of the rotation axis. We call o the ‘slant” and 7 the ‘tilt’. Our task
is, therefore, to invert this process and recover the original texture only by
looking at the distorted texture.

As is easily confirmed, the distortion described above is a two-dimensional
linear transformation written as

r'=1Tr, (8)

T— 1= (1—=coso)sin’7 (1 —cos o)sin T cos 'r]

" [(1-cosa)sinTcosT 1—(1—coso)cos’ T

(9)

(See Appendix B for derivation.) A unit vector n = (cos 6, sin 8)", T standing
for transpose, is transformed to Tr, and it is no longer a unit vector. Its
length is

L(0)=Vn"T"Tn . (10)

Hence, the unit vector n' = (cos 6', sin 8)" of the transformed direction is given
by

n'=Tn/L(0). (11)

This can be viewed as a ‘map’ of a unit circle onto itself. Its *Jacobian® d0'/d6 is
given by

de’'/d6 = det T/L(0)*. (12)

(See Appendix C for derivation.) If f(#) is the original distribution density of
line segments, the distribution density after transformation (9) is then given by

foy=25-10) /S5 (13)

Here, det T appears because f(6) is defined per unit area. Thus, the trans-
formation of the distribution density has a very complicated form. The ‘trick’
we use here is that we consider only a ‘small slant’. By the Taylor expansion,
we have

1 1
coso=1—s0"+350"— -
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If only those terms up to o? are retained, which is a fairly good approximation
for —im < o <im, equations (10)-(13) and det T, respectively, become as fol-
lows:
L(8)=1— 401 —cos 2(8 — 7))+ O(c*) , (14)
[cos 6’] % [cos H'J
sin@' | |sin@

+ %Uz([cos(% Kl 6)] —cos2(0—7)

'f.““ HD +O(@Y), (15

sin(27 — 0) sin
49 _ =152 cas 2 (=) +O(c), (16)
de
det T=1-302+ O(c?). (17)

Here, O(o*) designates terms of o whose orders are equal to or higher than 4.
(See Appendix D for derivation.)
Now, suppose the initial distribution density has the form

£(0) = ﬁ [1+ ascos 20 + b, sin 26] . (18)
the distribution density after transformation (9) becomes

(-‘ .
f(0")= 5= [1+ ascos 26"+ bssin 260’

+ ajcos 40"+ bisin 4601+ O(o?) . (19)
¢’ = ¢[1 +30*(1 + 3(ay cos 27 + b, sin 27))], (20)
as= a,+ },02[3 cos 21 — Sas(a, cos 27+ b sin 27)], 21
by = by+ i3 sin 21 — 3by(a, cos 27 + by sin 27)] | (22

2 -
a’y=30%a,cos 27 — by sin 27), 3)
@
: _ ke
bi=30*(a;sin 27+ b, cos 27) .

(See Appendix E for derivation.) In particular, if the initial distribution density

is ‘isotropic’, i.e., f(0)= ¢/2m, the distribution density after transformation (9)
becomes

f(oy= 7(_77 (1+ 3|1 + 303 (cos 27 cos 20 + sin 27 sin 20')] + O(a?) .
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Hence, its Buffon transform becomes

"'I'C |
"L 222
N(#)= 5= (1 +i0%)
X (1= jo*(cos 27 cos 2¢' + sin 27 sin 2¢")] + O(o*) .
It follows that if we count intersections and express the data in the form

N(@)~ 2= [1+ Aycos 24"+ Bysin 24

by (6) and (7), we get as a first approximation

C=4dc(l+40?). (24)

| . | =
Ay = —30° cos 27, By=—j07sin 27, (25)

Hence, the slant o and the tilt 7 are given by

o = x2((A)* + (Bo))", (26)
B;
! -1 222
5> tan A,’ A><0,
7= g, 27)

=1

57r+%tan A, >0,

IJ}

where tan™' designates the principal value, —S7 <tan'x <im (If A,=0, then
7=—47 for B;>0 and 7=im for B,<0. If A,=B,=0, o is not defined
because there is no slant.) The whole procedure is summarized as follows.

(i) Scan the plane by parallel lines along orientations ¢ = wk/N, for k =
0,1,...,N—1, and let N; be the number of intersections per unit length of the
scanning lines.

(i) Compute A, and B, by (6) and (7).

(iii) The slant o and the tilt 7 are given by (26) and (27).

As for the example of Fig. 2, the slant o and the tilt 7 are readily available,
since A, and B, are already obtained. We obtain o = +49.3° and 7= —10.8°,
(Note that the tilt is given as the angle of the ‘minor symmetric axis’ of Fig. 3 or
the ‘major symmetric axis’ of Fig. 4.)

This demonstrates how simple our procedure is. In fact, no histogram or
maximization search is necessary. The above A, and B, are the ‘features’
characterizing information about the orientation of the surface. Once they are
obtained, explicit arithmetic computations determine the surface orientation.
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Of course, (26) and (27) give only a first approximation, and if the slant o is
large, our solution might be a poor approximation. If that is the case, however,
we can still use the solution as a ‘first guess’ and recover the original texture,
i.e., extending the texture l/cos o times along the direction (—sin 7, cos 7)".
Then, perform (i), (ii) and (iii) again and make a small correction. In this case,
the slant must surely be small. This successive correction can be made as often
as is desired.

5. Determination of Surface Motion

In the previous section the assumption of ‘directional isotropy’ played a crucial
role, as was pointed out by Witkin [6]. If the texture is anisotropic, the scheme
described there is doomed to fail. On the other hand, textures of artificial or
man-made objects usually have systematic structures far from isotropic. That is
why Witkin [6] proclaimed that he would avoid ‘artifacts’. But is there any way
to exploit this strong bias of man-made texture? Equations (18)—(23) suggest
that, if we have a ‘prior knowledge’ of the true texture, the same process can
apply to determine the surface orientation. This consideration leads to the idea
of determining the ‘relative orientation’. Suppose we look at a surface ortho-
graphically at a certain instant, and suppose the surface is rotating around an
unknown axis with an unknown angular velocity (or equivalently the viewer or
the viewing apparatus is moving). Then, a short time later, we look at another
image slightly distorted compared with that a moment ago. According to
(18)(23), we can estimate the relative orientation and thus know the rotation
axis and the angular velocity.

Determination of three-dimensional motion from a projected two-dimen-
sional motion is one of the important problems in computer vision [1]. Usually,
the ‘correspondence’, i.e., which point has moved to which point, is sought first.
After obtaining the velocity field or the ‘optical flow’, the three-dimensional
motion is analyzed (e.g., [23,24]). Here, however, there is no need of cor-
respondence detection, which is usually a time-consuming process. This is
because all relevant information is contained in the features A, and B,.

Suppose the initial distribution is approximated by the form of equation (18).
Compute A, and B; of the initial texture by (7). Similarly, compute A5 and B}
of the texture a short time later. Then, the relative slant o and the relative tilt 7
are determined as follows (see Appendix F for derivation).

A= G- (B)As— A+ A:By(Bi— By), (28)
B = A,B,(Ai— A+ G — (A))(B3i— By), (29)

o= 1'2(A2+ 32)114”% B (AZ)Z 5] (Bz)z[m ; (3(])
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B
%tan”z. A<,

3D

B
]: 1 ]
cmtatan™t —, A>0.

(if A=10, the convention in the previous section applies.) For example,
consider the texture pattern of Fig. 5(a). Fig. 5(b) is the same texture except
that it is rotated with slant 30° and tilt 45°. Fig. 6 shows the normalized data of
intersection counting and the curves fitted up to the second harmonics. Here,
again we used parallel lines whose spacing is 1/22 of one side of the square
frame but this time scanned for 18 different orientations at 10° intervals. Since
both of the textures consist only of line segments of 6 different orientations, the
corresponding distribution densities have fairly large high harmonics, especially
those of the sixth, as can be seen from Fig. 6. Thus, characterizing the textures
only by second harmonics might seem a poor approximation. However, if we
apply (28)(31), we obtain o = =32.2° and 7= 45.7°, a remarkable precision in
view of the crude approximation. So far, no ‘spatial homogeneity’ has been
assumed, though our examples happened to be spatially homogeneous.

In the above, we assumed that there is no ‘in-plane rotation’, i.e., rotation
around an axis perpendicular to the surface. However, this in-plane rotation
can also be included. In this case, the parameters to be determined are the
slant o, the tilt 7 and the in-plane rotation (2. These three parameters are
determined if the three features C, A, and B, are to be used. However, extra

NV NP
Py [

/ AN

FIG. 5. (a) An artificial periodic texture pattern. (b) The orthographic projection of the pattern (a)
after being inclined with slant 30° and tilt 45°.
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F1G. 6. Normalized data of intersection counting on Fig. 5, circles for (a) and black dots for (b), and
their corresponding curves fitted up to the second harmonics, solid curve for (a) and dashed curve
for (b).

care must be taken. First, the texture must be spatially homogeneous, because
we use C which characterizes the length per unit area. (But actually this
limitation is not essential and can be avoided if we remove det T from (13) and
formulating the rest similarly.) Second, which is more crucial, the in-plane
rotation {2 must be small compared with the slant ¢ and must be of order
O(c?). This is understood easily if we note the fact that, if the surface is slanted
by o, the distortion of the projected image is of order O(c?) while, if the in-
plane rotation is {2, its effect is of order O({2). Since we are dealing with a
linearized theory, £2 must be of order O(o?). Then, o, 7 and (2 are determined

by

o Q_MA_')_ 12

e ) )
et /(-GG e
02 = [[A, A} + oAl sin 27 ~ 7o) 2 Al (34)

where we have used symbolic notations

lAll= (A + (B2, (35)
(A, A)= AA3+ B,B3,  [A, Al = A,B5— B,A}, (36)

and 7, is the angle defined by

cos 27 = AL||A|l, sin 27, = BJ/||A] .
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Fi1G. 7. The pattern of Fig. 5(b) rotated clockwise by 10°,

(See Appendix G for derivation.) The solution is not unique due to the
multiple-valuedness of cos™'. In fact, (32)-(34) determine two sets of solutions.
and the one with smaller absolute value of {2 must be chosen. For example,
consider Fig. 7. This pattern is the same as that of Fig. 5(b) except that it is
rotated clockwise by 10°. We obtain o = £32.9°, +=37.7° and 2 = —10.4°. The
slant o and in-plane rotation {2 are fairly accurate. The tilt 7 may appear to be
inaccurate, but we must be careful. Since the tilt 7 is determined by neglecting
the coupling with the in-plane rotation, it is only determined within errors of the
magnitude of £ In other words, slanting followed by in-plane rotation is
indistinguishable from in-plane rotation followed by slanting in the linearized
theory, so that what we can best expect is 35°<7<45° Our prediction is
approximately the midpoint of that interval.

6. Concluding Remarks

Now, we summarize the merits and demerits of our scheme. A major ad-
vantage is the simplicity of the computation process per se. Once the number
of intersections are counted, we can immediately compute the slant, the tilt and
even the in-plane rotation by explicit formulae, and no iterative search is
necessary. This is especially significant if we are dealing with moving images on
line. This efficiency comes from an abstract mathematical theory and not from
a simulation of human perception. We do not claim that our process is actually
what happens in human brain. Or’ the contrary, our scheme is, in a sense.
superior to human perception (e.g., see Fig. 2).

The second point is memory space saving. Once the features are computed,
the two-dimensional image is not necessary any more. It can be erased out of
the memory. Only the computed features are to be stored. This is a profit of
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feature detection in general. The third point is the ‘invariance’ property for
motion detection. In the case of no in-plane rotations, our method is invariant
to translations and dilatation-contractions, i.e., the viewer or the viewing
apparatus can move right, left, up, down, forward and backward, because our
second harmonics are ‘invariant features’ (cf. [7,8]) with respect to these
transformations. Even if the in-plane rotation is admitted, the scheme is
invariant to translations. If we were to seek the correspondence of the texture
and analyze its optical flow, we would face the problem of ‘decoupling’, i.c., we
would have to separate rotational field from translational or dilatational-
contractional field (cf. [23, 24]). In the present case, the decoupling is automa-
tically incorporated in the process of feature detection.

On the other hand, there remain several problems to be solved. One of them
is, of course, how to implement the scanning and the intersection counting.
Physical implementation may be easy, since we only have to count the current
pulses while moving a photo-cell along a prescribed line on the texture, but this
is a time-consuming process. If the image is stored in memory cells, an
appropriate algorithm must be devised. Although apparently there is no
essential difficulty, it is out of the scope of the present paper (e.g., see [25]).
Another problem arises when the entire field of view does not constitute a
single plane surface moving rigidly as a whole. In this case, we must detect and
cut out the portion of the image approximately in rigid motion. This process
might cancel out the advantage of our process in some cases. However, if the
textured surface is a flat face surrounded by a closed contour line moving
against a non-textured background, detection of the moving region may be
easy. In any case, thorough evaluation of the use of our method cannot be
made without considering its purpose, objects observed, apparatuses used, etc.
and is again out of the scope of this paper.

Finally consider the accuracy of computation. It is affected by the following
factors.

(i) The spacing of parallel scanning.

(i) The number of orientations to be scanned.

(iii) The magnitudes of high harmonics of the distribution density of the
texture.

(iv) The magnitudes of the slant o and the in-plane rotation (2.

The spacing of parallel lines must be determined relative to the coarseness or
fineness of the texture. The number of scanning orientation need not be large
because we only have to compute zeroth and second harmonics. The third
factor indicates that the distribution must be approximated fairly weil by using
only zeroth and second harmonics. In other words, the texture must not be
such that it consists of line segments of only a narrow range of orientations or
lacks line segments of a certain range of orientations at all. The fourth arises
because ours is a linearized theory, and the slant ¢ and the in-plane rotation (2
must not be large, as was already mentioned.
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On the other hand, since the motion of a plane is a rigid motion, the
correspondence of any three different points on it would suffice to compute the
motion, as is usually done in the analysis of the velocity field or the optical
flow. However, this strategy is extremely sensitive to local errors, as is well
known, so that we must repeat the process for a number of different sets of
corresponding point pairs and take an average, or some global ‘smoothness
constraint’ such as minimization of squared variation or Laplacian must be
introduced heuristically (cf. [26]). Our scheme, on the other hand, computes in
essence an average over all visible texture from the beginning and hence is
‘global’, as the term ‘integral geometry’ suggests, so that it is insensitive to local
errors as long as they cancel each other after integration.

Our method is very important from a theoretical point of view because it is
not heuristically devised but based on a rigorous mathematics. The basic facts
we revealed are:

(i) the distribution density of line segments is obtained by intersection
counting, and no curve segmentation is necessary;

(i) the slant and tilt of a textured surface are explicitly determined by the
two second Fourier coefficients of the data of intersection counting;

(iii) the relative motion of a textured surface can be detected without
determining the correspondence of the texture.

At the same time, it also has a practical significance as has been pointed out
so far. Meanwhile, our mathematical analysis can be used for other purposes as
well. For example, we can detect the motion of a plane surface without any
texture on it but surrounded by a closed contour. In this case, the surrounding
contour itself can be regarded as a ‘texture’, and the detection is done without
knowing correspondence [27, 28].

Appendix A

Note that the operation of (1) ‘commutes’ with rotations. Namely, put

Pl

Bf(6) = J“" lsin(0 — 67)| f(6") do’

and

R.f(6)=f(6 — a),

i.e., B is the Buffon transform operation and R, is the rotation by «, both of
which operate on the vector space L*(S") of functions defined on a unit circle S!
and transform a function in it into another. Then, we can see that



228 K. KANATANI
BR.f(0) = J lsin(0 — 6] f(0' — ) 46"
0

= f Isin((6 — a)— 0)| f(6") d6’
= R.Bf(0) .

i.e., BR, = R,B or B= R.'BR,. Hence, the Buffon transform operator B is an
‘invariant operator’ with respect to rotations and therefore must have e™’
(n=0,=%1,%2,...) as eigenvectors, because they span one-dimensional irre-
ducible representations of the two-dimensional rotation group. (A formal proof
of generalization to any dimensionality requires the group representation
theory, especially ‘Schur’s lemma’ and the orthogonality of irreducible
representations, but in this case this is checked easily.) Since |sin 6] is ‘sym-
metric’, i.e., [sin(@ + )| = [sin 8], n must be even, and since [sin 8] is ‘even’, i.e.,
|sin(—6)| = |sin 8], ¢ and ¢ ™, or cos nf and sin n6, must share the same real
eigenvalue. This is a complete parallel to the ‘convolution theorem’ for ‘time
invariant’ or ‘stationary’ linear systems and filters.

Let the nth eigenvalue be A, Then, from the above group theoretical
consideration, we must necessarily have

J“ [sin(@ — )| cos n@ df = A, cos ne,

4]

Jh |sin(6 — ¢)| sin n6 d6 = A, sin ne .
0

Since they are identities in ¢, we can substitute any value of ¢ in these. Let
¢ =0. Then, we obtain from the first equation, assuming that n is an even
integer,

2n w2
A j [sin @ cos n@ do = 4J sin  cos nf dé
0 0

~4/(n*-1).

Thus, if we expand f(#) into Fourier series

f(e)= EL;: [l + i' (a, cos nf+ b, sin n@)} y (A1)
- F”f(o)da. (A2)

2w 2 (2=
a, = %J f(@)cosn6 dh, b, = ?J f(8) sin n6 do (A.3)
0 ]
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(terms of odd n do not appear because f(0) is symmetric), the expected number
of intersections becomes

N(d)= 2%; [l - i' Plt_l (a, cos ne + b, sin nqb)] .

n=2

Conversely, if N(¢) is given in the form of (2). we obtain f(#) in the form of

).

Appendix B

Let us choose a new XY-coordinate system such that the X-axis coincides with
the axis of rotation (Fig. B.1). In this coordinate system, the transformation
takes the form

[)S{f] T [(l) Co(:cr] [ﬂ (B.1)

The two coordinate systems are related by
H
y.

Hence, as is well known, the coordinate transformation of map (B.1) by (B.2) is

(B.2)

cosT —sinT]|[X
sin T cost ] LY ]’

P(X,Y)
\'P'(X',Y')
X
/\'C/ %
0

FiG. B.1. The transiormation on the xy-plane induced by slant o and tilt = If a new XY-
coordinate system is taken so that the X -axis coincides with the axis of rotation. the transformation
is viewed as shrinking by cos o along the Y-axis.
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given by
[x'] _[cosT —sin -r] [1 0 ] [cos T —sin .—]“ l\l
y'l lsint coszll0 cosefisint cosz] Ly
¥ [cos T —sin 7] [1 0 ] l cosT SinT ] [\]
sint cosT]|0 coso]|l—sinT cosT]ly

=[1—(1—coso-)sin37 (I—cosa-)sin:rcosr][x]
(1-—cosag)sintcost 1—(l—cosa)cos’7 ||y

Appendix C

Consider Fig. C.1. Let P and Q be two nearby points on the unit circle with its
center at the origin and let @ and 6+ dé be their polar angles, respectively.
Suppose P and Q are mapped to P' and QF, respectively, by a linear
transformation T with positive determinant (such as (9)), and let their polar
angles be 6" and '+ d@’, respectively. Draw an arc starting from P’ with the
center at the origin and let R be the intersection with line OQ'. Since the
length of OP" is L(8), the area of sector P'OR is sL(6)> d6'. The length of OQ’

1S
L(6+d6)= L(0)+ L'(6) d6+ O((de)),

so that the area of the remaining region P'RQ" is ;L'(0)L(6) d@ do’ + O((d6)).
Thus, the area of the region P'OQ’ is 3L(6) d@'+ O((d6#)?). On the other hand,
this region is the image of sector POQ under the linear transformation T, so
that its area must be det T times the area of POQ, namely 3det T d6. Equating
them and solving the equality for d@'/d6, we obtain (12) in the limit d6 - 0.

y
RQ'
P I - s
//

/ Q__qo
/8’ \P

( o

\ 0 "

FiG. C.1. Proof of d#'/df = det T/L(6). Note that the arca of P'OQ’ is det T times that of POQ
and that OP' = L(0).
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This result is easily generalized to the space of any dimensionality by the
same argument. Namely, if u is the invariant measure on the n-dimensional
unit sphere $*' and T is a linear transformation of R" with positive deter-
minant, the Jacobian of the map induced on the sphere $"! at n (a unit vector)
is given by du'/dp = det T/L(n)", where L(n) is defined by (10).

Appendix D

In the analysis of infinitesimal linear transformations, the Cartesian tensor
calculus is most suitable because all expressions are invariant to the choice of
the (Cartesian) coordinate system and the roles of the x- and y-axes are
symmetric. If we use the polar coordinate system, we must resort to various
‘addition theorems’ of trigonometric functions to change the coordinate system
and the roles of the x- and y-axes are not interchangeable, since the polar
angle is measured from the x-axis.

Now, let T; be the component representation of the transformation T (with
respect to an arbitrary coordinate system). In the following, we adopt the
Einstein summation convention over repeated indices. First, we do not restrict
T to be the form of (9) but consider all regular transformations with positive
determinant. They form a group GL*(2, R) sometimes referred to as the
‘deformation group’, which is a Lie subgroup of GL(2, R), the general linear
transformation Lie group. The deformation group GL*(2, R) is the connected
component of GL(2, R) containing the identity. As is well known in the theory
of Lie group, the connected component of a Lie group containing the identity
is completely characterized by its ‘Lie algebra’ or ‘infinitesimal transfor-
mations’.

The Lie algebra is constructed as follows. Let T be resolved into the identity
transformation I and the deviation from it

Ty =iep+ Ky,
where §; is the Kronecker delta. The Lie algebra is constructed by considering
only linear terms in F, ie., by neglecting terms of O(F?). The so called
‘distortion tensor’ F constitutes four-dimensional vector space, which is
decomposed into ‘invariant’ (with respect to coordinate transformations) and
mutually ‘orthogonal’ (with respect to inner product A;B;) subspaces. First, F
is resolved into the ‘symmetric part’ and the ‘skew part’ as follows:

Fi=e;+ry,
ei=Fy (=3F;+F)),
ri=Fy (=3F;— F)).
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Here, () and [] designate symmetrization and antisymmetrization of indices,
respectively, as indicated above. The tensors ¢; and r; are often referred to as
the ‘strain tensor’ and the ‘rotation tensor’. The strain tensor e; is further
resolved into the ‘scalar part’ and the ‘deviator part’ as follows:

1 :
e; = 3€0; + &,

- ey 1
€jj = €yjj) (= €y — 2€10;7) -

Here, {} designates the operation of taking the deviator part, i.e., making the
trace zero by linearly combining its contracted components as indicated above.
The scalar e is often called the ‘volumetric strain’ and ¢&; the ‘shear strain
tensor’. The volumetric strain ey forms a one-dimensional subspace and the
shear strain tensor ¢&; forms a two-dimensional subspace, while the rotation
tensor r; forms a one-dimensional subspace. These three subspaces are in-
variant and mutually orthogonal as is easily checked, and they generate
isotropic expansions (or contractions), pure shear deformations and rotations,
repsectively. They form ‘one-parameter subgroups’ exp(tew), exp(ré) and
exp(tr), respectively, of GL'(2, R). (Note exp A = 25 A¥/k!, which is ab-
solutely convergent.)

Making use of these infinitesimal generators, (10)-(12) are expressed as
follows:

L(n)= 1+ jeq + émn; + O(F?), (D.1)
H:' =11 + é',-,-n,- + rijhty — é“nm,n; 7 5 O(Fz) 3 (D2)
40— 1 - 28, + O, (D.3)
det T =1+ ey + OF?). (D.4)

In our case of (9), we obtain

. l—coso [cos2r sin 27 z
&7 7 [sin 21 —cos 21-] 2 (D.5)
Tr e = —(1 - cos o), r=0. (D.6)

If we substitute (D.5) and (D.6) together with n = (cos 6, sin 6)" in (D.1)-(D.4)
and adopt the approximation coso = 1 — Yo?+ 250t — - - -, we obtain (14)-(17).
The treatment here might seem too pompous for the purpose of merely
deriving (14)-(17), but the mathematical concepts introduced here plays a
fundamental role in the subsequent calculation.
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Appendix E

Here, we consider transformations of a Fourier series induced by infinitesimal
linear transformations of the space or, to be precise, the Lie algebra of the
deformation Lie group GL'(2, R). Since linear transformations and their
infinitesimal generators are best manipulated by the Cartesian tensor calculus,
the Fourier series itself need be expressed as a (Cartesian) tensor equation
invariant to coordinate transformations. This is done as follows. If we consider
only even harmonics as in our present case, we can express the Fourier series in
the form

C

f(n)= o [1+ Dymn; + Dyggrgngpgny + -+ - -], (E:1)

where D, ; and ¢ are computed from f(n) as follows.

e = [ sy dut), E2)
Dy, =2 [ mm, - mgf ) dpa ). E3)

Here, p(n) is the invariant measure on the unit circle S' normalized to 27 (i.e.,
the polar angle), and {} designates the operator of taking the ‘deviator part’ of
a symmetric tensor (i.c., a tensor whose value is unchanged by permutations of
the indices) defined as a linear combination of various contracted components
of that tensor in such a way that any contraction of it makes it zero.
Specifically, if A ; is a symmetric tensor, its deviator part is given by
Agi3=c8A,i, T €88,A: i + €380

i i . i ki

oot St Gl ¥55

bt i i *

where () designates symmetrization of indices (i.e., the sum of the tensors
produced by all possible permutations of its indices divided by the factorial of
the number of the indices) and ¢}, are given by

1
i (=17% m (n - yn)
m = -

2 p—=-im\ Im
For example,

!
A= Ay —28;Am,
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1
A(fjk” == Aijkf Y S(EjAH)mm s ﬁatr}gk.'}Ammmz P

3 9 1
A{ijklmn} = Al‘jk!nm g lé‘ﬁ;‘Akinm}pp & Vlzs(ijakamn)p;x}q T ES(HS;CISMH)A[?[XM!T .

The tensor D;_; of (E.3) is sometimes called the ‘multipole moment tensor’
or the ‘fabric tensor’, and the form (E.1) the ‘multipole moment expansion’.
However, expansion (E.1) is nothing but a Fourier series. Note that in our case
of two dimensions each index takes either 1 or 2. Since D,-l__‘,}' is a deviator
tensor, it has only two distinct values. Let a, be the value of those components
whose indices have an even number of ones and b, that of those with an odd
number of ones. Then, a, and b, are just the Fourier coeflicients (A.3) and c¢ is
the same as (A.2) in the expression (A.1).

Now, we consider transformation (13) induced by a linear map T of the
space. Let the infinitesimal generators of T be defined as in Appendix D.
Suppose f(n) is initially given in the form

f(n)= ﬁ [1+ Dynin;] . (E4)

Then, by careful manipulation with the symmetries and invariances of tensors
in mind, we obtain the distribution density after transformation (13) in the
following form.

fn') = ?fﬁ [1+ Dinin}+ Dian'ninini] + O(F?), (E.5)
¢’ = c(1-jew +16;Dy), (E.6)
D‘;",' = D,'j “+ 3(,;,‘1' i .Igi.;ij“D,‘j o 2Dikrk,- 3 (E.?)
D;nﬂ.'.' = QSE;(UDH) 25 ],;J‘S(jjék!m Dm]u‘) r %B[ijak.')émnDnm . (ES)

Here, || indicates exclusion from the symmetrization operation. If we apply
(D.5) and (D.6) to these and use the polar angle 6, (E4)}(E.8) reduce to
(18)(23). Perhaps, careful substitution of (14)~(17) in (18) would derive (19)-
(23) and it would take just as much complication as calculation of (E.5)~(E.8).
However, in deriving (E.5}(E.8) we can always check the symmetry and
invariance properties of tensor equations in the calculation process, so that
tensor calculus is probably ‘safer’ than direct calculation in terms of the polar
angle. Moreover (E.5)-(E.R) is valid for an arbitrary linear transformation, not
only that of (9). Hence, this result is readily applicable when rotations or other
deformations are superposed as happens in the analysis of arbitrary motion of
the object (e.g., [27]).
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Appendix F

The Fourier coefficients a, and b, of f(#) are related to the Fourier coefficients
Ajand B; of N(¢p) by ax=—3A; and b, = —3B; (cf. (2) and (5)). Hence, we also
have ai= —3A; and bi= —3Bj. If we substitute these in (21) and (22), we can
rearrange those equations in the matrix form

35— (A2 *Ang] {03 cos 21'] 7 [Aﬁ— Az]
_g[—Ang i- (Bl lo?sin2r | |Bs-B, )"

which is a set of simultaneous linear equations in o? cos 27 and &2 sin 27, giving
the solution in the form

|:U'2COS 27‘] = -4 [A] F1
o*sin27]  i-(AP-(B:y LB’ (F.1)

where A and B are given by (28) and (29). This is a set of two equations. If we
square both sides of these two equations and add them together, we obtain

o' = 16(A>+ BY)/G— (A2 — (B2),

from which results (30). If we take ratios of both sides of the equations of (F.1),
we obtain

tan 27 = B,/ A,,

from which results (31).

Appendix G

The two-dimensional rotation around the origin by 2 is given by the following
linear transformation

B [cos (9} sin .Q]
T lsinf2  cosf2]°

The corresponding infinitesimal generator is given by taking the skew part

0 sin@)_ [0 0 .
"[smn 0 ]‘[n ru]“LO(‘”'

(Note sin 2 = 2 —¢02>+---) The Lie algebra is a vector space, so that an
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additional infinitesimal transformation is just superposed linearly. In view of
(E.7), the effect of this additional rotation on the Fourier coefficients is that
20b, and —20a, are added to (21) and (22), respectively, while (20) is
unchanged. Putting

¢ =3C, gl

ar= _‘3A2, ﬂ!_:: _SAS_.

b;=-3B,, bi=-3B;

£l

in these equations, we obtain the following three equations.

C' = C[1+ jo*(1 —3(A; cos 27 + B, sin 27))] (G.1)
A} = A;— i cos 21 — 3A,(A; cos 27 + B, sin 27)] — 208, (G.2)
B} = B, — o?[§sin 27 — 3By(A, cos 27 + B, sin 27)] + 20A, . (G.3)

In order to solve this set of equations for o, 7 and {2, we must realize that (G.2)
and (G.3) are really a single tensor equation. Hence, we must be careful about
the symmetries and invariances of tensor equations. Now, if we define angle 7,
by (37), we have

A cos 27+ B, sin 21 = ||A|| cos 2(7 — 7)) ,

where the notation ||A|| is defined by (35). First, we obtain from (G.1)
s/C" > 2
cos 2(t— 79) = — 3 (—E — = fw“)/a"”AH : (G4)

Next, if we multiply (G.2) by A; and (G.3) by B, and add them together, we
obtain

(4, A") = AP+ IAIGIAIP - o cos 2(r — 70) ,

where the notation (A4, A") is defined by (36). Substitution of (G.4) in this
eliminates cos 2(7 — 1), and we obtain the expression for ¢ in the form of (32).
If we substitute this form of ¢ back in (G.4), we obtain the expression for 7 in
the form of (33). On the other hand, if we multiply (G.2) by B; and (G.3) by A,
and subtract the former from the latter, we obtain

[A, A'] = — i\ A| sin 2(7 — 7o) + 202||A|P,

where the notation [A, A'] is defined by (36). From this results (34).
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