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Abstract
We present a new method for detecting point matches

between two images. The main issue is how to preserve the
global consistency of individual matches. Existing meth-
ods propagate local smoothness by relaxation or do combi-
natorial search for an optimal solution. Our method im-
poses non-local constraints that should be approximately
satisfied across the image. We define the “confidence”
of such “soft constraints” to all potential matches. The
confidence is progressively updated by “mean-field approx-
imation”. Finally, the “hard” epipolar constraint is im-
posed by RANSAC. Using real images, we demonstrate
that our method is robust to camera rotations and zoom-
ing changes.

1. Introduction
Establishing point correspondences over multiple

images is the first step of many computer vision ap-
plications. Two approaches exist for this purpose:
tracking correspondences over successive frames, and
direct matching between separate frames. This paper
focuses on the latter.

The basic principle is local correlation measure-
ment by template matching. Detecting feature points
in the first and second images separately using a cor-
ner detector [3, 5, 17, 19, 20, 21], we measure the cor-
relation between the neighborhoods of the two points
for each candidate pair and match those that have a
high correlation. This works very well if one image is
a translated copy of the other. However, if the two
images are taken from different positions, the corre-
sponding parts in the images are locally deformed,
depending on the 3-D shape of that part of the scene.
The correlation significantly diminishes if camera ro-
tations or zooming changes take place during the im-
age capturing process.

It follows that additional constraints are necessary.
If the scene is a planar surface or in the distance, the
two images are related by an image transformation
called homography [6]. This strong constraint can
be combined with voting techniques such as LMedS
[18] and RANSAC [4] to match the images robustly
[7, 10, 11].

For a general scene, the only available constraint
is the epipolar equation [6], and various types of
voting schemes based on it have been proposed
[1, 6, 22, 23, 25]. However, the epipolar equation is a
very weak constraint, admitting many unnatural and
inconsistent matches.

To resolve this, some global consistency condition
that favors “natural” matches is necessary. A typical

approach is to define various attributes to individual
points and an affinity measure for each point pair
and then search for a global match that maximizes
the total affinity between matched pairs. Since the
solution is a permutation matrix with at most one 1
in each row and column and all 0 elsewhere, this is a
very difficult integer programming task.

In order to avoid this difficulty, many approxima-
tion schemes have been proposed including replacing
the permutation matrix by a real matrix [13, 14, 24],
tensor voting [12], combination of the distant trans-
form with hierarchical search [15], relaxation of graph
labels [25], and introduction of the multiresolution
approach [2] and graph partition algorithms [16].
Still, a large amount of complicated computations are
necessary for iterations. Also, because these methods
iteratively propagate local similarity throughout the
image, we cannot impose global consistency condi-
tions to spatially apart matches directly.

In this paper, we present a matching algorithm
that does not involve such iterative propagation. In-
stead, global consistency is imposed on all potential
matches directly. The basic principle is that we re-
quire correct matches to be spatially smooth, assum-
ing that the scene does not have an extraordinary 3-D
shape. We also assume that the scene is more or less
planar or in the distance so that the image transfor-
mation can be roughly approximated by a homogra-
phy.

The main difficulty is how to deal with require-
ments that should be satisfied “approximately”. For
example, if two points have low image correla-
tions, we cannot deny the possibility that they may
match. Similarly, non-smooth or seemingly inconsis-
tent matches can be correct. We say such violable
constraints are soft while inviolable constraints such
as the epipolar equation are hard .

Our strategy is to define to all potential matches
confidence values that normalize the degree of sat-
isfaction of the soft constraints, whatever they are.
Then, we select high confidence matches and estimate
from them the global properties, from which the con-
fidence values of all potential matches are updated.
This scheme resembles what is known as mean-field
approximation used in statistical mechanics for de-
scribing many-body interactions. The confidence up-
date is done progressively from low-level soft con-
straint to high-level soft constraint. Finally, the hard
epipolar constraint is strictly imposed by RANSAC.
Using real images, we demonstrate that our method



is robust to camera rotations and zooming changes.

2. Template Matching
We measure the local correlations between the

neighborhoods of point p in the first image and point
q in the second by the residual (sum of squares)

J(p, q) =
∑

(i,j)∈N
|Tp(i, j)− Tq(i, j)|2, (1)

where Tp(i, j) and Tq(i, j) are the intensity values
of the templates defined by cutting out an w × w
pixel region N centered on p and q, respectively1.
If we normalize them to

∑
(i,j)∈N Tp(i, j)2 = 1 and∑

(i,j)∈N Tq(i, j)2 = 1, eq. (1) is equivalent to the use
of the normalized correlation.

The basic procedure for point matching is as fol-
lows. We extract N points p1, ..., pN in the first image
and M points q1, ..., qM in the second, using a feature
detector such as the Harris operator [5] and SUSAN
[21]. Then, we compute the residuals {J(pα, qβ)}, α
= 1, ..., N , β = 1, ..., M , for all NM combinations
of the extracted points. We search the N × M ta-
ble of {J(pα, qβ)} for the minimum value J(pα∗ , qβ∗)
and establish the match between points pα∗ and qβ∗ .
Then, we remove from the table the column and row
that contain the value J(pα∗ , qβ∗) and do the same
procedure to the resulting (N−1)×(N−1) table. Re-
peating this, we end up with L = min(N, M) matches.
We call this procedure uniqueness enforcement with
respect to the residual J .

However, this procedure cannot be done directly,
since the selected pairs may not be all correct while
some of the discarded pairs may be correct. In order
to take all potential matches into consideration, we
introduce confidence values to all pairs.

3. Confidence of Local Correlations
We define the confidence of local correlations for

the pair (p, q) via the Gibbs distribution in the form

P = e−sJ(p,q), (2)

so that high confidence is given for a smaller residual
J(p, q). Physicists usually put s = 1/kT and call T
temperature, where k is the Boltzmann constant. If
s = 0 (or T = ∞), we uniformly have P = 1 irre-
spective of the residual J(p, q). As s increases (or T
decreases), the confidence of those with large residu-
als quickly decreases, and ultimately the confidence
concentrates only on the smallest residual.

Here, we determine the attenuation constant s (or
temperature T ) as follows. Among all the NM pairs
{(pα, qβ)}, at most L (= min(N,M)) of them can
be correct. We require that the average of the L
smallest residuals equal the overall weighted average
with respect to the confidence (2). If the NM poten-
tial matches (pα, qβ) are sorted in ascending order of
J(pα, qβ) and the λth residual is abbreviated as Jλ,
this condition is written in the form

1
Z

NM∑

λ=1

Jλe−sJλ = J̄ , (3)

1We let w = 9 in our experiments.

where

Z =
NM∑

λ=1

e−sJλ , J̄ =
1
L

L∑

λ=1

Jλ. (4)

The solution of eq. (3) is easily computed by Newton
iterations to search for the zero of Φ(s) = 0, starting
from s = 0, where we define

Φ(s) =
NM∑

λ=1

(Jλ − J̄)e−sJλ . (5)

Let P
(0)
λ be the thus defined confidence of local cor-

relations for the λth pair.

4. Confidence of Spatial Consistency
Next, we introduce the confidence of spatial con-

sistency, assuming that the scene does not have an ex-
traordinary 3-D shape. For this, we choose tentative
candidates for correct matches by enforcing unique-
ness with respect to P

(0)
λ to those pairs that satisfy2

P
(0)
λ > e−k2/2. (6)

We enumerate the resulting matches by the index µ
= 1, ..., n0 in an arbitrary order. Let ~rµ be the 2-
dimensional vector that connects the two points of the
µth match, starting from the one in the first image
and ending at the other in the second. We call it the
“flow vector” of the µth match.

Our strategy is to view those matches which are
consistent with the resulting “optical flow” {~rµ} as
more likely to be correct. Specifically, we compute
the confidence weighted mean ~rm and the confidence
weighted covariance matrix V of the optical flow by

~rm =
1
Z

n0∑
µ=1

P (0)
µ ~rµ, Z =

n0∑
µ=1

P (0)
µ ,

V =
1
Z

n0∑
µ=1

P (0)
µ (~rµ − ~rm)(~rµ − ~rm)>. (7)

Then, we go back to the original NM potential
matches. We define their confidence of spatial consis-
tency via the Gaussian distribution in the form

P
(1)
λ = e−(~rλ−~rm,V −1(~rλ−~rm)), (8)

where (~a,~b) designates the inner product of vectors ~a

and ~b. Thus, a flow vector ~rλ has low confidence if it
largely deviates from the optical flow {~rµ}.
5. Confidence of Global Smoothness

We then introduce the confidence of global smooth-
ness, assuming that the scene is more or less planar
or in the distance so that the image transformation
can be roughly approximated by a homography.

2we let k = 3 in our experiment.
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First, we choose tentative candidates for correct
matches. This time, we enforce uniqueness with re-
spect to P

(0)
λ P

(1)
λ to those pairs that satisfy

P
(0)
λ P

(1)
λ > e−2k2/2. (9)

We enumerate the resulting matches by the index µ
= 1, ..., n1 in an arbitrary order.

Let (xµ, yµ) and (x′µ, y′µ) make the µth pair. We
represent these two points by 3-D vectors

xµ =




xµ/f0

yµ/f0

1


 , x′µ =




x′µ/f0

y′µ/f0

1


 , (10)

where f0 is an appropriate scale factor, e.g., the im-
age size. Then, a homography is written as an image
mapping in the form

x′ = Z[Hx], (11)

where Z[ · ] means normalization to make the third
component 1.

We optimally fit a homography to the n1 candi-
date matches. Let the true positions (in the absence
of noise) of {xµ} and {x′µ} be, respectively, {x̄µ}
and {x̄′µ}. Taking account of their confidence, we
compute the homography matrix H by minimizing

J =
n1∑

µ=1

P (0)
µ P (1)

µ (‖xµ − x̄µ‖2 + ‖x′µ − x̄′µ‖2), (12)

subject to the constraint x̄′µ = Z[Hx̄µ], µ = 1, ...,
n1, with respect to {x̄µ}, {x̄′µ}, and H. The solution
is easily obtained by modifying existing optimization
techniques. We used the method of Kanatani and
Ohta3 [8].

Then, we go back to the original NM potential
matches. The discrepancy of each potential match
from the estimated homography is measured by

DH
λ = ‖x′λ − Z[Hxλ]‖2, (13)

where xλ and x′λ represent the two points of the
λth pair, λ = 1, ..., NM . We define the confidence
of global smoothness via the Gibbs distribution in
the same way as the confidence of local correlations.
Namely, we let

P
(2)
λ = e−tDH

λ . (14)

The constant t is determined by solving

1
Z

NM∑

λ=1

DH
λ e−tDH

λ = D̄H , (15)

where

Z =
NM∑

λ=1

e−tDH
λ , D̄H =

1
L

L∑

λ=1

DH
λ . (16)

The solution is easily obtained by doing Newton iter-
ations to eq. (5) after Jλ is replaced by DH

λ .
3We used the program code placed at

http://www.ail.cs.gunma-u.ac.jp/Labo/programs-e.html

6. Voting the Epipolar Constraint
Finally, we strictly enforce the epipolar constraint .

For a matching pair {x, x′}, the epipolar equation

(x, Fx′) = 0. (17)

should hold. The matrix F is called the fundamental
matrix [6].

First, we choose tentative candidates for correct
matches by enforcing uniqueness with respect to
P

(0)
λ P

(1)
λ P

(2)
λ to those pairs that satisfy

P
(0)
λ P

(1)
λ P

(2)
λ > e−3k2/2. (18)

We enumerate the resulting matches by the index µ =
1, ..., n2 in an arbitrary order. From these candidate
matches, we robustly fit the epipolar equation (17)
using RANSAC [4, 6]. Letting Sm = 0 and F m = O
as initial values, we do the following computation:

1. Randomly choose eight among the n2 pairs.
2. From them, compute the fundamental matrix F .
3. For each of the n2 pairs, compute

DF
µ =

(xµ,Fx′µ)2

‖P kF>xµ‖2 + ‖P kFx′µ‖2
, (19)

where P k = diag(1, 1, 0) (the diagonal matrix
with diagonal elements 1, 1, and 0 in that order).

4. Let S the sum of the confidence P
(0)
µ P

(1)
µ P

(2)
µ of

those pairs that satisfy

DF
µ ≤ 2d2

f2
0

, (20)

where d (pixel) is a user definable threshold4.
5. If S > Sm, update Sm ← S and F m ← F .

We repeat this computation a sufficient number of
times5 to find the matrix F m that gives the largest
total confidence Sm.

Then, we go back to the original NM potential
matches. We measure the degree of fit to the epipolar
equation by DF

λ in eq. (19) after replacing xµ and
x′µ, respectively, by xλ and x′λ that represent the
λth pair, λ = 1, ..., NM . We choose from among the
NM pairs those that satisfy eq. (20). The resulting
pairs are thresholded by the criterion (18). Finally,
we enforce uniqueness with respect to P

(0)
λ P

(1)
λ P

(2)
λ

to obtain the final matches.
Note that the confidence for different types of con-

straint can be compared or multiplied on an equal
footing, because it is normalized into the interval [0,1]
in such a way that the L most favorable matches have
approximately the same level of confidence. This is
the reason why we used the Gibbs distribution in the
form of eqs. (2) and (14) and determined the atten-
uation constants s and t from the conditions (3) and
(15).

4We let d = 3 in our experiment.
5We stopped the search when no update occurred 100 times

consecutively.
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Left image. Right image. 3-D reconstruction.

(a) (b) (c) (d) (e)

Figure 1: Upper row: Input images and 3-D reconstruction. Bottom row: (a) Initial matches based on local correlations.
(b) Matches with spatial consistency incorporated. (c) Matches with global smoothness added. (d) Final matches with
the epipolar constraint imposed. (e) The method of Zhang et al. [25].

7. Real Image Examples

Using the two images in the upper left of Fig. 1,
we detected 300 feature points separately using the
Harris operator [5], as marked there. Fig. 1(a) is the
“optical flow” of the initial candidate matches based
on local correlations (we used the normalized correla-
tion for this example). This scene has many periodic
patterns, so the template matching based only on lo-
cal correlations produces many mismatches.

Fig. 1(b) shows the matches after spatial consis-
tency is imposed; Fig. 1(c) shows the matchers after
global smoothness is added. As we can see, the accu-
racy increases as we impose more constraints. Doing
RANSAC to the matches in Fig. 1(c), we obtained
the final matches in Fig. 1(d).

For comparison, we used the method of Zhang et
al. 6 [25] and obtained the flow shown in Fig. 1(e).
As can be seen, our method produces denser matches
than their method. This is because the confidence
values of mismatches, if they exit in some stage, are
likely to decrease in the next stage while the latent
correct matches can gain more confidence. As a re-
sult, the order of preference changes from one stage
to the next, resulting in almost all correct matchers
in the end.

The upper right of Fig. 1(c) is the 3-D shape re-
constructed from the computed fundamental matrix.
We used the method described in [9].

Fig. 2 shows another example similarly arranged.
A small camera rotation exists between the left and
right images, and the scene has many similar tex-
tures, so template matching based on local correla-
tions produces considerable mismatches, as we can
see in Fig. 2(a). However, each step adds to correct
matches. In the end, denser correct matches are ob-
tained (Fig. 2(d)) than by the method of Zhang et
al. [25] (Fig. 2(e)). The upper right of Fig. 2 is the

6We used the program from placed at
http://www-sop.inria.fr/robotvis/personnel/zzhang/

softwares.html.

panoramic image generated by the computed homog-
raphy.

We then examined the effects of camera rotations.
The upper row of Figs. 3 shows the left image and two
right images. Right images 1 and 2 are rotated ap-
proximately by 5 and 10 degrees, respectively, relative
to the left image. These images consist in large part
of almost identical periodic patterns with very simi-
lar textures, so matching by local correlation alone is
extremely difficult. The middle row shows the results
using the left image and the right image 1; The bot-
tom row shows the results using the left image and the
right image 2. In both, (a)∼(e) correspond to (a)∼(e)
in Figs. 1 and 2. As we can see, our method success-
fully generated sufficiently many correct matches even
in the presence of camera rotations, but the method
of Zhang et al. [25] failed.

We also examined the effects of zooming changes,
and the results are similarly arranged in Figs. 4. This
time, right images 1 and 2 are zoomed out approx-
imately by 80% and 65%, respectively, relative to
the left image. Again, our method produced a suf-
ficient number of correct matches, while the method
of Zhang et al. [25] failed.

For our examples, the total computation time (in-
cluding loading image files, feature point extraction,
and outputting debug information) was 23 sec on av-
erage. We used Pentium III 700MHz for the CPU
with 768MB main memory and Linux for the OS.

8. Conclusions

We have presented a new method for detecting
point matches between two images. Our strategy for
preserving the global consistency is to impose non-
local “soft” constraints on all potential matches via
their “confidence values” that normalize the degree of
satisfaction of different types of constraint. The confi-
dence values are progressively updated by “mean-field
approximation”. Finally, the “hard” epipolar con-
straint is imposed by RANSAC. Using real images,
we have demonstrated that our method is robust to
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Left image. Right image. Panoramic image.

(a) (b) (c) (d) (e)

Figure 2: Upper row: Input images and the generated panoramic image. Bottom row: (a) Initial matches based on
local correlations. (b) Matches with spatial consistency incorporated. (c) Matches with global smoothness added. (d)
Final matches with the epipolar constraint imposed. (e) The method of Zhang et al. [25]

camera rotations and zooming changes7.
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Left image. Right image 1. Right image 2.

(a) (b) (c) (d) (e)

Figure 3: Upper row: Input images. The right images 1 and 2 are rotated approximately by 5◦ and 10◦, respectively,
relative to the left image. Middle row: Results using the left image and the right image 1. Bottom row: Results using the
left image and the right image 2. (a) Initial matches based on local correlations. (b) Matches with spatial consistency
incorporated. (c) Matches with global smoothness added. (d) Final matches with the epipolar constraint imposed. (e)
The method of Zhang et al. [25].

Left image. Right image 1. Right image 2.

(a) (b) (c) (d) (e)

Figure 4: Upper row: Input images. The right images 1 and 2 are zoomed out approximately by 80% and 65%,
respectively, relative to the left image. Middle row: Results using the left image and the right image 1. Bottom row:
Results using the left image and the right image 2. (a) Initial matches based on local correlations. (b) Matches with
spatial consistency incorporated. (c) Matches with global smoothness added. (d) Final matches with the epipolar
constraint imposed. (e) The method of Zhang et al. [25].

37


