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ABSTRACT

The 3D shape of a textured surface is recovered from its projected image on the assumption that the
texture is homogeneously distributed. Our method does not require recognition of the “structure”—
regularity, periodicity, parallelism, orthogonality, etc.—of the texture distribution. First, the
“homogeneity™ of a discrete texture is precisely defined in terms of the ‘‘theory of distributions.
Next, distortion of the observed texture due to perspective projection is described in terms of the
“first fundamental form" expressed as a function of the image coordinates. Based on this result, the
3D recovery equations for determining the surface shape are derived for both planar and curved
surfaces. Some numerical schemes for solving these equations are proposed. Ambiguity in the
interpretation of curved surfaces is also analyzed. Finally, some numerical examples for synthetic
data are presented, and our method is compared with other existing methods.

1. Introduction

Seeing a pattern with some kind of regularity, or fexture, converging on a
receding plane, humans can easily perceive the 3D depth of the scene. This fact
has long since interested many researchers, and efforts have been made to
simulate, by a computer, this seemingly “highly intelligent” human preception.
This problem is now widely known as 3D recovery of shape from texture.

In general, 3D recovery from texture is possible if we have some ‘“prior
knowledge” about the true texture; if the observed texture has properties
different from those of the true texture, the 3D shape is computed in such a
way that the discrepancy is accounted for. For example, if the true texture is
known to be an array of elements with a known shape, say circular, the surface
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gradient can be inferred from the observed distorted shape, say elliptical, of
the elements. If the true texture elements are known to be distributed
periodically at intervals of the same length, the surface gradient can be
computed from the ratio of the converging interval lengths. If the true texture
elements are aligned on parallel lines, or if individual texture elements have
parallel line segments, the surface gradient is inferred from the “vanishing
points” defined by pairs of such lines. Similar reasoning is possible if the true
texture elements or their alignments are known to possess orthogonality or
symmetry of some kind.

One major issue about these approaches is that we must first recognize the
“structure” of the “true” texture—regularity, periodicity, collinearity, parallel-
ism, orthogonality, symmetry, and so on. This is in general very difficult to
automate by computer, since the “observed” texture does not exhibit the
expected regularity, periodicity, etc. (That is why the 3D shape can be
recovered!) Despite this difficulty, these ‘“‘structure-based approaches” have
been attempted by many researchers (e.g., [9, 10, 13-15, 20]). Perhaps this is
because humans apparently seem to employ this type of inference; recognition
of such texture structures is very easy for humans.

Then, a new approach which does not require the recognition of texture
structure appeared. It is based on statistical assumptions about the true texture
distribution. For example, if the true texture is distributed isotropically,
namely, the line segments constituting the texture have no preferred orienta-
tions, the 3D surface shape can be computed from observed *preferred
orientations”. This approach was first proposed by Witkin [21], and the
algorithm was improved by Davis et al. [4]. Kanatani [11] gave a rigorous
mathematical description of the problem and explicit analytical formulae by
invoking tensor calculus and stereology. )

Another possible statistical assumption is homogeneity. When observed, the
texture looks dense on the surface part away from the observer and sparse on
the part near the observer. This phenomenon has also been considered to play
a central role in human preception of the outside world (cf. Gibson [6-8],
Sedwick [19]) and many attempts have been made to simulate this effect by a
computer. However, most of the arguments were based on naive intuition or
heuristics (e.g., Bajcsy and Lieberman [2], Rosenfeld [16], Zucker et al. [22]).
It was not until Aloimonos and Swain [1] and Dunn (5] that the problem was
treated in analytical terms based on the imaging geometry of perspective
projection. However, their formations involve many ad hoc approximations
and assumptions.

In this paper, we give a mathematically consistent treatment based on
differential geometry and the theory of distributions—in particular, we show
how to relate the “discreteness” of texture correctly with the description of
“smooth surfaces” in “differential terms”. As it turns out, the problem of
shape from texture does not require heuristics or ‘high intelligence”; we need
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not recognize the structure of the texture at all. We will demonstrate that the
problem is easily solved by a simple “‘computational’ principle.

We first give a precise definition of the homogeneity of a texture. If a texture
consists of dots or line segments, the texture density, in its literal sense, is a
singular function taking the value « at the texture dots or line segments and 0
elsewhere. How can we say that the density is uniform? How can we tell that a
given texture is homogeneously distributed? As we will see, how to define
texture homogeneity is the core of the theory; all subsequent procedures
depend on it. We define the texture density in a formal abstract way based on
the theory of distributions (Schwarz (17, 18]).

We next give a mathematical analysis of the texture distortion due to
perspective projection. We describe the perspective distortion in terms of the
first fundamental form expressed as a function of the image coordinates. Our
formulation consists of two stages. First, we present the 3D recovery equations
for determining the surface shape for both planar and curved surfaces.
Although these equations are difficult to solve directly, various theoretical
consequences can be inferred, among which is the ‘‘ambiguity” in the interpre-
tation of the surface shape.

Then, we propose numerical schemes for solving these equations, and also
give some numerical examples for synthetic images. Various aspects related to
applications and implementation of our method are also discussed.

In Appendices C and D, our formulation is compared with those of
Aloimonos and Swain [1] and Dunn [S]. By doing this, we can better
understand the essential mathematical structure of our formulation. At the
same time, we can see that their methods are both explained in our mathemati-
cal framework.

2. Texture Density and Homogeneity

We study, in this section, how to define the density of a discrete texture.
Consider textures composed of dots and line segments. If we are to seek a
function p(x, y) describing the amount of texture divided by the area it
occupies, we are forced to consider delta-function-like singularities, the value
of p(x, y) being = at the texture elements and 0 elsewhere, since the area of a
dot or a line segment is 0. These types of singularities make analytical
treatment very difficult. One way to avoid singularities is to define the texture
density in a formal abstract way as a functional.

2.1. Dirac delta function

Let us recall the definition of the (Dirac) delta function §(x). Mathematically, it
is not a function; if a function takes the value 0 except at one point, its integral
must be 0, since one point is of Lebesgue measure 0. It must be regarded as a
linear functional T mapping a smooth (say C™) fest function m(x) having a finite
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support (i.e., taking nonzero values only in a finite interval) to the value m(0):
T[m(x)] = m(0). This functional is a well-defined mathematical entity.
However, it usually appeals more to our intuition if we denote it by
J 8(x)(-) dx rather than T[-]. As a result, the above definition is written as
[ 8(x)m(x) dx = m(0). Hence, 8(x) is merely a symbolic notation. In fact,
usually we do not use the delta function 8(x) itself: It is useful only when it is
multiplied by some function and integrated. Hence, it suffices to define only
the rule of integration; we need not worry about its singularity. This is the view
developed in detail by Schwartz in his theory of distributions [17, 18].

2.2. Texture density as a functional

We fix a window W on the textured image, and define the texture density
p(x, y) of a dot texture over the window W formally as follows:

Definition 2.1 (Dot density). The texture density p(x, y) of a dot texture over
window W is a linear functional over a set /#, yet to be specified, of test
functions m(x, y) defined by

[ o, e, axday= 3 i, 3, 1)

w PEW

where Pi(x;, y;) are the positions of the dot texture elements on the image
plane.

Since the texture density is defined formally as a functional, we need not
worry about the singularities of p(x, y). We can just “imagine” that p(x, y)
takes the value o at texture elements and 0 elsewhere. All we need is the “rule
of integration”. The texture density of a line segment texture is similarly
defined as follows.

Definition 2.2 (Line segment density). The texture density p(x, y) of a line
segment texture in window W is a linear functional over a set #, yet to be
specified, of test functions m(x, y) defined by

p(x, yym(x, y)dxdy = 2 | m(x(l), y()) dl, (2:2)
Lew;

w

where L, are the line segments on the image plane, and the right-hand side is
the sum of curvilinear integrals along all line segments parameterized by arc
length /.

Here again, we can “imagine” that p(x, y) takes the value e along texture
line segments and 0 elsewhere.
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2.3. Homogeneity

Now, we are in a position to define homogeneity of the texture density. Let
p(x, y) be the texture density formally defined above. We would like to say
that the texture is homogeneous if p(x, y) = ¢, where c is a constant. However,
since the texture density is defined as a functional, this requirement must be
interpreted in the weak sense or in the sense of a distribution. Namely

Definition 2.3 (Homogeneity). A texture density p(x, y) is homogeneous if

fp(x, y)ym(x, y)dx dychm(x, y)dxdy, (2.3)

w

for test functions m(x, y) of the set , yet to be specified, where ¢ is a constant
independent of the test functions m(x, y).

The constant ¢ can be interpreted as the texture density in the intuitive sense,
i.e., the “total number of dots per unit area” or the “total length of line
segments per unit area”. Combined with the definitions of (2.1) and (2.2), this
definition is restated as follows.

Lemma 2.4. If the texture density is homogeneous, the following approximation
holds:

fm(x, y) dx dy
w

1
= > m(x;, y;) for dot textures ,
€ pew
~{, (2.4)
p > f m(x(l), y(I)) dl for line segment textures .
Lew;

Equation (2.4) can be viewed as the Monte Carlo method to integrate a test
function m(x, y), where 1/c is the “area per dot” or the “‘area per unit length
line segment”. This type of Monte Carlo method is known to give a good
approximation only when the distribution of the sampling points is “homoge-
neous”. Here, we use this very fact to ‘“‘define” the homogeneity. Namely, our
definition is equivalent to saying that a texture is homogeneous if the Monte
Carlo method of integration over the texture elements yields a good approxi-
mation.
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Remark 2.5. If we choose, as a test function m(x, y), the characteristic
function,

1, (x,y)€ES,

Xs(x, y) = { 0, otherwise, (2.5)

of a region S, equation (2.4) states that the number of dots or the length of the
region § is approximately proportional to the area of S, the constant ¢ being
the number or the length of texture elements in the region S divided by its
area. This is the interpretation which most people informally think of as the
definition of homogeneity (cf. the method of Aloimonos and Swain [1]
recapitulated in Appendix C).

Remark 2.6. As can be seen from Definitions 2.1 and 2.2, the definition of
homogeneity depends on the choice of the set J# of test functions m(x, y).
Even if the texture is sparse, it can be homogeneous for very smooth test
functions m(x, y) (i.e., viewed “coarsely” or viewed “with low resolution™),
while it may not be homogeneous for rapidly varying test functions m(x, y)
(i.e., viewed “finely” or viewed “with high resolution”). Figuratively, we are
looking at a discrete texture through “filters” m(x, y), and the homogeneity is
affected by the “coarseness” of the filter through which we are looking. If, for
example, we take A = {exp iw(kx/a + ly/b)}, assuming that the window W is a
rectangle of size 2a X 2b, and set a certain threshold for the approximation of
(2.3), we can define the degree of homogeneity by those (k, l) satisfying the
approximation. However, we do not go into the details, since what we have
described so far is sufficient for the subsequent discussions.

2.4. Change of variables

Since the integration over the texture is defined as a functional by (2.1) and
(2.2), we must be careful when we change the variables of integration: The
rule for usual integration does not apply here. Consider two smooth functions
x'(x, y), y'(x, y) such that the correspondence between (x, y) and (x’, y') is
one-to-one. Let x(x’, y'), y(x’, y') express the inverse relationship. Suppose
we use x’, y' as new coordinates. Let W' be the window in the x’y’-domain
corresponding to the window W in the xy-domain. Define the transformed
texture density p'(x’, y') also as a functional by

f p'(x', y)m'(x', y')dx' dy’ = f p(x, yym(x, y)dxdy, (2.6)
w’ w

where function m’'(x’, y') is defined by m'(x’, y')=m(x(x’, y'), y(x', y')).
Then, the action, as a functional, of the new density p’(x’, y’) on a given
function m'(x’, y') is given as follows.
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Proposition 2.7 (Density transformation).

P'(x', y")
_ {P(X(X Y,y y)) for dot textures,
“le(x(x’, y)), y(x', y'DI(x', y', ') for line segment textures,

(2.7)

where

o _‘9_"_)2 (91)2),2 (a_xa_x a_ya_Y)u
I"(x,y,t)—{((ax, + ax’ 6Ho+2 ox' ay’ +ax’ ay’ fifz

* ((:%?) * (aa—yy‘))’}z (2.8)

and t' = (t}, t;) is the unit tangent vector to the line segment at point (x', y') in
the x'y'-domain.

Proof. First, consider a dot texture. Let P}(x’, y') be the point in the x’y’-
domain corresponding to point P,(x, y) in the xy-domain. Then, we see that

[ oe, yyme, ) ax ay

w

Z m(x;, y;)

PEW

2 mx(xi, yi), yoi y) = X m'(x), y7) (2.9)

Piew’

i

Since this relation defines the action of density p’(x’, y'), as a functional, on
the test function m'(x’, y’) in the x’y’-domain, we obtain (2.7) for dot
textures.

Next, consider a line segment texture. Let L} be the line segment
(parameterized by arc length ) in the x'y’-domain corresponding to the line
segment L, (parameterized by arc length /) in the xy-domain. Then, we see
that

[ pe, yymex, y) dx dy

w

= 3 [ e, yapa
Lew)
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S meorol(E) ()

dx dx 3y ay ) (( ax )2 ( dy ) ) }”2 ,
— — + —
+2< ax’ 3y’ T ax oy L, + 3y’ + 3y’ t; d/

3 [mwen, yeprway, yeneenar. @)
iCW'L;

Since this defines the action, as a functional, of the density p'(x’, y') on the
test function m’(x’, y’) in the x’y’-domain, we obtain (2.7) for line segment
textures. O

Remark 2.8. For the usual integration of a continuous density p(x, y), we
would have

p'(x', y') = p(x(x', y'), y(x', y DA, ¥, (2.11)
where A(x’, y') is the Jacobian defined by

ox/ax’ ax/ay’ (2.12)

AW’ y')= aylax' aylay’

In summary, a continuous density is multiplied by the Jacobian 4, which is the
magnification ratio of “area”, while a line segment density is multiplied by I',
which is the elongation ratio of “length”, and a dot density is multiplied by 1,
which is the increase ratio of “number”. Note that the number of dots is
preserved by a continuous mapping. Also note that the elongation ratio I’
depends on the orientations of individual line segments as well as their
positions.

3. First Fundamental Form

In this section, we describe the 3D shape of a surface in terms of the image
coordinates.

3.1. Perspective projection

Take a Cartesian XYZ-coordinate system in the scene in such a way that the
Z-axis corresponds to the camera optical axis. We take the point (0,0, —f) on
the negative side of the Z-axis at distance f from the XY-plane as the viewpoint
corresponding to the center of the lens. The constant f is often referred to as
the focal length, though it does not necessarily coincide with the exact focal
length of the lens.
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z

Z=Z(XY)

\

; ; (XN y

1}
¥
[}
1
Fig. 1. Point (X, Y, Z) on the surface Z = Z(X, Y) is projected onto point (x, y) on the image
plane by perspective projection, point (0,0, —f) being the viewpoint.

We regard the XY-plane as the image plane, but when describing positions
on the image plane, we use lower-case letters x, y. Namely, we fix an image
xy-coordinate system in such a way that the x- and y-axes respectively coincide
with the X- and Y-axes on the image plane. A point (X, Y, Z) in the scene is
mapped by perspective projection onto the intersection (x, y) of the XY-plane
with the ray connecting the point and the viewpoint (Fig. 1). It is easily seen
from Fig. 1 that the relationship between the space coordinates X, Y, Z and
the image coordinates x, y is given by

x=f}_:_—XZ, y=f]:_—yz. 3.1)

3.2. Surface differential

Consider a smooth surface in the scene, and assume that it is described by an
equation of the form of Z = Z(X, Y). If this equation 1s given, equations (3.1)
establish a one-to-one correspondence between the image plane and the
surface part visible from the viewpoint. We first study how the space coordi-
nates X, Y, Z change on the surface. This is seen by taking differentials dX dY,
dZ along the surface. From (3.1), we obtain

fdX—-xdZ=(f+ Z)dx, fdY—ydZ=(f+ 2Z)dy. (3.2)
Taking the differential of the surface equation Z = Z(X, Y), we obtain
dZ=PdX+ QdY, P=9dZ/dX, Q=9Z/3Y. (3.3)

Equations (3.2) and (3.3) can be viewed as a set of simultaneous linear
equations in dX, dY, dZ. The solution is obtained in the form
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dx=—1+Z2 555 (/= @ dx+ 0z y],

T Af-Px-
f(f-Px=0Qy)

=i?%[de+Qdy].

dY [Pydx+(f— Px)dy], (3.4)

dz

3.3. First fundamental form

Consider two points (x, y), (x +dx, y + dy) infinitesimally far apart on the
image plane. Let ds be the “3D distance’ between the correspondigg points on
the surface (Fig. 2). If we substitute (3.4) into ds>=dX*>+dY>+dZ>? we
obtain:

Proposition 3.1 (First fundamental form).

2
ds*= > g; dx; dx;, (3.5)
|

ij=

where x, = x, x, =y, and

= (1"'Z/f)2 2y Yy 2 2 )_’_2
gll—(l_(Px+Qy)/f)2[(l+P) 2Qf+(P +Q)f2]’
(1+ ZIf)

12 =

X Y _(p? A

f f f (3.6)

___ (+ziy
27 1= (r+ 0/

[(1+Q2)—2P;—‘,+(P2+Q2)}’f—z].

y
(mdx,yody)

/

(x.y)

0 x
Fig. 2. The infinitesimal line segment connecting (x, y) and (x + dx, y + dy) on the image plane
corresponds to an infinitesimal line segment on the surface whose length is ds.
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y Jdetig)dxdy
L/

dy
(xy)

0 X

Fig. 3. The ratio of the area of an infinitesimal region on the surface to the area of the
corresponding region on the image plane is given by Vdet(g).

Equation (3.5) is called the first fundamental form, and g = (g;), i,j=1,2,
the first fundamental metric tensor. The first fundamental form indeed plays a
fundamental role in computing 3D quantities of the surface in terms of the
image coordinates. For example, consider a smooth curve L on the image
plane. The true arc length of the corresponding curve on the surface is given by
the integration

2 1/2
st=f(z 8; dx; dxj)
L ij=1

L

on the image plane.

Consider an infinitesimally small square on the image plane defined by four
points (x, y), (x +dx, y), (x, y +dy), (x +dx, y + dy) (Fig. 3). The area of
this square on the image plane is dx dy, but the true area of the corresponding
region on the surface is, as is well known, Vdet(g) dx dy. From equations

(3.6), we obtain
Vaei(g) = V1i+ P+ QX1+ ZIf)?
e =T mropF

Hence, the true area of the region on the surface corresponding to a region S
on the image plane is given by integration

j Vdet(g) dx dy
S

(3.7)

on the image plane.

3.4. Planar surfaces

If the surface is a plane whose equation is Z = pX + qY + r, where p, q, r are
constants, (3.1) can be solved for X, Y in the form

_ _(f+nx _ _(f+ny _f(px+qy+r)
Frw Ve 2T fepmgy o O
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Then, (3.6) and (3.7) become:

_ (1'|"'/f)2 [ 2_45. ) 2 2 }’_2
Qe 7 X,y _ 2. axy]

8= T (px+ an) /) _pq+qf+pf (p +‘I)fz] 821(;9)
- (1+r/f)2 2_,, X 2 2 x_z .

2 2 2
V1+p2+ g1+ rlf) . (3.10)

(1= (px+qy)/f)

Vdet(g) =

4. Surface Shape Recovery from Texture

In this section, we propose a mathematical principle for reconstructing the
surface shape for observation of inhomogeneous texture density p(x, y) based
on the assumption that the true surface is homogeneously textured. For this
purpose, we first study how the texture density p(x, y) is distorted by perspec-
tive projection. Since the texture density is defined abstractly as a functional,
what we need to know is how the observed density p(x, y) acts on test
functions m(x, y). From this, we derive the 3D recovery equations for de-
termining the surface shape in terms of observables computed on the image
plane.

4.1. Distortion of homogeneous texture

Suppose the equation Z=Z(X, Y) of the surface under consideration is
known. Consider temporarily a curvilinear uv-coordinate system on the sur-
face. (We will soon do away with any surface coordinate systems.) Since the
surface equation is known there is a one-to-one correspondence between the .
image plane and the visible part of the surface, so that we can express the
correspondence in the form of u=u(x, y), v=uv(x, y), or x =x(u,v), y=
y(u, v). Let W, be the region of the surface corresponding to the window W on
the image plane. Let p,(u, v) be the homogeneous texture density on the
surface. It is a functional, and the homogeneity is expressed in the form

f po(u, v)my(u, v)dS,=c j my(u, v)dS, , (4.1)
Wo

Wy

where m,(u, v) is a test function, and dS; is the area element of the surface.
Since the right-hand side is an ordinary integration, it can be rewritten in
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terms of the image coordinates if we note the relation dS, = V/det(g) dx dy;
namely, it becomes

cfm(x, y)Vdet(g)dx dy, (4.2)

where we put m(x, y) = m,(u(x, y), v(x, y)).

On the other hand, if we want to rewrite the left-hand side of (4.1) in terms
of the image coordinates, the expression depends on whether the texture
consists of dots or line segments. For a dot texture, the left-hand side of (4.1)
is rewritten, from (2.6) and Proposition 2.7, as

Z m(x;, ;) (4.3)

PEew

which is a quantity that can be computed on the image plane (i.e., an
“observable”).

For a line segment texture, the left-hand side of (4.1) is rewritten, from
Proposition 2.7, as

LE f m(x(l), y()I(x(1). y(1), (1)) dl, (4.4)
iCWL.'

where [ is the arc length, ¢ is the unit tangent vector along the line segments on
the image plane, and

I(x,y,0)=Vg, (x. )1} +28,,(x, )ity + goa(x, ¥)13 . (4.5)

Function I'(x, y, £) describes the elongation ratio of the line segments on the
surface compared with their projections on the image plane. The fact that it
depends on the orientation of the line segment passing through the point where
I'(x, y, t) is evaluated makes the subsequent analysis very difficult. Here, we
adopt the approximation

I(x, y, )= (Vdet(g))'"” . (4.6)

Then, as we will show now, dot textures and line segment textures can be
treated in the same formulation.

The interpretation of approximation (4.6) is that the line segments are
distributed nearly isotropically, and hence if the area is enlarged \/det(g)
times, the individual line segments become roughly (\/det(g))'’? times as long.
As a result, if we regard m(x, y)I'(x, y) = m(x, y)(Vdet(g))'’? as a new test
function m(x, y) (ignoring the dependence on orientation ¢), we can express
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the left-hand side of (4.1) in the form of

[ o, pymz, pyax ey, (4.7)

which is a quantity that can be computed on the image plane (i.e., an
“observable”). The right-hand side of (4.1) then becomes

cfm(x, y)(Vdet(g))"'* dx dy . (4.8)

Remark 4.1. Equations (4.2) and (4.8) are intuitively interpreted as follows.
Consider a small region S on the image plane, and let S, be the corresponding
region on the surface. For a dot texture, the number of dots in S is equal to the
number of dots in S,, while the area of S is 1/V/ det(g) times that of S,. Hence,
the texture density in S is Vdet(g) times that in S,,. For a line segment texture,

if the texture is nearly isotropic, the total length of the line segments in S is
approximately 1/(\/det(g))'’? times that of S,,, while the area of S is 1/\/det(g)

times that of S,. Hence, the texture density in S is (\/det(g))'’? times that in
So-

4.2. Principle of surface recovery

Our principle of surface recovery is as follows.
(1) Let the object surface be modeled by a parameterized equation in the

form
Z=2Z(X,Y;a,B,7,...), (4.9)
where a, B, ¥, ... are the surface shape parameters to be determined.

(2) From the above assumed surface model and the geometry of perspective
projection (equations (3.1)), compute the first fundamental metric tensor

g(x1 Y a, ﬂ7 Y,--')=(g;,-(x, y;a, ﬁ’ 7,'~~))’ i’j=1;27 (410)

which is a function of the surface shape parameters a, 8 v, . . .
(3) Provide appropriately test functions m(x, y), m,(x, y), mﬁ(x, y), -
and compute the corresponding observables

J; =fp(x, yym,(x, y)dxdy, i=0,1,2,..., (4.11)
w

which can be obtained by evaluating the test functions m,(x, y) at the texture
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points or integrating them along the line segments on the image plane
(equations (2.1) and (2.2)).

(4) Replacing the approximation symbol in (4.1) with equality, and taking
the ratio J,/J, to eliminate the unknown true texture density value ¢, we obtain
the 3D recovery equations to determine the surface shape parameters in the

form

Ji _ Jwmi(x, y)(Vdet(g(x, y; @, B, v, .. )" dx dy
Jo  Jwmy(x, y)(Vdet(g(x, y; a, B, 7,...))) dxdy’
i=1,2,.... (4.12)

Here, « =1 for a dot texture (equation (4.2)) and « = 1/2 for a line segment
texture (equation (4.8)). Equation (4.12) provides a set of nonlinear equations
in unknowns a, B, 7, ... . The values of these surface shape parameters are
determined by solving these equations.

Remark 4.2. It is intuitively easy to understand that this is the most “natural”
formulation derivable from the assumption of texture homogeneity. Since the
change of the texture density is observed through the change of the “surface
area” under perspective projection, the equation must be expressed in terms of
Vdet(g). However, since the texture elements are discretely distributed, we
cannot observe \/det(g) point-wise: We need some ‘‘smoothing’ over a finite
domain. The test functions m;(x, y), yet to be specified, do the required
smoothing.

5. Recovery of Planar Surfaces

5.1. 3D recovery equations

The simplest case is when the surface is a plane. If we model the planar surface
by equation Z = pX + qY + r, we can obtain V/det(g) in the form of (3.10).
Hence, we obtain

¢ [ mix, y)(VaTR)" dx dy

= oVTrp gy (14 7) [ DY (5.1)

(1—(px + qy)/f)’

From this, we obtain the following equaifons.

Proposition 5.1 (3D recovery equations). The surface gradient (p, q) is de-
termined by solving
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m;(x, y) — (JilJy)my(x, y)
(1—(px+qy)if)™

Remark 5.2. Equation (5.2) provides two equations in the unknowns p, g, and
can be solved in principle, say, by iterative search in the pg-plane (the gradient
space). Evidently, three test functions m,(x, y), m,(x, y), m,(x, y) are suffici-
ent for determination of the two unknowns p, g. However, we can also use
many more test functions and determine p, ¢ by some fitting scheme, say the
least square method (cf. the method of Dunn [5] recast in Appendix D).

dxdy=0, i=1,2. (5.2)

w

Remark 5.3. Note that the denominator becomes zero (i.e., \/det(g) becomes
«) along the line px + qy = f on the image plane. This line is known as the
vanishing line or horizon of the planar surface. Evidently, we must avoid this
line by appropriately confining the size and location of the window W. Then,
we can assume that no vanishing line exists inside the window W. In fact, if the
vanishing line is observed, there is no need to use the texture to estimate the
surface gradient; the equation px + qy = f the vanishing line immediately tells
us the gradient (p, q).

5.2. Small gradient approximation

Suppose the surface gradient (p, q) is close to zero compared with the focal
length f: px+ qy <f. Then, in the integrand of the basic equations (5.2),
Taylor expansion around the image origin O yields

1 3k
S =1+ (pxtgy)+--. 5.3
(L= (px+ ) /) 7Pt (53)
If we put

L =fmi(xr y)dxdy,

w

3k
M,=— jxm,.(x, y)dxdy, (5.4)

f w

N;

3« f ym(x, y)dxdy,
f w

for i=0, 1,2, and neglect higher-order terms, the 3D recovery equations (5.2)
reduce to the following linear equations in p, q:

[ =G voGmelle)--[gmie]. o9
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A simple choice of the test functions m,(x, y), i=0,1,2, is
my(x, ) =1, mx,y)=x, mxy)=y. (5.6)

This means that we compute the following observables:

1y=[ ot pyaxay,
iy (5.7)
J, = fxp(x, y)dxdy, /= f yp(x, y)dxdy.
w

w

Note that (J,/J,, J,/J,) is the center of gravity of the texture inside the window
W. In other words, if each dot has unit mass or each line segment has unit mass
per length, the center of gravity (x, y) is given by (J,/J,, J,/J,). Thus, what we
need is

5 Jwsole Ddxdy oy _ fu yels ) dxdy
Jo  Jwolx,y)dxdy ’ Jo  Jwe(x,y)dxdy °

In particular, if the window W is a rectangle defined by —a< x< q, -b =<y =<
b, equations (5.4) reduce to

(5.8)

=

Ly=4ab, M,=4ka’blf, N,=4xab’lf,
Li=L,=M,=M,=N,=N, =0,

and hence the solution of (5.5) is given by

p=L5, ¢=L7. (5.9)
kb

This result is intuitively interpreted as follows: Suppose (p, g)=(0,0), i.e.,
the surface is viewed orthogonally. Then, the center of gravity should coincide
with the image origin O if the texture is truly homogeneous. Otherwise, the
orientation and the ‘“‘shift” of the center of gravity give the surface gradient
(p, ¢) in the form of (5.9).

Remark 5.4. The accuracy of the result depends on both the number or length
of the texture elements in the window W and their distribution patterns. Let N
be the number or the length of the texture elements in the window W. The rule
of thumb is that the error is approximately proportional to 1/V'N when the
texture is completely random, and is approximately proportional to 1/N when
the texture is very regular and periodic (Appendix A). Textures we often
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encounter in natural scenes and man-made objects are usually regular and
periodic tessellations. In such cases, high accuracy is expected. However, as we
discussed in Section 1, the computer need not recognize the regularity or
periodicity, if they exist.

6. Numerical Scheme of Planar Surface Recovery

As we showed in Section 5, the solution of the 3D recovery equation is
immediately obtained if the gradient ( p, gq) is close to zero (equation (5.5)). If
it is not close to zero, we need some iterative scheme.

6.1. Principle of camera rotation simulation

Suppose the camera is rotated by a certain angle around the center of the lens
(i.e., the viewpoint) relative to a stationary scene. As a result, a different
image is seen on the image plane. However, the essential information con-
tained in the image is the same if we ignore the existence of the boundary of
the image plane: A point on the image plane corresponds to a “‘ray” passing
through the viewpoint, and the same rays are still observed after the camera is
rotated. In particular, the state of occlusion is not affected by the camera
rotation. In fact, we can obtain an explicit expression of the image transforma-
tion due to the camera rotation. The transformation does not require any
knowledge about the 3D scene.

Suppose the camera is rotated by an orthogonal matrix R = (r;;), i,j =1, 2,3,
around the viewpoint. The rotation of the camera by R is equivalent to the
rotation of the scene by R™' (=R"). By rotation R, a point (X, Y, Z) in the
scene moves to a point (X', Y’, Z') given by

X" i T Iy X
Y T T2 a2 Y (6.1)
f+Z s rp rpl]lftz

(cf. Fig. 1). This point is projected onto (x’, y') in the image plane given by
x'=fX'I(f+2Z"), y'=fY'/(f + Z'). Combining this with (3.1), we obtain
the following transformation rule:

rpX+r,y+rsf

i_puXxtrytof
rax+ryuytraf

risXtryay+raf’

y'=f (6.2)
For a more general discussion of this camera rotation transformation and its
invariance, see [12].

Suppose the surface gradient is not small. We first apply the method of
Section 5. Let ( p,, q,) be the computed gradient. This estimation may not be
accurate. Suppose the camera is rotated in such a way that the estimated
surface becomes parallel to the new image plane. If we regard this new image
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as the input, the surface gradient should be small. Hence the method of the
preceding section can be applied. Let (pg, q;) be the computed surface
gradient. If this newly estimated surface is rotated back into the original
camera orientation, we obtain a better estimation (p,, ¢,). This process can be
applied repeatedly, producing a sequence of estimations (p;, q,;), i=
0,1,2,..., until no further improvement is made. This is the basic concept of
the scheme of camera rotation simulation.

We should emphasize the fact that the camera need not actually be rotated,
because the image transformation is given in the analytical expression (6.2).
However, we should also note that the transformed image need not be
generated. This is because all we need is the values of the observables J,,
i=0,1,2. As we will now show, we can derive the ‘“‘transformation rule of
observables”; we only need to compute the “transformed observables” J|,
i=0,1,2. To be specific, if we want to compute observable J; for test function
m'(x', y') over the ‘“‘transformed image” p’(x’, y') inside the “transformed
window” W', we can compute it by integrating a ‘“modified test function”
m(x, y) applied to the “original image” p(x, y) inside the “original window”

[ me,yroe yyax ay = [e ote axdy . (63)
w’ w

6.2. Camera rotation simulation

Let (py, g,) be the initial estimate of the gradient. The corresponding surface
unit normal vector rn = (n,, n,, n;) is given by

— P 9 1
n=m—mm——, T e, T e
Vi+pe+a V1+pg+qp Vi+pg+ 4o
(6.4)
This vector makes angle
N=cos"'n (6.5)
3

with the unit vector £ =(0,0,1) along the Z-axis. The unit vector which is
normal to both n and k is given by

= kxn (g4 =Py, 0) (6.6)

B ln x k| - \/p(2,+qf,

If the camera is rotated around this vector I by angle 2 screw-wise, the
estimated surface becomes parallel to the new image plane. The corresponding
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rotation matrix is given by

ryn rnp, n
R= 72 Iy, n,|, (6‘7)
—hy Thy n,
where
2 2 2 2
_ bt q, _ Pogu(ns— 1) _ qoh3 T py 6.8
n=T T o r'a= 2,2 rn= 2+2-(-)
Po™ 9o Po T 99 Po ™ 40

Hence, the image transformation is given by

raxtrpy—nf FipX +rypy—n,f

x(x’y)=f n|x+n2y+n3f, )’(x,}’)=f mx+n2y+n3f.
(6.9)
Its Jacobian is
_|ox'lox ax'/ay
A V)= ayrrax ay'lay
. , + ! , —_
O )ty ) —myf (6.10)

(nx+n,+ naf)2

We can see that (6.9) maps the image origin O onto point ( fp,, fq,). If the
original window W is placed near the image origin O, the transformed window
W' is located near point ( fp,, fg,). Let (p’, q') be the true surface gradient
relative to this new x'y’-image plane. Our next aim is to estimate this gradient
(p’, q'). Taylor expansion around point (fp,, fq,) yields

1
(1 — (p'xl + qryl)/f)Sx
1 ' '
= 0=pp —ag)™ L TAE = fp) + B~ fa0) ++),
(1-pop’' — q0q 6.1
where , ,
B o = 3¢g (6.12)

, B 2 —
f(A=pyp’' — 4949") f(A=pop' = q0q")

If we use mi(x’, y'), i=0,1,2, as the test functions, and substitute (6.11) into
the 3D recovery equations (5.2) in the x'y’-domain, we obtain a set of linear
equations which has the form (5.5), namely

[M{-(Jilfé)Mé N{—(JI/JG)N{)][A ]=_[L{—(Ji/16)L6]
M;— (J3100)Mg N3 —(J11o)Ng ILB L= (o) Lo )’ 13)



SHAPE FROM TEXTURE: GENERAL PRINCIPLE 21

where
Ji= f mi(x', y')p'(x', y') dx' dy’, (6.14)
W

Li= [ mige, y)ydxay',
J

M= [ @ = foomite yy ax dy, (615)
J

N;= [ (o~ faomix, y) dx' dy
J

for i=0,1,2, and p'(x’, y') is the transformed texture density.
Once A, B are determined by solving (6.13), the gradient (p’, q’) is
determined by solving (6.12), which are rewritten as

(5 5[4

If the computed gradient (p’, q') is sufficiently close to zero, the initial
estimate is correct. Otherwise, the camera is rotated back into the original
orientation, and the surface gradient is transformed into

mp tri,q —n, rep’ +rng’ —n

= - 7 , = == . 6.17
Py np' +n,q' +n, ' n,p'+n,q +n, (6.17)
(Note that the “‘camera” was rotated by R. This means that the surface was
rotated by R™' (=R") relative to the camera. Hence, the surface is rotated
back into its original position by rotation (R™')™' = R.) This process can be
iterated to compute ( p,, ¢,), (P;, 45), . - . until convergence.

6.3. Computation on the original image

In the above procedure, the only quantities which must be computed for the
transformed density p'(x’, y') over the transformed window W' are equations
(6.14) and (6.15). We now show that they can be computed for the original
density p(x, y) over the original window W by changing variables. For a dot
texture, we see from Proposition 2.7 that if we put

';ii(xv ,V) = m:‘(x'(x’ y)’ yl(x’ y)) ’ i=07 1’ 21 (618)

(6.14) is written as
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Ji= Z m(x;, y,), i=0,1,2, (6.19)

PEW

which can be computed over the original image.

For a line segment texture, we obtain, from Proposition 2.7, the following
rule. (Note that variables x, y in Proposition 2.7 correspond to x’, y’ here, and
variables x', y’ there correspond to x, y here.)

Ji= 2 f A (x(l), yO)VES +2Ftt, + GE2dl, i=0,1,2. (6.20)
L,cw
1 Ll

Here, ! is the arc length, t=(¢,,¢,) is the unit tangent vector along the
individual line segments of the ‘“‘original” image, while E, F, G are functions of
x, y defined by

ax' 2 9 1\ 2
£ =(5) +(%)
2 1+ A2+ y? =1)=2n,(r,,x" +r,y")
(nyx + nyy + an)2

=f

?

9x” ox’ 9y 3y’

Fx, y)= dx dy  ox 9y
(6.21)
=f2 ”l”z(""2 +y‘2 = 1) =n(rpx" +ryy') = ny(r X'+ r,y’')
(nyx +nyy + nyf)°
ax'\? ay'\?
G(x, y)= (E) + (%)

2 14132+ y 2 = 1) = 2n,(r,px" + rppy")
(nyx +nyy+n;f)

=f

If we use the relations of (6.9), these are all expressed in terms of the original
coordinates x, y. Hence, (6.20) is computed over the original image.

Equations (6.15) are, on the other hand, integrations of continuous func-
tions. Hence, we immediately rewrite them in terms of the original coordinates
X,y as

L= [ i e, y)AGx, y) dxdy,
w

M;= [ (¢ (x. 3) ~ foo)i(x, 1)k, y) dx dy , (6.22)
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Ni= [ (e, )~ faoyin e, y)AGx, ) dxdy
w

for i=1,2,3. They are easily computed by a numerical integration scheme.

Remark 6.1. Equation (6.20) is a rigorous relation. Since the Jacobian A(x, y)
plays the role of V/det(g) in the discussion in Section 4, a simple approximation
corresponding to (4.6) is

VES +2F1, + GG dl=VA(x, y) (6.23)

and hence we could use the approximation
si= 3 ), YOWEGD, TV dl. (6.24)
i L,

However, this approximation is not used here. See Remark 6.2 below.

6.4. Alternative method by Taylor expansion

The method described above is somewhat complicated. There exists an alterna-
tive scheme. Suppose ( p;, q,) is the estimate at the kth step. If we expand the
left-hand side of (5.3) at (p,, g,) rather than at (0, 0), we obtain

1
(1= (px+qy)/f)™

= L(x, y) + M(x, y)8p, + N(x, y)éq, + -+,

(6.25)
where 8p, =p — p;, 89, =q - q,, and
1
L(x, y)= i
(1~(px+ CIk}’)/f)3
3xx
M(x, y) = — 6.26
A= (pex + e )" (6.26)
3k
N(x, y) = z

f(A=(px + Qk}’)/f)}”l .

Then, the 3D recovery equations (5.2) reduce to a set of linear equations
which has the form of (5.5), namely

[Ml =(L\/y))M, N,— (J[/J())N(l][apk] - _[Ll - (JI/J())LO]
M, - (Jz/Ju)Mn N, = (J,14y)N, §| 84, L,— (L)L, ]’
(6.27)
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where
L= f mi(x, y)L(x, y)dxdy,
w

M,.=fm,.(x, y)M(x, y)dxdy, (6.28)
w

N,= [ mx, y)NG, ) dx .,
w

for i=0,1,2. If 8p,, 8q, are sufficiently close to zero, the kth estimate is
sufficiently accurate. Otherwise, p,., =P + 8Pis G+ = 9, + 84q,, are better
approximations, and the process can be iterated until convergence.

Remark 6.2. This method is exactly the Newton—Raphson iteration of the 3D
recovery equations over two variables p, g. It is known that if we start from an
initial guess which is sufficiently close to the true solution, the iterations
converge to it ‘“quadratically” (the error is roughly proportional to the square
of the error at the preceding step). However, it is difficult to tell if an estimate
is sufficiently close to the true solution, and if we start from an inaccurate
guess, the behavior of the iterations is unpredictable. Also, the geometrical
meaning of functions M(x, y), N(x, y) is not clear.

On the other hand, the geometrical interpretation of the camera rotation
simulation method is very clear: Essentially, we are incrementally ‘““‘undoing”
perspective distortion so that the center of gravity of the texture elements
coincides with the center of the window, though it seems difficult to give a
mathematical proof of convergence. Moreover, while the Taylor expansion
method still involves the approximation (4.6), the camera rotation simulation
method is not much affected by this approximation; the texture image is exactly
transformed (cf. (6.19), (6.20)) repeatedly so that the true surface becomes
more and more parallel to the image plane, and in the limit of p—0, and
q— 0, the approximation (4.6) reduces to a trivial identity.

7. Curved Surface Recovery from Texture

Equation (5.5) can be applied even if the surface is not planar; it can be
applied if we choose windows of an appropriate size so that the surface is
approximately planar in each window. Then, (5.5) gives the gradient ( p, q) for
each window, and hence the global 3D shape of an arbitrary smooth surface
can be recovered in principle. Another approach is to use a global surface
model. Assume, for example, that the surface is modeled by a quadric surface

Z=r+pX+qY+aX +2BXY+yY?, (7.1)
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7.1. Basic equations for quadric surfaces

If the surface is planar, the observed texture inhomogeneity is solely due to the
perspective distortion, while if the surface is curved, the inhomogeneity is due
to two separate sources—the perspective distortion and the varying gradient.
Inhomogeneity is not observed for planar surface if the projection is ortho-
graphic (i.e., the limit of f—0), while for curved surfaces inhomogeneity
results even if the projection is orthographic. For this reason, we consider here
the case of orthographic projection, which not only simplifies the problem but
also reveals the ambiguity of interpretation inherent to it.

If we let f— o, equations (3.1) become x = X, y = Y. If we substitute (7.1)
into (3.7) and take the limit f—> o, we obtain

Vdet(g)

=V1+p + @ VI+ Ax+ Ay + A’ +240y + Agy*,  (1.2)

4 =MaptBg) 4Bty
I T Y o
P q 14 q

4. He®+ B _4Baty) , _ABTHY)
3 1+p2+q27 4

where

(1.3)
1+p*+q*’ 1+ pP+ 4

Since V1 + p®>+ ¢ drops off when the unknown texture density ¢ is elimi-
nated, the parameters we can determine are A;, i=1,...,5. Let us call these
the texture density parameters; they describe the inhomogeneity of the observed
texture density. As we will discuss later, the issue of the ambiguity of
interpretation arises here: We cannot distinguish surfaces which have the same

values of the texture density parameters A, i=1,...,5.
If we provide six test functions mg(x, y),..., ms(x, y) and compute as
“observables”
J,.=fp(x, yym(x, y)dxdy, i=0,1,...,5, (7.4)
w

the 3D recovery equations (4.12) becomes as follows:

Proposition 7.1 (3D recovery equations). The texture density parameters are
determined by solving

[ (x99 = (3:)mots, )

w

x (V1+ Ax+Ay+ A" +2A,xy + AgyY) dxdy=0, (7.5)
fori=1,...,5.
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Thus, six test functions are enough. Of course, we can use many more test
functions and determine the parameters, say, by the least squares method.

7.2. Surface interpretation

Once the texture density parameters A;,i=1, .. .,5, are obtained, the surface
shape parameters p, q, o, B, y are determined by solving (7.3). The solution is
given as follows (see Appendix B for proof).

Proposition 7.2 (Surface interpretation). Let

r=x VA, +A,22/A,4,— A2. (7.6)

Four values result depending on the choice of the two * signs. For each value,
compute

=Tt e 0 P TR YT T ier 7.7
Also compute
,_ YA —B'A, q' “B'A +ta'A,
P = —_— 5 ) = _-—2 ’
4a'y' = B") 4a'y' = B")
1 (7.8)
k = ——ﬁ .
Vi-p~-q”
Then, the surface shape parameters p, q, «, B, vy are given by
p=kp', q=kq', a=ka', B=kB', vy=ky'. (7.9)

7.3. Ambiguity of interpretation

From Proposition 7.2 given above, we find some important observations. First,
- as is obvious from the fact that the projection is orthographic, we can
immediately see that:

Observation 1. The distance r along the Z-axis of the surface from the image
plane cannot be determined.

This is because the texture density parameters A;, i=1,...,5, do not
contain parameter r. Next, we find that Proposition 7.2 gives four solutions.
The first ambiguity occurs due to the following obvious fact (Fig. 4).
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x- 0 >y
Fig. 4. Two surfaces which are “‘mirror images” of each other with respect to a “mirror”
perpendicular to the Z-axis cannot be distinguished under orthographic projection.

Observation 2. Two surfaces which are “‘mirror images” with respect to a
“mirror” perpendicular to the Z-axis cannot be distinguished.

This is because the texture density parameters A;,, i=1,...,5, have
numerators and denominators which are quadratic in the surface shape
parameters p, ¢, a, B, v. Hence, the texture density parameters A;, i =
1,...,5, are the same if p, q, @, B, y are respectively replaced by —p, —gq,
—a, —B, —v. The other ambiguity is described as follows (Fig. 5).

Observation 3. An elliptic surface cannot be distinguished for a hyperbolic
surface having principal curvatures of the same absolute values.

Proof. Since the projection is orthographic, the relationship between the
surface and the image plane is essentially the same if the surface is translated in
space parallel to the image plane or rotated around the axis perpendicular to
the image plane (or equivalently the XYZ-coordinate system is translated or
rotated). Suppose that the surface is not a plane, i.e., a, B, ¥ are not zero at
the same time. Then, as is well known in linear algebra, if we appropriately

x~ 0~y
Fig. 5. An elliptic surface cannot be distinguished from a hyperbolic surface having principal
curvatures of the same absolute value.
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translate and rotate the surface, we can make the equation in either of the
following forms:

Z=r+aX*+yY*, a,y#0, (7.10)
for which equations (7.3) become

A, =0, A,=0, A,=40’, A,=0, A;=4y7, (7.11)
or
Z=r+pX+yY?, v #0, (7.12)

for which equations (7.3) become

A,=0, A,=0, A,=0, A,=0,
(7.13)
A, =4y (1 +p?).

Hence, changing sign of a or y in (7.11) does not affect the texture density
parameters A;, i=1,...,5 O

An intuitive interpretation of this fact is to say that the texture density tells
only about the “angle” of the surface orientation (i.e., the slant) and nothing
about the “orientation” of inclination (i.e, the tilt).

Thus, we can understand why there exist in general four interpretations.
However, there are two exceptional cases where infinitely many interpretation
are possible. These two cases correspond to the “singularities’ of the solution
given in Proposition 7.2. First, note that in Proposition 7.2, T appears in
denominator. If 7 happens to be zero, the following ambiguity occurs.

Observation 4. If the surface is hyperbolic with mean curvature zero, the
principal directions of the surface are indeterminate.

Proof. As discussed above, we can assume without losing generality that the
equation of the surface is given by either (7.10) or (7.12). In the former case,
we have 7= +1(a = y), while in the latter case, we have 7= +y/2(1 + p*)""?
(#0). Hence, 7 =0 occurs only when a = *y in the former case. In other
words, the equation of the surface is either Z=r+ a(X>+ Y?) or Z=
r+ a(X? - Y?). According to Observation 3, these two surfaces “look” exact-
ly the same. The first one is a circular paraboloid and is symmetric around the
Z-axis. Consequently, the same applies to the second one, and the surface
“looks” the same even if rotated by an arbitrary angle around the Z-axis,
resulting in infinitely many interpretations. O
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x0T
Fig. 6. If the surface is parabolic, the depth gradient along the asymptotic direction is indeter-
minate.

In (7.8), a'y' — B'? appears in denominator. If &'y’ — 82 happens to be
zero, the following ambiguity occurs (Fig. 6).

Observation 5. If the surface is parabolic, the depth gradient of the asymptotic
direction is indeterminate.

Proof. If a'y’ — B'> =0 the values of p’ and g’ are indeterminate. However,
the ratio a: 8:y is equal to the ratio «’: 8':y’, and hence ay — B*=0. This
means that the Hessian of the surface is zero, so that one of the principal
curvatures is zero. Hence, after appropriate translation and rotation, the
equation of the surface is given by (7.12). From (7.13), we see that there exist
infinitely many solutions which share the same asymptotic direction or “ridge”;
the depth gradient p along it is indeterminate, and infinitely many interpreta-
tions are possible. [

This result is easily understood if we recall the fact that the gradient of a
planar surface, for which the depth changes linearly in all directions, is
indeterminate under orthographic projection.

8. Numerical Scheme of Curved Surface Recovery
Now, we present a numerical scheme to solve the 3D recovery equations (7.5).
Since they are nonlinear equations, iterations are necessary.

8.1. First-order approximation

If the window W is small and located at the center of the image, Taylor
expansion in x, y yields

(VI+Ax+ A,y + A2 +24,0y + Ay?)”
=1+ Ax+By+ Cx’+ Dxy + Ey* +---, (8.1)
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where
A=1ikA,, B=1ikA,,
C=ik(A;+1(k=2)Al), D=k(A,+1(x—-2)A,A4,), (8.2)
E=1ix(As+ 5 —2) Ad).
If we put
Lo=[me, drdy,  Ly=[smx y)deay,
w w
L,= f ym(x, y)dxdy, Ly= f x’my(x, y)dx dy, (8.3)
w w
L,= f xym,(x, y)dxdy, L;= f y’'m(x, y)dxdy,
w w

fori=0,1,...,5, and neglect higher-order terms, the 3D recovery equations
(7.5) become

A
B
[Lij - (Ji/Jo)Lo,'] g =—[L;y = (J;ily) Ly] - (8.4)
E
Once A, B, C, D, E are obtained by solving this equation, the texture
density parameters A;, i=1,...,5, are determined from (8.2) as follows:
A= 2 A, A,= 2 B,
K K
2 k=2 1 k=2
AJ—;C— = A7, A4—KD o AB, (8.5)
_ 2 K _2 2

8.2. Iterative scheme by Taylor expansion

The iterative scheme by Taylor expansion described in Section 6.4 can be
applied to this case as well. Let Af"’, i=1,...,5, be the kth estimates of the
texture density parameters. (The initial guess is given, say, by the first-order
approximation described above.) The Taylor expansion at these estimate
values yields
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(V1+Ax+Ay+Ax"+2A.xy + Ay?)
5
= My(x, y) + 2 M,(x, y)8A® + .-, (8.6)
i=1

where A% = A, - A% i=1,...,5, and

M,= (\/1 + AP+ APy + A + 2405y + AL yHy

x
M, =ik = s
T VT AP+ APy + DR 42405 7 APy
: Y
M, = -LK 2.2 ’
2t (\/l + AP+ APy + AP +240xy + AW y?)2 "
(8.7)
M~‘=%K k & i)? ) (k) _2y2-« °
(V1 - AS x+ APy + AP + 240y + ABy2)x
M, =1k 2xy s
LT (Wi AP+ APy 1 AP 124y + 407y
Ms = 3k k k { 2 (k) k) 2y2-x
(V1+ A+ APy + A% +240xy + AP 22~
If we use as the test functions these M,(x, y) themselves and put
J,.=J’p(x, yM;(x, y)dxdy, i=0,1,...,5, (8.8)
w
Mii=j’Mi(x’ NM(x, y)dxdy, i=0,1,...,5, (8.9)
w
the 3D recovery equations (7.5) become
(M, = (Jil)) MyJ[BA[] = = (Mg = (J,1J,) Myy] - (8.10)

If all Af"), i=1,...,5, are sufficiently close to zero, the kth estimates are
sufficiently accurate. Otherwise, AX*" = A® + 54%) are better approxima-
tions, and the process is repeated until convergence.

9. Examples for Synthetic Images

Figures 7-10 are synthetic images of textured planar surfaces. The focal length
fis taken as the unit of length, and the window size is a = b = f tan 10° = 0.176.
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(The actual window is a rectangle of size 2a X-2b.) The Z-axis, i.e., the camera
optical axis, is assumed to pass through the center of the window. The true
gradient is (p, q) = (1.500, 0.866) for all the figures.

9.1. Regularly aligned dot textures

Figures 7(a)-(c) show projected images of regularly aligned dot textures on a
planar surface. Using my(x, y)=1, m,(x, y)=x, m,(x, y)=y as the test
functions, we first obtain the initial estimate by computing the center of
gravity. Then, we iteratively apply the camera rotation simulation method. The
successively computed values of (p, q) are as follows:

(@)

(b) (c)

Fig. 7. Regularly aligned dot textures on a planar surface.
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Fig. 7(a) Fig. 7(b) Fig. 7(c)
1 (1.459,1.088)  (1.610,0.965) (1.548,0.958)
2 (1.402,0.939)  (1.552,0.875) (1.499,0.871)

3 (1.397,0.937)
4 (1.397,0.937)

(1.548, 0.871)
(1.548,0.871)

(1.496, 0.868)
(1.496, 0.867)

If we apply the Taylor expansion method to the same initial estimates with
mo(xa )’) = L(xt }'), ml(x’ Y) = M(xv Y)’ m?.(x’ )’) = N(x’ y), we obtain:

Fig. 7(a)

Fig. 7(b)

Fig. 7(c)

1
2

3
4

(1.459, 1.088)
(1.549, 0.767)
(1.527.0.816)
(1.529, 0.807)

9.2. Random dot textures

(1.610, 0.965)
(1.549, 0.897)
(1.542, 0.887)
(1.541, 0.887)

(1.548, 0.958)
(1.499, 0.869)
(1.496, 0.864)
(1.496, 0.864)

Figures 8(a)-(c) show random dot textures on a planar surface. In the
following, we apply the procedures described earlier. For the camera rotation
simulation method, we obtain:

Fig. 8(a)

Fig. 8(b)

Fig. 8(c)

1 (1.558,0.798)  (1.662,0.945) (1.535,0.974)
2 (1.505,0.695)  (1.617,0.843) (1.493,0.891)
3 (1.504,0.694)  (1.613,0.840) (1.491, 0.888)
4 (1.504,0.694)  (1.613,0.840) (1.491, 0.888)

For the Taylor expansion method, we obtain:

Fig. 8(a)

Fig. 8(b)

Fig. 8(c)

1

(1.558, 0.798)

(1.662, 0.945)

(1.535,0.974)

2 (1.422,0.560)  (1.674,0.832) (1.527,0.899)
3 (1.434,0.583)  (1.667,0.834) (1.525,0.897)
4 (1.430,0.578)  (1.667,0.834) (1.525,0.897)

9.3. Regularly aligned line segment textures

Figures 9(a)-(c) show regularly aligned line segment textures on a planar

surface. For the camera rotation simulation method, we obtain:
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(@)

(b)

(©)

Fig. 8. Random dot textures on a planar surface.

Fig. 9(2)

Fig. 9(b)

Fig. 9(c)

BN =

(1.603, 0.994)
(1.379, 0.747)
(1.352, 0.756)
(1.351, 0.758)

(1.762, 1.048)
(1.534, 0.899)
(1.505, 0.875)
(1.504, 0.874)

(1.751, 1.045)
(1.527,0.893)
(1.500, 0.869)
(1.499, 0.869)
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Fig. 9. Regularly aligned line segment textures on a planar surface.

For the Taylor expansion method, we obtain:
Fig. 9(a) Fig. 9(b) Fig. 9(c)

1 (1.603,0.994)  (1.762,1.048) (1.751,1.045)
2 (1.569,0.893)  (1.672,0.960) (1.666,0.958)
3 (1.568,0.893)  (1.669,0.956) (1.663,0.954)
4 (1.568,0.893)  (1.669,0.956) (1.663,0.954)

9.4. Random line segment textures

35

Figures 10(a)—(c) show random line segment textures on a planar surface. For

the camera rotation simulation method, we obtain:
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Fig. 10. Random line segment textures on a planar surface.
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Fig. 10(a) Fig. 10(b) Fig. 10(c)
1 (2.821,0.602)  (2.196,0.768)  (2.006,0.910)
2 (2275,0372)  (1.906,0.590) (1.710,0.722)
3 (2.088,0.271)  (1.856,0.559) (1.660,0.684)
4 (2.111,0.275)  (1.856,0.559) (1.661,0.684)
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For the Taylor expansion method, we obtain:

Fig. 10(a) Fig. 10(b) Fig. 10(c)
1 (2.821,0.602) (2.196,0.768) (2.006,0.910)
2 (2.477,0.238)  (2.033,0.561) (1.825,0.787)
3 (2.447,0.257)  (2.022,0.567) (1.820,0.781)
5 (2.445,0.258)  (2.022,0.567) (1.820,0.781)

9.5. Texture on a curved surface

Figure 11 is an orthographic view of a regularly aligned dot texture on a
quadric surface. The window size a (=b) is taken as the unit of length. The
true surface shape parameters are (a, 8, v) = (2,0, 0). As discussed in Section
7, parameters p, q are indeterminate in this case. However, parameters a, 8, ¥
are uniquely determined except for sign. If we use the method of Section 8
with 1, x, y, x% xy, ¥ as the initial test functions, the successive estimates of
(a, B, v) become as follows

Fig. 11

1 (0.494, 0.000, —0.007)
2 (1.066, —0.000, —0.009)
3 (1.632, —0.001, —0.008)
4 (1.929, —0.001, —0.006)
5 (1.991, —0.001, —0.006)

Fig. 11. An orthographic view of a regularly aligned dot texture on a curved surface.
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9.6. Observations

We see that our method can produce fairly good results. In particular, our
method can be applied to very sparsely distributed textures. For very sparse
textures, our results show that the Taylor expansion method gives more
accurate values than the camera rotation simulation method. Otherwise, both
of them yield almost the same results for dot textures, but for line segment
textures, the camera rotation simulation method predicts more accurate values,
as is expected from Remark 6.2. The convergence is very rapid for both
methods; only two or three iterations are necessary to determine the gradient
values up to two or three decimal places.

On the whole, the results are better for dot textures than for line segment
textures. This is easily understood because a line segment is a restricted
coalescence of constituent points, and hence the degree of homogeneity is
lower for line segment textures. On the other hand, the results are far better
for regular textures than random ones, as is also expected from Remark 5.4.
This is not a drawback; natural or man-made textures are often ‘‘tessellated” to
a high degree of regularity.

10. Concluding Remarks

10.1. Texture density as a functional

Our formulation makes use of the exact texture density p(x, y) describing the
discrete distribution of texture elements, so that no ad hoc smoothing is
necessary. This is possible because we do not use particular values of the
texture density p(x, y); all we need is the rule of integation. Hence, the texture
density p(x, y) is defined as a functional, or a distribution in the sense of
Schwartz [17,18]. This is one of the most important differences from all
existing approaches.

Many works on shape from texture assume existence of a smooth texture
density p(x, y) obtained by some kind of local averaging, directly using the
values of p(x, y) (cf. the method of Aloimonos and Swain [1] recast in
Appendix C). There are some methods which even require the derivatives of
the texture density p(x, y) computed by numerical differentiation. The use of
the values or derivatives of the texture density p(x, y) does not seem appropri-
ate in view of the discrete nature of the texture.

10.2. Differential geometry in terms of image coordinates

We derived the exact relationship between the surface texture density and the
observed texture density by differential geometry. The existing methods seem
to have failed to obtain this exact relationship. One reason, among others,
seems to be that many authors employed some ‘“‘surface coordinate system”
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placed on the surface, and tried to obtain the rule of transformation from the
image coordinates to the surface coordinates. The Jacobian of this transforma-
tion should determine the observed texture density (cf. Aloimonos and Swain
[1], Dunn [5]). However, this is usually a tedious process. The key to success
here is the fact that we do away with the surface coordinates; all surface
characteristics are described in terms of the image coordinates through the first
fundamental form.

10.3. Integrations as observables

One big advantage resulting from the use of integrations as observables is that
the method works for very “sparse” textures. In the extreme, the texture can
consist of only a single dot; if the dot is at the center of the image plane, the
gradient is predicted to be zero, and otherwise the plane is predicted to be
slanted in the direction of the displacement of the dot from the image origin.
None of the existing methods have this property, because these methods make
use of “local clues”, rather than “global clues”.

A typical approach is to choose several “small but finite regions”—let us call
these fest regions—on the image plane, and compute the number or length of
texture elements in those test regions. The test regions must not be too large,
since variations of the texture density could not be detected, but at the same
time the test regions must not be too small, since the result would be unreliable
due to fluctuations. (There may exist no texture elements in a test region if the
texture is very sparse.) For those methods, the texture must be locally
homogeneous in the sense that the texture is dense enough everywhere so that
the homogeneity condition is satisfied in each of the test regions.

While there is no limit on the texture sparsity, the estimate of our method
approaches the numerically exact value as the texture density increases. No
methods so far known seem to have this property.

10.4. Computational efficiency

Since the necessary data, or observables, are obtained by integration of
functions over the image, and since integration is essentially summation, the
time complexity is simple O(N), where N is the number of texture elements.
Although iterations are used, the convergence is very rapid; two or three
iterations seem sufficient.

The computational process of our method is completely non-intelligent; the
computer need not recognize the “‘structures” of the texture such as the shapes
of the texture elements (circles, ellipses, etc.), the regularity and periodicity of
their alignment, and the ratio of convergence of the sizes of the texture
elements or the intervals between them. Such structure-based approaches
require “intelligent” heuristic programming for detecting structures in the
texture.
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Still, the computational burden may increase as the number of texture
elements increases. Since most of the computation time is consumed in
numerical evaluation of integrands, high-speed numerical processors are neces-
sary. On the other hand, methods based on a small number of test regions such
as that of Aloimonos and Swain [1] may be faster, since these methods use only
partial information. Thus, there is a trade-off between efficiency and accuracy.

Since the access to each texture element is an independent process, high
speed performance is expected by parallel architecture; the image can be
divided in any way, and the computation can be performed independently and
simultaneously.

10.5. Preprocessing

We should not forget the fact that appropriate preprocessing is necessary for
our method. In our method, a texture is assumed to be composed of dots
“without area’” and line segments “without width”. If the dots have area, their
centroids can be used as their positions, or their boundaries can be regarded as
texture elements. If the line segments have width, their center lines
(“skeletons” or ‘“‘medial axes”) or boundaries can be regarded as texture
elements. Our method is essentially (weighted) number counting of dots and
(weighted) length measuring of line segments. For natural texture images
containing gray levels, a simple way may be just to apply edge detection. The
detected edges would serve as line segment texture elements.

10.6. Resolution threshold and subtexture

One of the difficulties for any type of shape from texture analysis is the effect
of resolution threshold: The part of the texture far away from the viewer
becomes dense on the image plane, and hence its spatial frequency becomes
high. As a result, variations cannot be detected above a certain spatial
frequency. In contrast, the part near the viewer is likely to be processed with
excessive resolution, resulting in subtexture—variations of gray levels within
individual texture elements. Hence, all texture elements may not be detected
on the dense part, and subtexture may be counted as texture elements,
resulting in underestimation of the surface gradient.

Many ways of avoiding this effect are conceivable, although none may be
complete. For example, the window may be confined so that a small depth
range is observed, or only clearly visible clues could be focused on by lowering
the resolution. However, restricting input information in this way may reduce
the estimation accuracy. Since appearance of subtexture may be greatly
affected by the level of resolution, while the true texture can be stable, the true
texture can be picked out by changing the resolution level and choosing only
stable patterns. This approach was attempted by Blostein and Ahuja [3].
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In any case, whichever approach is used to cope with this effect, our method
has the advantage that it does not require local homogeneity and works well
even for very sparse textures.

10.7. Dimensionality of texture elements

One of the important findings is that dot textures and line segment textures
cannot be treated in the same manner: Pixels constituting line segments cannot
be identified with pixels of a dot texture. The necessity of this distinction does
not seem to have been widely recognized. The reason for this can be easily
understood if we note the fact that pixels constituting a line segment are
necessarily uniformly sampled as long as we use a uniform array of pixels for
discrete images. If pixels on a line segment could be sampled with converging
intervals in such a way that the effect of perspective projection is precisely
reflected, no distinction would be needed between dots and line segments.
That is why we must introduce into our theory the exponent « to distinguish
these two types of texture.

10.8. Generality of the principle

The main emphasis in this paper is the generality of our formulation, from
which various modifications and applications become possible. We show in
Appendices C and D that the methods of Aloimonos and Swain [1] and Dunn
[5] can be regarded as special variants of our general principle. While their
particular methods have merits in some respects, our theory can make explicit
the assumptions and approximations underlying their methods. This wide range
of flexibility stems from a mathematically correct understanding of the geome-
try of perspective projection. Particular heuristics or ad hoc assumptions and
approximations may result in particular algorithms which may be useful
sometimes. Lacking generality, however, these algorithms usually do not
reveal the underlying essential nature of the problem and may not be extended
to other problems.

Appendix A. Error Due to Randomness of the Texture

Consider a dot texture for simplicity. Let (x,, y,),...,(xy, yy) be the
coordinates of the texture points in the window —a<x<a, -b < y<b. The
center of gravity (x, y) is given by
1 < 1 <
f=— ) V= — . Al
X Ng,lx., ¥ thly. (A1)
First, consider the case where the distribution is completely random: x;,
i=1,..., N, are random variables chosen from the uniform distribution over
—a < x < a independently of each other, and likewise y,, i=1, ..., N, are also
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independently chosen from the uniform distribution over —b <y =<b. This
means

E[x])=0, Vix;]= %az ,
, (A.2)
E[y]=0, Viy]l=3b",

i=1,...,N, where E[-] and V[-] designate the expectation value and the
variance respectively. If follows then that the expectation values and variances
of f, y are given by
E[x]=0, V[x]=4id'N,
(A.3)
E[5]=0, V[y]=1ib’N.

Hence, the center of gravity is at the origin on the average. Since the
magnitude of error is estimated by the standard deviation, we expect errors of
about a/V3N, b/V3N for %, y, respectively.

On the other hand, consider the other extreme where x;, i=1,..., N, are
distributed at equal intervals of distance 2a/N, and y;, i=1,..., N, at equal
intervals of distance 2b/N. Then, the center of gravity must be located within
the range of

—-aIN<xi<alN, -bIN<jy<bIN. (A.4)

From (A.3) and (A.4), we can roughly say that the errors 8%, 8y of x, y,
respectively, are

8i=0(1/N°), &85=O0(1/N), (A.5)

where 1 <e<1. The exponent ¢ approaches i as the distribution becomes
more random, while it approaches 1 as the distribution becomes more regular.

Appendix B. Interpretation of Curved Surfaces

Define &, p’, q’, ', B', v’ as follows:

k=V1+p*+q*, p'=plk', q' =qlk,

(B.1)
a=alk, B'=pBlk, v' =vylk.
Equations (7.3) are now rewritten as follows:
alpl_l_ﬁqu:%Al, ﬁ'P""‘Y'CI':%Az,
(B.2)

a'2+ﬁ’2=%A3, B'(a'+7')=§A4, 312+Y'2=%A5-
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Let us define new variables
7=3(a'+7v'), o= -y)+iB’, (B.3)
where i is the imaginary unit. Hence, o is a complex number. Next, put
=§(A3+As)’ S=3(A;- Ay + ii4,. (B.4)

Hence, § is also a complex number. In terms of these new quantities, the last
three of (B.2) are equivalent to

T=7r"+00*, S=210, (B.5a, b)

where the asterisk denotes the complex conjugate. From (B.5b), we obtain
= 3S7. Substituting this in (B.5a), we find that 7 is the solution of

™~ Tr2+ 18§*=0, (B.6)

and consequently

T=3(T=VT>-55%), (B.7)
orinterms of 4, i=1,...,5,

2= %(A, + A, 22V A4, - AD). (B.8)

Hence, (7.6) is obtained. From (B.3), a’, ', v’ are given by
a’'=71+Re[o], B’ =Im[c], v'=7—Re[o], (B.9)

where Re[-] and Im[-] designate the real and 1magmary parts. Substituting
o = 3§/t into these, we obtain (7.7). Then, p’, g’ are determined from the first
two of (B.2) in the form of the first two of (7.8). The last of (7.8) is obtained
from the relation

’ ? 1 1
1- 2 _ /2=1__ P - q 5 = = —,
P 1 1+p*+4° 1+p*+q 1+p°+4q° K
(B.10)

Finally, equations (7.9) are obtained from (B.1).

The derivation here is based on the theory of coordinate rotation invariance;
variables 7, o, T, S are invariants corresponding to irreducible representations
of the two-dimensional rotation group SO(2) (cf. Kanatani [12]).
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Appendix C. Method of Aloimonos and Swain

Here, we compare our method with that of Aloimonos and Swain [1]. Since
direct comparison is difficult because their derivation is based on different
concepts and assumptions, we now newly derive, in our mathematical setting, a
scheme which is essentially equivalent to theirs.

Consider three circular regions §,, §,, S, on the image plane with respective
centers (x,, ¥y), (x, ¥,), (x5, y,), and call these regions test regions. Assume
that these test regions are sufficiently small compared with the size of the
window W, yet the texture is sufficiently dense, so that each test region
contains a sufficiently large number of texture elements. We use, as observ-
ables, the integrals over the test regions:

J,.=J'p(x, y)dxdy, i=0,1,2. (C.1)
Si

By assumption, each test region S;, i =0, 1,2, contains a large number of
texture elements, and the homogeneity condition is satisfied within each S,.
Hence, the above integral can be approximated as follows:

J,-ch(\/det(g))" dxdy, i=0,1,2. (C.2)
S;

This is equivalent to choosing, as the test functions m,(x, y), i=0, 1,2, the-
characteristic functions xs, i =0, 1,2 (cf. (2.5)).

Also by assumption, each test region S;, i =0, 1, 2, is very small, so that the
integral may be replaced by the area S, times the value at the center (x;, y;) of
the test region:

J (VR 45 dy = 5,V sy, - (c3)
S;

Hence, for a planar surface, the observables J; are approximated by
(V1+p2+ @)+ rif)™
Ji=cS; I
(1= (px;+ qy)/f)

From this, we obtain the 3D recovery equations

SoJl)lIBK ) ((Sojl)lliix _ ) _ ((M)lﬁx—)
<(SIJO Xy~ X P+ SlJo Y1~ Yo q_f SIJO 1 ’

=0,1,2. (C.4)
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from which the gradient (p, q) is determined. This is the essential idea of the
method of Aloimonos and Swain [1]. They also tried recovery of curved
surfaces by similar ideas.

In this method, the assumption of local homogeneity—the texture is sufficien-
tyl dense and homogeneous within each test region—plays a fundamental role.
Furthermore, a crude approximation like (C.3) is made. This relation holds
only when each test region is very small. In our formulation, global test
functions m(x, y) are used instead of local test regions S,. Hence, the texture
need not be locally homogeneous; it only need be globally homogeneous.

Also, in our method, the integration is exactly performed over all the texture
elements. Hence, our method can be applied even to a texture consisting of a
single dot, for which the method of Aloimonos and Swain [1] fails. However, it
should be pointed out that their method has the advantage that it requires less
computation time, because only textures within small test regions are observed.

Appendix D. Method of Dunn

Dunn [5] proposed another approach. Again, direct comparison is difficult, and
we derive its equivalent in our own mathematical framework. Consider a
narrow strip S(k, 0) of a fixed width & and a fixed length / along line
xcos 6+ ysinf =h. Let us call it a test strip. Use the following observables:

J(h,0)= f p(x, y)dxdy. (D.1)

S(k.0)

This is equivalent to choosing, as the test function, the characteristic function
of the test strip.

Take a new x'y’-coordinate system by rotating the original xy-coordinate
system counterclockwise by angle 6 (Fig. D.1). Line x cos 6 + y sin 8 =  now
becomes x’ = & in the new coordinate system. Hence, the observable of (D.1)
is rewritten as

112 h+56/2
J(h,0)= f f p(x’, y')dx'dy’. (D.2)
=1/2 =812

If there exist a sufficiently large number of texture elements in the test strip
S(h, 0) and the homogeneity condition is satisfied within S(h, 6), this observ-
able may be approximated by

12 h+812

J(h,0)=c f f (Vdet(g))" dx'dy’. (D.3)

-1/2 h-812
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Fig. D.1. A test strip S(h, @) with width § and length / placed along line x cos @ + y sin 8 = h.

If the approximation (5.3) is used in (3.10) for a planar surface, this equation
becomes

J(h, 8)=col(\/1+ p* + qz)"(l + })(1 + 37" (p cos 8 + g sin o)h) .
(D.4)

If, as in the method of Aloimonos and Swain [1], observables J, = J(h,, 6,),

i=0,1,2, are computed for three pairs (h;, §,), i =0, 1,2, we obtain thze 3D
recovery equations

J
(hl cos 6, — ? h, cos Oo)p + (hl sin 6, — J—' hg sin eo)q
0 0
L)
3k Jo/’
J J. .
(ho cos 6, — Tz hg cos 0(,)p + (hz sin 6, — J—Z h, sin Q,)q
0 0

£ -8).

(D.5)

from which the gradient (p, ¢) is determined.

Dunn [5], however, took another approach. He searched for 6 such that
J(h, 8) does not depend on A. If 6, is the one, we see from (D.4) that 6, must
satisfy

pcosé +qsinf =0, (D.6)
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and hence

J(h, 8,) = cSI(\V1+ p° + qz)"(l + jff) | (D.7)

is a constant. Let this constant be J,. Next, search for @ such that J(h, 0) has
the steepest ascent with respect to h. If 6, is the one, we see from (D.4) that
6, =6, = i and that

pcosé, +qsin6,=\p*+q*, (D.8)
and hence
Kk, 0y~ 1, (1+ 37" VoT+ ah). (D.9)

The orientation of the gradient ( p, g) is given by (D.6), and its magnitude is
obtained by computing the (average) gradient of J(k, 6,)/J, with respect to h.

Thus, Dunn’s method uses (theoretically infinitely) many test strips rather
than only three, and the gradient (p, q) is obtained by parametric fitting. In
this sense, his method accounts for all the texture elements in contrast to the
method of Aloimonos and Swain [1]. For this reason, this method is expected
to be more robust at the expense of more computation time. Dunn [5] also
tried recovery of curved surfaces by similar ideas.

However, the underlying approximation is essentially the small gradient
approximation. Although the integration is performed exactly up to the first
order (equation (D.4)), the texture is assumed to be locally homogeneous
(though mildly compared with the method of Aloimonos and Swain [1]), and
the homogeneity condition is assumed to be satisfied in each test strip.
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