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Many techniques have been proposed for separating feature
point trajectories tracked through a video sequence into in-
dependent motions, but objects are usually assumed to un-
dergo general 3-D motions. As a result, the separation
accuracy considerably deteriorates in realistic video se-
quences in which object motions are nearly degenerate. In
this paper, we introduce unsupervised learning assuming
degenerate motions followed by unsupervised learning as-
suming general 3-D motions. This multi-stage optimiza-
tion allows us to not only separate simple motions that
we frequently encounter with high precision but also pre-
serve the high performance for considerably general 3-D
motions. Doing simulations and real video experiments,
we demonstrate that our method is superior to all existing
methods.

1. Introduction

Separating feature point trajectories tracked
through a video sequence into independent motions is
the first step of many video processing applications.
Already, many techniques have been proposed for this
task.

Costeira and Kanade [1] proposed a segmenta-
tion algorithm based on the shape interaction matrix.
Gear [3] used the reduced row echelon form and graph
matching. Ichimura [4] used the discrimination crite-
rion of Otsu [11]. He also used the QR decomposition
[5]. Inoue and Urahama [6] introduced fuzzy cluster-
ing. Kanatani [8, 9, 10] incorporated model selection
using the geometric AIC [7]. Wu et al. [18] introduced
orthogonal subspace decomposition.

However, all these methods assume that the ob-
jects undergo general 3-D motions relative to the cam-
era. As a result, segmentation fails when the motions
are degenerate, e.g., all the objects are simply trans-
lating independently (not necessarily along straight
lines). This type of degeneracy frequently occurs in
practical applications. Though strict degeneracy may
be rare, the segmentation accuracy considerably de-
teriorates if the motions are nearly degenerate.

At first sight, segmenting simple motions may seem
easier than segmenting complicated motions. In real-
ity, however, the opposite is the case, because compli-
cated motions have sufficient cues for mutual discrim-
ination. In fact, we have found through our experi-
ments that many methods that exhibit high accuracy
for complicated simulations perform very poorly for
real video sequences.

To cope with this, we have presented a method for
automatically selecting the best motion model using
the geometric AIC, but the accuracy improvement
was very much limited [14, 15].

In this paper, we introduce unsupervised learning
[13] assuming degenerate motions followed by unsu-
pervised learning assuming general 3-D motions. This
multi-stage optimization allows us to not only sepa-
rate simple motions with high precision but also pre-
serve the high performance for considerably general
3-D motions.

In Sec. 2, we describe the geometric constraints
that underlie our method. In Sec. 3, we introduce un-
supervised learning of the non-Bayesian and Bayesian
types. Our multi-stage optimization scheme is de-
scribed in Sec. 4. In Sec. 5, we show synthetic and real
video examples and demonstrate that our method is
superior to all existing methods. Section 6 concludes
this paper.

2. Geometric Constraints

2.1 Trajectory of feature points
Suppose we track N feature points over M frames.

Let (xκα, yκα) be the coordinates of the αth point in
the κth frame. Stacking all the coordinates vertically,
we represent the entire trajectory by the following
2M -dimensional trajectory vector :

pα = (x1α y1α x2α y2α · · · xMα yMα)>. (1)

For convenience, we identify the frame number κ with
“time” and refer to the κth frame as “time κ”.

We identify the XY Z camera coordinate system
with the world frame, relative to which multiple ob-
jects (including the background) are moving. Con-
sider a 3-D coordinate system fixed to one moving
object, and let tκ and {iκ, jκ,kκ} be, respectively, its
origin and basis vectors at time κ. If the αth point
has coordinates (aα, bα, cα) with respect to this coor-
dinate system, its position with respect to the world
frame at time κ is

rκα = tκ + aαiκ + bαjκ + cαkκ. (2)

2.2 Affine camera model
We assume an affine camera, which generalizes

orthographic, weak perspective, and paraperspective
projections [12]: the 3-D point rκα is projected onto
the image position

(
xκα

yκα

)
= Aκrκα + bκ, (3)

where Aκ and bκ are, respectively, a 2 × 3 matrix
and a 2-dimensional vector determined by the posi-
tion and orientation of the camera and its internal



parameters at time κ. Substituting Eq. (2), we have
(

xκα

yκα

)
= m̃0κ + aαm̃1κ + bαm̃2κ + cαm̃3κ, (4)

where m̃0κ, m̃1κ, m̃2κ, and m̃3κ are 2-dimensional
vectors determined by the position and orientation
of the camera and its internal parameters at time κ.
From Eq. (4), the trajectory vector pα in Eq. (1) can
be written in the form

pα = m0 + aαm1 + bαm2 + cαm3, (5)

where m0, m1, m2, and m3 are the 2M -dimensional
vectors obtained by stacking m̃0κ, m̃1κ, m̃2κ, and
m̃3κ vertically over the M frames, respectively.

2.3 Constraints on image motion

Equation (5) implies that the trajectories of the
feature points that belong to one object are con-
strained to be in the 4-dimensional subspace spanned
by {m0, m1, m2, m3} in R2M . It follows that multi-
ple moving objects can be segmented into individual
motions by separating the trajectories vectors {pα}
into distinct 4-dimensional subspaces. This is the
principle of the method of subspace separation [8, 9].

In addition, the coefficient of m0 in Eq. (5) is
identically 1 for all α. This means that the trajec-
tories are in a 3-dimensional affine space within that
4-dimensional subspace. It follows that multiple mov-
ing objects can be segmented into individual motions
by separating the trajectory vectors {pα} into dis-
tinct 3-dimensional affine spaces. This is the principle
of the method of affine space separation [10].

Theoretically, the segmentation accuracy should
be higher if we use stronger constraints. In fact,
according to simulations, the affine space separation
performs better than the subspace separation except
in the case in which perspective effects are very strong
in the presence of small noise [10]. For real video
sequences, however, the affine space separation ac-
curacy is sometimes lower than that of the subspace
separation [14, 15], which is inconsistent with the sim-
ulation results. The cause of this inconsistency will
be clarified in the subsequent analysis.

3. Unsupervised Learning

3.1 Non-Bayesian type

Segmentation by the subspace separation and the
affine space separation is not always correct. How-
ever, we can optimize the segmentation a posteriori
by optimally fitting a 3-dimensional affine space (or a
4-dimensional subspace) to each trajectory class and
reclassifying each trajectory to the closest affine space
(or subspace) (Fig. 1(a)). This process is iterated un-
til the classification converges.

If the noise in the coordinates of the feature points
is an independent Gaussian random variable of mean
0 and a constant variance, this procedure can be

viewed as unsupervised learning based on maximum
likelihood estimation, since minimizing the distance
of points from the fitted space is equivalent to maxi-
mizing their likelihood under our noise model.

3.2 Bayesian type

We may also take into consideration the internal
data distributions inside the fitted spaces (Fig. 1(b)).
This is the standard approach to unsupervised learn-
ing for pattern recognition. However, the existence of
geometric constraints somewhat complicates the like-
lihood computation. For the affine space constraint,
the actual procedure is as follows (the procedure for
the subspaces constraint goes similarly).

Let n = 2M . Suppose N n-dimensional trajectory
vectors {pα} are initially classified into m classes. De-
fine the weight W

(k)
α of the vector pα for the kth class

by

W (k)
α =

{
1 if pα belongs to the kth class
0 otherwise . (6)

Then, iterate the following procedures A and B in
turn until all the weights {W (k)

α } converge.

A. Do the following computation for each class k =
1, ..., m.

1. Compute

w(k) =
1
N

N∑
α=1

W (k)
α . (7)

2. Compute the centroid p
(k)
C of the kth class:

p
(k)
C =

∑N
α=1 W

(k)
α pα∑N

α=1 W
(k)
α

. (8)

3. Compute the n × n moment matrix of the kth
class:

M (k) =
∑N

α=1 W
(k)
α (pα − p

(k)
C )(pα − p

(k)
C )>

∑N
α=1 W

(k)
α

.

(9)

4. Let λ1 ≥ λ2 ≥ λ3 be the three largest eigenvalues
of the matrix M (k), and u

(k)
1 , u

(k)
2 , and u

(k)
3 the

corresponding unit eigenvectors.
5. Compute the n× n projection matrices

P (k) =
3∑

i=1

u
(k)
i u

(k)>
i , P

(k)
⊥ = I − P (k), (10)

where I denotes the n× n unit matrix.
6. Estimate the noise variance in the direction or-

thogonal to the kth affine space by

σ̂2
k = max[

tr[P (k)
⊥ M (k)P

(k)
⊥ ]

n− 3
, σ2], (11)

where tr[ · ] denotes the trace and σ is an estimate
of the tracking accuracy1.

1We found σ = 0.5 (pixels) a reasonable value [16].
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(a) (b)

Figure 1: Segmentation criterion: (a) non-Bayesian
type; (b) Bayesian type.

7. Compute the n× n covariance matrix of the kth
class by

V (k) = P (k)M (k)P (k) + σ̂2
kP

(k)
⊥ . (12)

B. Do the following computation for each trajectory
vector pα, α = 1, ..., m.

1. Compute the conditional likelihood P (α|k), k =
1, ..., m, by

P (α|k) =
e−(pα−p(k)

C
,V (k)−1(pα−p(k)

C
))/2

√
det V (k)

. (13)

2. Recompute the weights W
(k)
α , k = 1, ..., m, by

W (k)
α =

w(k)P (α|k)∑m
l=1 w(l)P (α|l) . (14)

After the iterations of A, B, and C have converged,
the αth trajectory is classified into the kth class that
maximizes W

(k)
α , k = 1, ..., N .

3.3 Interpretation

In the above iterations, we fit a Gaussian distribu-
tion of mean p

(k)
C and the rank 3 covariance matrix

P (k)M (k)P (k) to the internal distribution of the tra-
jectories inside the 3-dimensional affine spaces. For
the deviations outside the fitted spaces, we fit a Gaus-
sian distribution of mean 0 and a constant variance
σ̂2

k.
Using these distributions, we compute the proba-

bility P (α|k) of the trajectory vector pα conditioned
to be in the kth class. Regarding w(k) in Eq. (7) as
the a priori probability of the kth class, we compute
the a posterior probability W

(k)
α by Eq. (14) using

Bayes’ theorem. Then, we reclassify all the trajecto-
ries according to W

(k)
α , which are fractions in general

(i.e., one trajectory belongs to multiple classes with
fractional weights). This procedure is iterated until
all the weights W

(k)
α converge. Finally, we associate

the αth trajectory with the kth class that maximizes
W

(k)
α .
If we consider only the deviations outside the fit-

ted spaces, the above procedure reduces to the non-
Bayesian type. This type of unsupervised learning2

2This scheme is often referred to as the EM algorithm [2],
because the mathematical structure is the same as estimating
parameters from incomplete data by maximizing the logarith-
mic likelihood marginalized by the posterior of the missing data
given by Bayes’ theorem.
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Figure 2: If the motions of the objects and the back-
ground are degenerate, their trajectory vectors belong to
mutually parallel 2-dimensional affine spaces.

is widely used for pattern recognition, and the like-
lihood is known to increases monotonously in the
course of iterations [13]. However, it is also well
known that the iterations are very likely to be trapped
at a local maximum. It is almost impossible to do
correct segmentation by the above procedure alone
unless we start from a very good initial value.

4. Degenerate Motion Model

Now, we model degenerate motions and derive
an associated unsupervised learning procedure, from
which we construct our multi-stage optimization pro-
cedure.

4.1 Degenerate motions

The motions we frequently encounter are such that
the objects and the background are translating and
rotating 2-dimensionally in the image frame with
varying sizes.

For such a motion, we can choose the basis vector
kκ in Eq. (2) in the Z direction (the camera optical
axis is identified with the Z-axis). Under the affine
camera model, motions in the Z direction do not af-
fect the projected image except for its size. Hence,
the vector m̃3κ in Eq. (4) can be taken to be 0; the
scale changes of the projected image are absorbed by
the scale changes of m̃1κ and m̃2κ over time κ. It fol-
lows that the trajectory vector pα in Eq. (5) belongs
to the 2-dimensional affine space passing through m0

and spanned by m1 and m2.
All existing segmentation methods based on the

shape interaction matrix of Costeira and Kanade [1]
assume that the trajectories of different motions be-
long to independent 3-dimensional subspaces [8, 9].
Hence, degenerate motions cannot be correctly seg-
mented.

If, in addition, the objects and the background do
not rotate, we can fix the basis vectors iκ and jκ in
Eq. (2) to be in the X and Y directions, respectively.
Since the basis vectors iκ and jκ are common to the
objects and the background, the vectors m1 and m2

in Eq. (5) are also common. Thus, the 2-dimensional
affine spaces of all the motions are parallel (Fig. 2).

Note that two parallel 2-dimensional affine spaces
can be included in a 3-dimensional affine space. Since
the affine space separation method attempts to seg-
ment the trajectories into different 3-dimensional
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affine spaces, it does not work if the objects and the
background undergo such degenerate motions. This
explains why the accuracy of the affine space sepa-
ration is not as high as expected for real video se-
quences.

4.2 Unsupervised learning for degenerate mo-
tions

Since most of the motions we encounter in practice
are degenerate, we can expect that the segmentation
accuracy increases by unsupervised learning assuming
such degenerate motions. The actual procedure goes
as follows:

First, we set the weight W
(k)
α of pα for the kth class

by Eq. (6). Next, we iterate the following procedures
A, B, and C in turn until all the weights {W (k)

α } con-
verge:

A. Do the following computation for each class k =
1, ..., m.

1. Compute w(k) by Eq. (7).
2. Compute the centroid p

(k)
C of the kth class by

Eq. (8).
3. Compute the n × n moment matrix M (k) by

Eq. (9).
B. Do the following computation.

1. Compute the total n× n moment matrix

M =
m∑

k=1

w(k)M (k). (15)

2. Let λ1 ≥ λ2 be the two largest eigenvalues of
the matrix M , and u1 and u2 the corresponding
unit eigenvectors.

3. Compute the n× n projection matrices

P =
2∑

i=1

uiu
>
i , P⊥ = I − P . (16)

4. Estimate the noise variance in the direction or-
thogonal to all the affine spaces by

σ̂2 = max[
tr[P⊥MP⊥]

n− 2
, σ2]. (17)

5. Compute the n× n covariance matrix of the kth
class by

V (k) = PM (k)P + σ̂2P⊥. (18)

C. Do the following computation for each trajectory
vector pα , α = 1, ..., N .

1. Compute the conditional likelihood P (α|k), k =
1, ..., m, by Eq. (13).

2. Recompute the weights {W (k)
α }, k = 1, ..., m, by

Eq. (14).
The computation is the same as in Sec. 3.2 except

that 2-dimensional affine spaces with the same orien-
tation are fitted; the common basis vectors u1 and u2

and the common outside noise variance are estimated
in the procedure B.

After the iterations of A, B, and C have converged,
the αth trajectory is classified to the kth class that
maximizes W

(k)
α , k = 1, ..., N . The corresponding

non-Bayesian scheme can be obtained if we do not
consider the internal distributions.

4.3 Multi-stage optimization

In order to start the above learning, we need a
good initial value. Here, we use the affine space sep-
aration using 2-dimensional affine spaces, which ef-
fectively assumes planar motions with varying sizes.
The resulting segmentation is then optimized by as-
suming non-rotational motions.

The solution should be very accurate if the mo-
tions are truly degenerate. In reality, however, rota-
tions may be involved to some extent. So, we relax
the constraint and optimize the solution by assuming
general 3-D motions.

In sum, our scheme consists of the following three
stages:

1. Initial segmentation by the affine space separa-
tion using 2-dimensional affine spaces.

2. Unsupervised learning of the Bayesian type as-
suming degenerate motions.

3. Unsupervised learning of the Bayesian type as-
suming general 3-D motions.

This multi-stage optimization allows us to not only
separate degenerate motions that we frequently en-
counter with high precision but also preserve the high
performance for general 3-D motions, as we now show.

5. Experiments

5.1 Simulations

Fig. 3 shows three sequences of five synthetic im-
ages (supposedly of 512 × 512 pixels) of 14 object
points and 20 background points; the object points
are connected by line segments for the ease of vi-
sualization. To simulate real circumstances better,
all the points are perspectively projected onto each
frame with 30◦ angle of view, although the underlying
theory is based on the affine camera model without
perspective effects.

In all the three sequences, the object moves to-
ward the viewer in one direction (10◦ from the im-
age plane), while the background moves away from
the viewer in another direction (10◦ from the image
plane). In (a), the object and the background are sim-
ply translating in different directions. In (b) and (c),
they are additionally given rotations by 2◦ per frame
in opposite senses around different axes; they make
10◦ from the optical axis in (b) and 60◦ in (b). Thus,
all the three motions are not strictly degenerate (with
perspective effects), but the motion is almost degen-
erate in (a), nearly degenerate in (b), and a general
3-D motion in (c).
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(a)

(b)

(c)

Figure 3: Simulated image sequences of 14 object points and 20 background points: (a) almost degenerate motion; (b)
nearly degenerate motion; (c) general 3-D motion.
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Figure 4: Misclassification ratio for the sequences (a), (b), and (c) in Fig. 3: 1) Costeira-Kanade; 2) Ichimura; 3)
optimized subspace separation; 4) optimized affine space separation; 5) multi-stage optimization.

We added independent Gaussian random noise of
mean 0 and standard deviation σ to the coordi-
nates of all the points and segmented them into two
groups. Fig. 4 plots the average misclassification ra-
tio over 500 trials using different noise for different
σ. We compared 1) the Costeira-Kanade method
[1], 2) Ichimura’s method [4], 3) the subspace sepa-
ration [8, 9] followed by unsupervised learning of the
Bayesian type (we call this optimized subspace separa-
tion for short), 4) the affine space separation [10] fol-
lowed by unsupervised learning of the Bayesian type
(optimized affine space separation for short), and 5)
our multi-stage optimization.

For the almost degenerate motion in Fig. 3(a),
the optimized subspace separation and the optimized
affine space separation do not work very well. Also,
the affine space separation is not superior to the sub-
space separation (Fig. 4(a)). Since our multi-stage
optimization is based on this type of degeneracy, it
achieves 100% accuracy over all the noise range.

For the nearly degenerate motion in Fig. 3(b),
the optimized subspace separation and the opti-
mized affine space separation both work fairly well

(Fig. 4(b)). However, our method still attains almost
100% accuracy.

For the general 3-D motion in Fig. 3(c), the opti-
mized subspace separation and the optimized affine
space separation exhibit relatively high performance
(Fig. 4(c)), but our method performs much better
with nearly 100% accuracy again.

Although the same learning procedure is used in
the end, the multi-stage optimization performs bet-
ter than the optimal affine space separation, because
the former starts from a better initial value than the
latter. This is the reason why the multi-stage opti-
mization achieves high performance even for consid-
erably non-degenerate motions.

For all the motions, the Costeira-Kanade method
performs very poorly. The accuracy is not 100% even
in the absence of noise (σ = 0) because of the per-
spective effects. Ichimura’s method is not effective,
either. It works to some extent for the general 3-D
motion in Fig. 3(c), but it does not compare with the
optimized subspace or affine space separation, much
less with the multi-stage optimization method.
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Figure 5: Effects of unsupervised learning for Fig. 3(c):
1) subspace separation; 2) subspace separation followed
by unsupervised learning of the non-Bayesian type; 3)
subspace separation followed by unsupervised learning of
the Bayesian type; 4) affine space separation; 5) affine
space separation followed by unsupervised learning of the
non-Bayesian type 6) affine space separation followed by
unsupervised learning of the Bayesian type.

5.2 Effects of learning

Fig. 5 shows the effects of unsupervised learning for
Fig. 3(c). We plot the misclassification ratios of the
subspace separation and the affine space separation
with and without unsupervised learning of the non-
Bayesian and Bayesian types. From Fig. 5, we can see
that both the non-Bayesian and the Bayesian types
work effectively but that the Bayesian type is slightly
better. Yet, as we can see from Fig. 5, our multi-stage
optimization is far superior to all other methods.

Fig. 6 shows the stage-wise effects of unsupervised
learning of our multi-stage optimization for Fig. 3(c).
For this general 3-D motion, the learning assuming
degenerate motions does not perform so very well in-
deed, but the subsequent learning assuming general
3-D motions successfully restores the accuracy up to
almost 100%.

The interesting fact is that the accuracy increases
as the noise increases. This is perhaps because the
discrepancy between the assumed degenerate motion
and the actual non-degenerate motion is more con-
spicuous when the noise is smaller.

5.3 Real video examples

Fig. 7 shows five decimated frames from three
video sequences A, B, and C (320 × 240 pixels). For
each sequence, we detected feature points in the ini-
tial frame and tracked them using the Kanade-Lucas-
Tomasi algorithm [17]. The marks 2 indicate their
positions. From the trajectories tracked throughout
the sequence, we removed outlier trajectories using
the method of Sugaya and Kanatani [16].

Table 1 lists the number of frames, the number
of inlier trajectories, and the computation time for
our multi-stage optimization. We reduced the com-
putation time by compressing the trajectory data into
8-dimensional vectors [14]. We used Pentium 4 2.4B
GHz for the CPU with 1 Gb main memory and Linux
for the OS.

Table 2 lists the segmentation accuracies for differ-
ent methods (“opt” stands for “optimized”). The ac-
curacy is measured by (the number of correctly classi-
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Figure 6: Effects of unsupervised learning for Fig.3(c):
1) affine space separation using 2-dimensional affine
spaces; 2) unsupervised learning of the Bayesian type as-
suming degenerate motions; 3) unsupervised learning of
the Bayesian type assuming general 3-D motions.

fied points)/(the total number of points) in percent-
age. For the methods other than Costeira-Kanade
and Ichimura, this percentage is averaged over 50 tri-
als, since both the subspace and the affine space sep-
arations internally use random sampling for robust
estimation and hence the result is slightly different
for each trial.

As we can see, the Costeira-Kanade method fails
to produce meaningful segmentation. Ichimura’s
method is effective for sequences A and B but not
so very effective for sequence C. For sequence A, the
affine space separation is superior to the subspace
separation. For sequence B, the two methods have
almost the same performance. For sequence C, in
contrast, the subspace separation is superior to the
affine space separation, strongly suggesting that the
motion in sequence C is nearly degenerate.

The effect of learning is larger for sequence A than
for sequences B and C, for which the accuracy is al-
ready high before the learning. Thus, the effect of un-
supervised learning very much depends on the qual-
ity of the initial segmentation. For all the three se-
quences, our multi-stage optimization achieves 100%
accuracy.

6. Concluding Remarks

In this paper, we have proposed multi-stage opti-
mization by unsupervised learning assuming degen-
erate motions followed by unsupervised learning as-
suming general 3-D motions. Doing simulations and
real video experiments, we have confirmed that our
method is superior to all existing methods in realistic
circumstances.

The reason for this superiority is that our method
is tuned to realistic circumstances, where the motions
of objects and backgrounds are almost degenerate,
while existing methods mostly make use of the shape
interaction matrix of Costeira and Kanade on the as-
sumption that objects and backgrounds undergo gen-
eral 3-D motions. As a result, they perform very
poorly for simple motions such as in Fig. 7.

In contrast, our method3 has very high perfor-
3The source code is publicly available at:

http://www.suri.it.okayama-u.ac.jp/e-program.html
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A:

B:

C:

Figure 7: Three video sequences and successfully tracked feature points.

Table 1: The computation time for the multi-stage op-
timization of the sequences in Fig. 7.

A B C

number of frames 30 17 100

number of points 136 63 73

computation time (sec) 2.50 0.51 1.49
Table 2: Segmentation accuracy (%) for the sequences
in Fig. 7.

A B C

Costeira-Kanade 60.3 71.3 58.8

Ichimura 92.6 80.1 68.3

subspace separation 59.3 99.5 98.9

affine space separation 81.8 99.7 67.5

opt. subspace separation 99.0 99.6 99.6

opt. affine space separation 99.0 99.8 69.3

multi-stage optimization 100.0 100.0 100.0

mance for degenerate motions, and the accuracy is
preserved even for considerably non-degenerate mo-
tions due to the multi-stage optimization.
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