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Abstract
Feature point tracking over a video sequence fails when

the points go out of the field of view or behind other ob-
jects. Motivated by 3-D reconstruction applications, we
extend such interrupted tracking by imposing the con-
straint that under the affine camera model feature trajec-
tories should be in an affine space in the parameter space.
Our method consists of iterations for optimally extending
the trajectories so that they are compatible with the esti-
mated affine space and for optimally estimating the affine
space from the extended trajectories, coupled with an out-
lier removal process based on a statistical model of image
noise. Using real video images, we demonstrate that our
method can restore a sufficient number of trajectories for
detailed 3-D reconstruction.

1. Introduction

The factorization method of Tomasi and Kanade
[15] can reconstruct the 3-D shape of a scene from fea-
ture point trajectories tracked over a video sequence.
The computation is very efficient, requiring only lin-
ear operations. The solution is sufficiently accurate
for many practical purposes and can be used as an
initial value for iterations of a more sophisticated re-
construction procedure [3].

However, the feature point tracking fails when the
points go out of the field of view or behind other
objects. In order to obtain a sufficient number of
feature trajectories for detailed 3-D reconstruction,
we need to extend such interrupted tracking to the
final frame. There have been several attempts at this
in the past.

Tomasi and Kanade [15] reconstructed the 3-D po-
sitions of partly visible feature points from their vis-
ible image positions and reprojected them onto the
frames in which they are invisible. The camera posi-
tions were estimated from other visible feature points.

Saito and Kamijima [12] projectively reconstructed
tentative 3-D positions of the missing points by sam-
pling two frames in which they are visible and then
reprojected them onto the frames in which they are
invisible. The camera positions were computed up to
projectivity.

Using the knowledge that the trajectories of fea-
ture points should be in a 4-dimensional subspace
in the parameter space, Jacobs [5] randomly sam-

pled four trajectories, constructed a high dimensional
subspace from them by letting the missing data have
free values, and computed its orthogonal complement.
He repeated this many times and computed by least
squares a 4-dimensional subspace approximately or-
thogonal to the resulting orthogonal complements1.
Partial trajectories were extended so that they were
compatible with the estimated 4-dimensional sub-
space. A similar method was also used by Kahl and
Heyden [6].

Brandt [1] reconstructed tentative 3-D positions
of the missing points using a tentative camera model
and reprojected them onto all frames. From the vis-
ible and reprojected feature points, he estimated the
camera model. Iterating these, he optimized both the
camera model and the feature positions.

For all these methods, we should note the follow-
ing:

• We need not reconstruct a tentative 3-D shape.
3-D reconstruction is made possible by some geo-
metric constraints over multiple frames. One can
directly map 2-D point positions to other frames
if such constraints2 are used.

• If a minimum number of frames are sampled
for tentative 3-D reconstruction, the accuracy
of computation depends on the sampled frames.
Rather, one should make full use of all informa-
tion contained in all frames.

• All existing methods are based on the assump-
tion that the observed trajectories are correct,
but this is not always the case.

In this paper, we present a new scheme for extend-
ing partial trajectories based on the constraint that
under the affine camera model all trajectories should
be in a 3-dimensional affine space in the parameter
space, which we call the “affine space constraint”.

1In actual computation, he interchanged the roles of points
and frames: he sampled two frames, i.e., two lists of x co-
ordinates and two lists of y coordinates. The mathematical
structure is the same.

2The projective reconstruction of Saito and Kamijima [12]
is equivalent to the use of what is known as the trilinear (or
trifocal) constraint [3].



Our method consists of iterations for optimally ex-
tending the trajectories so that they are compatible
with the estimated affine space and for optimally es-
timating the affine space from the extended trajecto-
ries.

If the motion were pure rotation, one could do ex-
act maximal likelihood estimation, e.g., by using the
method of Shum, et al. [13], but it cannot be applied
to translational motions. Here, we simplify the op-
timization procedure by introducing to each partial
trajectory a weight that reflects its length.

We do not assume that the observed trajectories
are correct. In every iteration of the optimization, we
test if each trajectory, extended or not, is statistically
reliable, removing unreliable ones as outliers.

Thus, the contribution of this paper is as follows:

1. We present a succinct mathematical formulation
for extending interrupted trajectories based on
the affine space constraint. This constraint is
stronger than that used by Jacobs [5]. No spe-
cific camera model, such as orthography, needs
to be assumed. No reprojection of tentative 3-D
reconstruction is necessary.

2. We present a procedure for evaluating the re-
liability of imperfect trajectories and removing
unreliable ones as outliers. This procedure is in-
corporated in the process for optimizing the esti-
mated affine space and the extended trajectories.

These two aspects are novel, yet the resulting scheme
turns out a natural combination of existing tech-
niques. It is rather a surprise that a straightforward
method such as this works very well in real environ-
ments, as will be demonstrated in this paper.

Section 2 describes our affine space constraint.
Section 3 describes our initial outlier removal pro-
cedure. Section 4 describes how we extend partial
trajectories and test their reliability. In Sec. 5, we
show real video examples and demonstrate that our
method can restore a sufficient number of trajecto-
ries for detailed 3-D reconstruction. Section 6 is our
conclusion.

In Appendix, the procedure for 3-D reconstruction
by the factorization method is concisely described in
a way slightly different from that in the literature: no
matrix factorization by SVD (singular value decom-
position) is involved.

2. Affine Space Constraint

We first describe the geometric constraints on
which our method is based.

2.1 Trajectory of feature points

Suppose we track N feature points over M frames.
Let (xκα, yκα) be the coordinates of the αth point in

the κth frame. We stack all the coordinates vertically
and represent the entire trajectory by the following
2M -dimensional trajectory vector :

pα =
(
x1α y1α x2α y2α · · · xMα yMα

)>
. (1)

For convenience, we identify the frame number κ with
“time” and refer to the κth frame as “time κ”.

We identify the XY Z camera coordinate system
with the world frame, relative to which the scene is
moving. Consider a 3-D coordinate system fixed to
the scene, and let tκ and {iκ, jκ, kκ} be, respectively,
its origin and basis vectors at time κ. If the αth
point has coordinates (aα, bα, cα) with respect to this
coordinate system, the position with respect to the
world frame at time κ is

rκα = tκ + aαiκ + bαjκ + cαkκ. (2)

2.2 Affine camera model

If an affine camera model (orthographic, weak per-
spective, or paraperspective projection [10]) is as-
sumed, the image position of rκα is

(
xκα

yκα

)
= Aκrκα + bκ, (3)

where Aκ and bκ are, respectively, a 2 × 3 matrix
and a 2-dimensional vector determined by the posi-
tion and orientation of the camera and its internal
parameters at time κ. Substituting Eq. (2), we have

(
xκα

yκα

)
= m̃0κ + aαm̃1κ + bαm̃2κ + cαm̃3κ, (4)

where m̃0κ, m̃1κ, m̃2κ, and m̃3κ are 2-dimensional
vectors determined by the position and orientation
of the camera and its internal parameters at time κ.
From Eq. (4), the trajectory vector pα in Eq. (1) can
be written in the form

pα = m0 + aαm1 + bαm2 + cαm3, (5)

where m0, m1, m2, and m3 are the 2M -dimensional
vectors obtained by stacking m̃0κ, m̃1κ, m̃2κ, and
m̃3κ vertically over the M frames, respectively.

2.3 Affine space constraint

Equation (5) implies that all the trajectories are
constrained to be in the 4-dimensional subspace
spanned by {m0, m1,m2, m3} inR2M . This is called
the subspace constraint [7, 8], on which the method
of Jacobs [5] is based.

In addition, the coefficient of m0 in Eq. (5) is iden-
tically 1 for all α. This means that the trajectories
are in the 3-dimensional affine space within that 4-
dimensional subspace. This is called the affine space
constraint [9].
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If all the feature points are tracked to the final
frame, we can define the coordinate origin at the
centroid of their trajectory vectors {pα}, thereby re-
garding them as defining a 3-dimensional subspace in
R2M . The Tomasi-Kanade factorization [15] is based
on this representation, and Brandt [1] tried to find
this representation by iterations. In this paper, we di-
rectly use the affine space constraint without search-
ing for the centroid.

Unlike existing studies, our trajectory extension
scheme does not assume any particular camera model
(e.g., orthographic, weak perspective, or paraperspec-
tive projection) except that it is affine.

3. Outlier Removal

Before extending partial trajectories, we must first
remove incorrectly tracked trajectories, or “outliers”,
from among observed complete trajectories.

This problem was studied by Huynh and Heyden
[4], who fitted a 4-dimensional subspace to the ob-
served trajectories by LMedS [11], removing those
trajectories sufficiently apart from it. However, their
distance measure was introduced merely for mathe-
matical convenience without giving much considera-
tion to the statistical behavior of image noise.

Sugaya and Kanatani [14] fitted a 4-dimensional
subspace to the observed trajectories by RANSAC
[2, 3] and removed outliers using a χ2 criterion de-
rived by modeling the error behavior of actual video
tracking. In this paper, we modify their method to
be applicable to the affine space constraint.

3.1 Procedure

Let n = 2M , where M is the number of frames,
and let {pα}, α = 1, ..., N , be the observed complete
trajectory vectors. Our outlier removal procedure is
as follows:

1. Randomly choose four vectors q1, q2, q3, and q4

from among {pα}.

2. Compute the n× n moment matrix

M3 =
4∑

i=1

(qi − qC)(qi − qC)>, (6)

where qC is the centroid of {q1, q2, q3, q4}.

3. Let λ1 ≥ λ2 ≥ λ3 be the three eigenvalues of the
matrix M3, and {u1, u2, u3} the orthonormal
system of corresponding eigenvectors.

4. Compute the n× n projection matrix

P n−3 = I −
3∑

i=1

uiu
>
i . (7)

O

Figure 1: Removing outliers by fitting a 3-dimensional
affine space.

5. Let S be the number of points pα that satisfy

‖P n−3(pα − qC)‖2 < (n− 3)σ2, (8)

where σ is an estimate of the noise standard de-
viation.

6. Repeat the above procedure a sufficient number
of times3, and determine the projection matrix
P n−3 that maximizes S.

7. Remove those pα that satisfy

‖P n−3(pα − qC)‖2 ≥ σ2χ2
n−3;99, (9)

where χ2
r;a is the ath percentile of the χ2 distri-

bution with r degrees of freedom.

The term ‖P n−3(pα − qC)‖2, which we call the
residual , is the squared distance of point pα from the
fitted 3-dimensional affine space. If the noise in the
coordinates of the feature points is an independent
Gaussian random variable of mean 0 and standard
deviation σ, the residual ‖P n−3(pα − qC)‖2 divided
by σ2 should be subject to a χ2 distribution with
n − 3 degrees of freedom. Hence, its expectation is
(n − 3)σ2. The above procedure effectively fits a 3-
dimensional affine space that maximizes the number
of the trajectories whose residuals are smaller than
(n − 3)σ2. After fitting such an affine space, we re-
move those trajectories which cannot be regarded as
inliers with significance level 1% (Fig. 1). We have
confirmed that the value σ = 0.5 can work well for all
image sequences we tested [14].

3.2 Final affine space fitting

After removing outlier trajectories, we optimally
fit a 3-dimensional affine space to the resulting in-
lier trajectories. Let {pα}, α = 1, ..., N , be their
trajectory vectors. We first compute their centroid

pC =
1
N

N∑
α=1

pα. (10)

3In our experiment, we stopped if S did not increase 200
times consecutively.
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Then, we compute the n× n moment matrix

M =
N∑

α=1

(pα − pC)(pα − pC)>. (11)

Let λ1 ≥ λ2 ≥ λ3 be the three largest eigenvalues
of the matrix M , and {u1, u2, u3} the orthonormal
system of corresponding eigenvectors. The optimally
fitted 3-dimensional affine space is simply the affine
space spanned by the three vectors of u1, u2, and u3

starting from pC .
Mathematically, this affine space fitting is equiv-

alent to the factorization operation using SVD (sin-
gular value decomposition) in the method of Tomasi
and Kanade [15]. It follows that no SVD is necessary
for 3-D reconstruction once an affine space is fitted4

(see Appendix).

4. Trajectory Extension

We now describe our trajectory extension scheme.

4.1 Reliability test

If the αth feature point can be tracked only over
κ of the M frames, its trajectory vector pα has n− k
unknown components (as before, we put n = 2M
and k = 2κ). We divide the vector pα into the k-
dimensional part p

(0)
α consisting of the k known com-

ponents and the (n − k)-dimensional part p
(1)
α con-

sisting of the remaining n− k unknown components.
Similarly, we divide5 the centroid pC and the basis
vectors {u1, u2, u3} into the k-dimensional parts p

(0)
C

and {u(0)
1 , u

(0)
2 , u

(0)
3 } and the (n − k)-dimensional

parts p
(1)
C and {u(1)

1 , u
(1)
2 , u

(1)
3 } in accordance with

the division of pα.
We test if each of the partial trajectories is suffi-

ciently reliable. Let pα be a partial trajectory vector.
If image noise does not exist, the deviation of pα from
the centroid pC is expressed as a linear combination
of u1, u2, and u3. Hence, there should be some con-
stants c1, c2, and c3 such that

p(0)
α − p

(0)
C = c1u

(0)
1 + c2u

(0)
2 + c3u

(0) (12)

for the known part. In the presence of image noise,
this equality does not hold. If we let U (0) be the
k × 3 matrix consisting of u

(0)
1 , u

(0)
2 , and u

(0)
3 as its

columns, Eq. (12) is replaced by

p(0)
α − p

(0)
C ≈ U (0)c, (13)

4The statement that the method of Tomasi and Kanade
[15] is based on matrix factorization using SVD is not correct.
It simply means 3-D affine reconstruction based on the affine
camera model. The SVD is merely one of many equivalent
computational tools for it.

5This is merely for the convenience of description. In real
computation, we treat all data as n-dimensional vectors after
multiplying them by an appropriate diagonal matrix consisting
of 1s for the known part and 0s for the rest.

where c is the 3-dimensional vector consisting of c1,
c2, and c3. Assuming that k ≥ 3, we estimate the
vector c by least squares in the form

ĉ = U (0)−(p(0)
α − p

(0)
C ), (14)

where U (0)− is the generalized inverse of U (0). It is
computed by

U (0)− = (U (0)>U (0))−1U (0)>. (15)

The residual, i.e., the squared distance of point p
(0)
α

from the 3-dimensional affine space spanned by {u(0)
1 ,

u
(0)
2 , u

(0)
3 } is ‖p(0)

α −p
(0)
C −U (0)ĉ‖2. If the noise in the

coordinates of the feature points is an independent
Gaussian random variable of mean 0 and standard
deviation σ, the residual ‖p(0)

α −p
(0)
C −U (0)ĉ‖2 divided

by σ2 should be subject to a χ2 distribution with
k − 3 degrees of freedom. Hence, we regard those
trajectories that satisfy

‖p(0)
α − p

(0)
C −U (0)ĉ‖2 ≥ σ2χ2

k−3;99 (16)

as outliers with significance level 1%.

4.2 Extension of trajectories and their opti-
mization

The unknown part p
(1)
α is estimated form the con-

straint implied by Eq. (12), namely

p(1)
α − p

(1)
C =c1u

(1)
1 +c2u

(1)
2 +c3u

(1) =U (1)c, (17)

where U (1) is the (n−k)×3 matrix consisting of u
(1)
1 ,

u
(1)
2 , and u

(1)
3 as its columns. Substituting Eq. (14)

for c, we obtain

p̂(1)
α = p

(1)
C + U (1)U (0)−(p(0)

α − p
(0)
C ). (18)

Evidently, this is an optimal estimate in the pres-
ence of Gaussian noise as we have modeled earlier.
However, the underlying affine space is computed
only from a small number of complete trajectories;
no information contained in the partial trajectories
is used, irrespective of how long they are. So, we
incorporate partial trajectories by iterations.

Note that if three components of pα are specified,
one can place it, in general, in any 3-dimensional
affine space by appropriately adjusting the remain-
ing n − 3 components. In view of this, we introduce
the “weight” of the trajectory vector pα with k known
components in the form

Wα =
k − 3
n− 3

. (19)

Let N be the number of all trajectories, complete
or partial, inliers or outliers. The optimization goes
as follows:
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1. Set the weights Wα of those trajectories, com-
plete or partial, that are so far judged to be out-
liers to 0. All other weights are set to the value
in Eq. (19).

2. Fit a 3-dimensional affine space to all the trajec-
tories. The procedure is the same as described in
Sec. 3.3 except that Eq. (10) is replaced by the
weighted centroid

pC =
∑N

α=1 Wαpα∑N
α=1 Wα

, (20)

and Eq. (11) is replaced by the weighted moment
matrix

M =
N∑

α=1

Wα(pα − pC)(pα − pC)>. (21)

3. Test each trajectory if it is an outlier, using
Eq. (16).

4. Estimate the unknown parts of the inlier partial
trajectory vectors, using Eq. (18).

These four steps are iterated until the fitted affine
space converges. Eq. (18) implies that the estimated
components do not contribute to the residual of the
extended vector pα from the affine space, so the re-
liability is tested from only the known components
using Eq. (16). In the course of this optimization,
trajectories once regarded as outliers may be judged
to be inliers later, and vice versa. In the end, inlier
partial trajectories are optimally extended with re-
spect to the affine space that is optimally fitted to all
the complete and partial inlier trajectories.

However, the resulting solution is not guaranteed
to be globally optimal; its accuracy largely depends
on the quality of the initial guess. The outlier removal
procedure of Sec. 3 is incorporated for obtaining as
accurate an initial guess as possible, even though all
trajectories are reexamined later.

Theoretically, the iterations may not converge if
the initial guess is very poor or a large proportion of
the trajectories are incorrect. In that case, we must
conclude that the original feature tracking does not
provide meaningful information. However, this did
not happen in all of our experiments using real video
sequences.

We need at least three complete trajectories for
guessing the initial affine space. If no such trajec-
tories are given, we may use the method of Jacobs
[5] to guess the initial affine space. However, it is
much practical to segment the sequence into blocks
and extend partial trajectories over two consecutive
blocks so that they cover the two blocks completely.
Repeating this, we can obtain complete trajectories
over the entire sequence, from which we start the op-
timization.

5. Experiments

We tested our method using real video sequences.
Figure 2(a) shows five decimated frames from a 50
frame sequence (320 × 240 pixels) of a static scene
taken by a moving camera. We detected 200 feature
points and tracked them using the Kanade-Lucas-
Tomasi algorithm [16]. When tracking failed at some
frame, we restarted the tracking after adding a new
feature point in that frame. Figure 2(b) shows the
871 tracked trajectories thus obtained.

In the end, we obtained 29 complete trajectories,
of which 11 were regarded as inliers by the procedure
described in Sec. 3. The marks 2 in Fig. 2(a) indicate
their positions; Figure 2(c) shows their trajectories.
Evidently, we cannot reconstruct a meaningful 3-D
shape from these trajectories alone.

Using the affine space they define, we extended
the partial trajectories and optimized the affine space
and the extended trajectories, testing the reliability
of the extension in every iteration. The optimization
converged after 11 iterations, resulting in the 560 in-
lier trajectories shown in Fig. 2(d). The computation
time for this optimization was 134 seconds. We used
Pentium 4 2.4B GHz for the CPU with 1 Gb main
memory and Linux for the OS.

Figure 2(e) plots the life spans of the 560 trajec-
tories; they are enumerated on the horizontal axis in
the order of disappearance and new appearance; the
white part corresponds to missing data.

Figure 2(f) is the extrapolated image of the 33th
frame after missing feature positions are restored: us-
ing the 180 feature points visible in the first frame,
we defined triangular patches, to which the texture
in the first frame is mapped.

We reconstructed the 3-D shape by factorization
based on weak perspective projection (see Appendix).
Figure 2(g) is the top view of the texture-mapped
shape; Figure 2(h) shows its triangular patches.

For comparison, Fig. 2(i) shows the patches recon-
structed from the 11 initial trajectories in Fig. 2(c)
alone; Figure 2(j) shows the patches reconstructed
from extended trajectories without optimization.
Figure 2(k) shows the corresponding shape recon-
structed after extending and optimizing the trajec-
tories starting from the first frame without adding
new trajectories. All are viewed from the same angle.

From these results, we can see that a sufficient
number of trajectories can be restored for detailed
3-D reconstruction by extending and optimizing com-
plete and partial trajectories. Adding new feature
points after previous tracking has failed is also effec-
tive in increasing the accuracy.

6. Concluding Remarks

We have presented a new method for extending
interrupted feature point tracking for 3-D affine re-

21



(a)

(b) (c) (d)

0 100 200 300 400 500

10

20

30

40

50

trajectory

fr
am

es

(e)

(f) (g) (h)

(i) (j) (k)

Figure 2: (a) Five decimated frames from a 50 frame sequence and 11 points correctly tracked throughout the sequence.
(b) The 871 initially generated trajectories. (c) The 11 complete inlier trajectories. (d) The 560 optimal extensions of the
trajectories in (b). (e) The life spans of the trajectories. (f) The extrapolated texture-mapped image of the 33th frame.
(g) The reconstructed 3-D shape. (h) The triangular patches of (g). (i) The patches reconstructed from the 11 initial
complete trajectories in (c). (j) The patches reconstructed from all extended trajectories without optimization. (k) The
patches reconstructed after extending and optimizing the trajectories starting from the first frame without adding new
ones.
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construction. Our method consists of iterations for
optimally extending the trajectories so that they are
compatible with the estimated affine space and for op-
timally estimating the affine space from the extended
trajectories. In every step, the reliability of the ex-
tended trajectories is tested, and those judged to be
outliers are removed. Using real video images, we
have demonstrated that a sufficient number of trajec-
tories can be restored for detailed 3-D reconstruction.
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Appendix：3-D Reconstruction Algorithm

Input

• 2M -dimensional vectors pα, α = 1, ..., N .

• Focal length fκ for the κth frame, κ = 1, ..., M .

• Average depth Zc in the first frame.

Output

• 3-D positions {r̂α} and {r̂′α} (mutually mirror
images) with respect to the first frame camera
coordinate system.

Algorithm

1. Let pC be the centroid of {pα}, and U the
2M × 3 matrix consisting of the orthonomal ba-
sis {u1, u2, u3} of the fitted 3-D affine space (cf.
Sec. 3.2).

2. Let u†κ(a) (κ = 1, ..., M , a = 1, 2) be the (2(κ−
1) + a)th column of U>.

3. (Metric condition) Compute the 3× 3 matrix T
that minimizes the following function (the pro-
cedure is described later):

K =
M∑

κ=1

[(
(u†κ(1),Tu†κ(1))−(u†κ(2), Tu†κ(2))

)2

+(u†κ(1),Tu†κ(2))
2
]
. (22)
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4. Compute the Z component of the translation tκ

as follows:

tzκ = fκ

√
2

(u†κ(1),Tu†κ(1)) + (u†κ(2), Tu†κ(2))
.

(23)

5. Let t̃xκ and t̃yκ be, respectively, the (2(κ− 1) +
1)th and (2(κ−1)+2)th components of the cen-
troid pC .

6. Compute the X and Y components of the trans-
lation tκ as follows:

txκ =
tzκ

fκ
t̃xκ, tyκ =

tzκ

fκ
t̃yκ. (24)

7. Let λ1, λ2, and λ3 be the eigenvalues of the ma-
trix T , and {v1, v2, v3} the orthonormal system
of corresponding eigenvectors.

8. Compute the 2M -dimensional vector

mi =
√

λi




(u†1(1),vi)
(u†1(2),vi)
(u†2(1),vi)

...
(u†M(2), vi)




(25)

for i = 1, 2, 3.

9. Let M be the 2M × 3 matrix consisting of m1,
m2, and m3 as its columns.

10. Let m†
κ(a) (κ = 1, ..., M , a = 1, 2) be the (2(κ−

1) + a)th column of M>.

11. Compute the following SVD:

tzκ

fκ

(
m†

κ(1) m†
κ(2) 0

)
= V ΛU>. (26)

12. Compute the rotation matrices {Rκ} as follows:

Rκ = V diag(1, 1,det(V U>))U>. (27)

13. Recompute the matrix M by

M =
M∑

κ=1

Π>κ Rκ, (28)

where Πκ = (Πκ(ij)) is a 3 × 2M matrix with
element Πκ(ij) = fκ/tzκ for (i, j) = (2, 2κ − 1),
(2, 2κ) and 0 otherwise.

14. Compute the 3-D shape vectors

sα = (M>M)−1M>(pα − pC). (29)

15. Compute {s′α} and R′
1 as follows:

s′α = −sα, R′
1 = diag(−1,−1, 1)R1. (30)

16. Compute {r̂α} and {r̂′α} as follows:

r̂α =
Zc

tz1
(R1sα + t1),

r̂′α =
Zc

tz1
(R′

1s
′
α + t1). (31)

Computation of the metric condition (Step 3 in
the above algorithm)

1. Define the 3× 3× 3× 3 tensor A = (Aijkl) by

Aijkl =
M∑

κ=1

[
(u†κ(1))i(u

†
κ(1))j(u

†
κ(1))k(u†κ(1))l

−(u†κ(1))i(u
†
κ(1))j(u

†
κ(2))k(u†κ(2))l

−(u†κ(2))i(u
†
κ(2))j(u

†
κ(1))k(u†κ(1))l

+(u†κ(2))i(u
†
κ(2))j(u

†
κ(2))k(u†κ(2))l

+
1
4

(
(u†κ(1))i(u

†
κ(2))j(u

†
κ(1))k(u†κ(2))l

+(u†κ(2))i(u
†
κ(1))j(u

†
κ(1))k(u†κ(2))l

+(u†κ(1))i(u
†
κ(2))j(u

†
κ(2))k(u†κ(1))l

+(u†κ(2))i(u
†
κ(1))j(u

†
κ(2))k(u†κ(1))l

)]
,

(32)

where (u†κ(a))i is the ith component of u†κ(a).

2. Define the 6× 6 matrix

A =




A1111 A1122 A1133

A2211 A2222 A2233

A3311 A3322 A3333√
2A2311

√
2A2322

√
2A2333√

2A3111

√
2A3122

√
2A3133√

2A1211

√
2A1222

√
2A1233

2A1223 2A1231 2A1212√
2A1123

√
2A1131

√
2A1112√

2A2223

√
2A2231

√
2A2212√

2A3323

√
2A3331

√
2A3312

2A2323 2A2331 2A2312

2A3123 2A3131 2A3112

2A1223 2A1231 2A1212




.

(33)

3. Compute the 6-dimensional eigenvector τ for the
smallest eigenvalue of the matrix A.

4. Let T be the 3× 3 matrix

T =




τ1 τ6/
√

2 τ5/
√

2
τ6/
√

2 τ2 τ4/
√

2
τ5/
√

2 τ4/
√

2 τ3


 . (34)

5. If det T < 0, then let T ← −T .
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