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SUMMARY A new mathematical formalism is proposed for
constructing elements of camera calibration that measure the
focal length and the orientation of the camera: the focal length
and the camera orientation are computed by detecting, on the
image plane, the vanishing points of two sets of lines that are
mutually orthogonal in the scene; the distance of the scene
coordinate origin from the camera is determined by locating, on
the image plane, a point whose scene coordinates are known. We
show that the separation of the calibration process into atomic
modules enables us to not only predict theoretically optimal
estimates but also estimate their reliability.

1. Introduction

Visual control using video cameras is one of the
most essential components for intelligent robot opera-
tions. To this end, the study of computer vision is
expected to play a central role. However, almost all
techniques for extracting 3-D information are based on
the assumption that the camera imaging geometry is
known. Whenever we try to implement any computer
vision technique by using a real camera, we immediate-
ly face the difficulty of accurately calibrating the cam-
era. Today, more and more people agree that the
difficulty of camera calibration is one of the major
obstacles that prevent the use of computer vision tech-
niques in real environments™~®»®~13),

In computer vision studies, the camera imaging is
usually modeled as perspective projection from the
origin O (called the “viewpoint”) of the camera-based
XYZ-coordinate system onto an image plane placed
parallel to the XY -plane in distance f, which is often
referred to as the “focal length”, from the viewpoint O
(Fig. 1). Let us call the parameters that specify the 3-D
position of the viewpoint O and the 3-D orientation of
the camera XYZ-coordinate system the “pose parame-
ters”.

The camera calibration techniques reported in the
past involve very complicated procedures. One reason
is that these techniques aim to take all factors into
consideration, including the optical distortion (called
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“abberation”), the distortion of the mapping from the
camera to the display by raster scanning, and the
digitization into discrete pixels. Essentially, most of
the reported techniques take the following “parametric
fitting” approach:
1. Set, in the scene, multiple reference points whose
3-D coordinates are known.
2. Locate the images of the reference points on the
video display.
3. Construct a parameterized camera imaging model
by taking into account all conceivable factors—per-
spective projection, lens distortion, raster scanning,
discrete pixels, etc.
4. Express the 2-D image coordinates of the reference
points in terms of the model parameters, assuming that
the imaging model is correct.
5. Determine the parameters by minimizing, say in
the sense of least-squares, the discrepancy between the
image coordinates of the observed reference points and
their predicted locations.

We oppose this approach on the following
ground.
» The quantity to be minimized is a complicated
nonlinear function of the calibration parameters,
and analytic solutions are difficult to obtain. So, we
must resort to numerical search by iterations. How-
ever, it is in general not easy to guarantee conver-
gence for such iterations.
If the camera imaging model is a pure perspective
projection, the model equations can be made linear
in appearance by introducing artificial
variables (e.g., 3-D homogeneous coordinates ).
Hence, it appears that a simple least-squares method

T

Fig.1 Camera imaging geometry.
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can be applied. However, the least-squares method
makes sense only when error behaviors are well
understood. It is extremely dangerous to treat noisy
variables and artificial variables that are immune to
noise in the same way without knowing their geo-
metric meanings and error behaviors.

Even if the computed parameters, as a whole, attain
a minimum, this does not mean that each of the
parameters is reliable. Suppose, for example, quan-
tity J is to be minimized but it is not very sensitive
to one parameter, say @, as compared with another
parameter, say /4, near the optimum: |3 J / da|<
|0 J/ dB|. Then, the estimated value of @ may be
largely distorted to compensate for the error in 8.
Thus, this approach becomes extremely dangerous as
the number of the parameters increases, and espe-
cially so when parameters of different geometric
origins such as the focal length and the center of the
image are mixed together.

The mechanism of estimation is different from
parameter to parameter. For example, the focal
length cannot be detected accurately from images
unless the effect of “foreshortening” is strong,
because assuming different focal lengths does not
affect the resulting 3-D interpretation very much if
foreshortening is not apparent. This means that the
computed focal length becomes more reliable as the
effect of foreshortening becomes stronger. Hence, we
must first check the “estimation mechanism” for each
parameter, and then arrange the setup accordingly so
that the reliability is maximized. This kind of con-
sideration is impossible if all the parameters are
optimized as a single step.

All the calibration parameters are not equally
important. These days, for example, lens distortion is
small thanks to the advanced manufacturing technol-
ogy. Hence, if we use a well manufactured high
quality camera, we need not worry very much about
abberation, while other parameters, e.g., the focal
length, may be vital in some applications. Thus, it is
desirable that the parameters we are interested in can
be estimated separately.

In view of these observations, we propose to sepa-
rate the calibration process into “atomic modules”,
each based on a simple and well understood geometric
relationship. In this paper, we focus on the focal length
estimation module and the pose parameter estimation
module, since the focal length and the pose parameters
are frequently changed, and hence must be recalibrated
quickly. ‘

In this paper, we consider a scheme of using a
specially designed calibration board, which plays the
role of the scene coordinate system. It would be desir-
able to use non-coplanar reference points from a theo-
retical point of view, but in practice it is not easy to
handle non-coplanar reference points efficiently.
Instead of reference points, we consider the use of two

.
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sets of mutually orthogonal parallel lines, because lines
are expected to be more robust than points. Estimation
of the focal length is based on their vanishing points;
the distance of the scene coordinate origin from the
camera is determined by locating a point whose posi-
tion on the calibration board is known.

In our formulation, all points and lines are re-
presented by unit vectors, which we call “N-vec-
tors”® ™ _In terms of N-vectors, points at infinity and
the line at infinity can be treated as if they are ordinary
points and a line. This formulation enables us to
incorporate a statistical consideration of error behav-
iors, computing not only optimal estimates but also the
variance of each estimate, from which we can deduce a
quantitative “confidence level” of the estimate.

This paper does not discuss the overall system
organization of camera calibration and its perfor-
mance, since they are affected by many factors includ-
ing the geometric correction of lens abberation, which
should be treated independently of other camera
parameters.

2. The Pose Parameters of the Camera

Take an XYZ camera coordinate system with
origin O (the viewpoint), and fix an XYZ scene
coordinate system in the scene with origin O (Fig. 2).
Let e, e, and e; be the unit vectors along the X-, ¥-,
and Z-axes, respectively. Let m, be the unit vector
starting from the viewpoint O and poiniting toward
the scene coordinate origin O. We call m, the “N-
vector” of O. Let r,=| OO0 | be the distance of the
scene coordinate origin O from the viewpoint O.

We regard the XYZ camera coordinate system as
obtained by (1) first rotating the XYZ scene coor-
dinate system around its origin O by a rotation matrix
R and (2) then translating it by a vector £, where the
components of R and A are defined with respect to the
XYZ-coordinate system. Let us call {R, h} the
“pose parameters”.

Let i, j, and & be the unit vectors along the X-,
Y-, and Z-axes, respectively. The above definition of

Fig. 2 The camera coordinate system and the scene coordinate
system.
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R = (R;;) and h=(h;) is rephrased as
i = Riue+ Ri et Ry e,

j = Rlz e+ Rzz e+ Rsz €3, ( 1 )
k = Rizsei+ Ry e+ Ry e,
0_0>: ;h e1+ hz ez+h3 €3. (2)

Then, the pose parameters are computed as follows
(the proof is easy). Let

€1q) €2(1) €3(1)
e—|€e |, €=|€E|, e=|e2]|,
€1(3) €2(3) €3(3)
Mo (1)
Mo=| Mo (2) - (3)
Mo (3)

be the components of vectors e;, e, e;, and m, ex-
pressed with respect to the XYZ camera coordinate
system. The pose parameters { R, k } are given by

€1(1) €1(2) €1(3)
R =| e e es |, (4)
€3(1) €3(2) €3(3)
Ryymomy+ Rizmozy+ RisMip,
h =— ro| Rumoay+ Raxmiomy+ Rastion |- (5)

Raimoay+ Raamoe+ Rastiogs

3. Determination of the Motion Parameters

Suppose the camera is moved in the scene. In
order to specify the position and orientation of the
X'Y'Z -coordinate system after the motion relative to
the XYZ-coordinate system before the motion, we
regard the X' Y’ Z'-coordinate system as obtained by
(1) first rotating the XYZ-coordinate system around its
origin O by a rotation matrix R and ( 2 ) then translat-

Y

| X
it<k/z ..\ k/zl
OJ Ny |O' j'\Y'
S~
{R,R}

Fig. 3 Motion parameters.
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ing it by a vector k, where the components of R and &
are defined with respect to the XYZ-coordinate system.
Let us call { R, £} the “motion parameters” (Fig. 3).

Let i, j, and k be, respectively, the unit vectors
along the original X-, Y-, and Z-axes, and let i, j,
and k' be, respectively, the unit vectors along the X'-,
Y'-, and Z'-axes after the motion. The above definition
of R = (R;) and k = (%) is rephrased as

i’=ﬁ11i+R21j+ﬁ31k,

j'=ﬁ12i+§22]‘+§32k’ (6)
k'=ﬁ31i+ﬁ23].+R~33 k,
00'=hi+ hj+ bk (7)

Then, the motion parameters are computed as follows
(the proof is easy). If the pose parameters of the *
camera are { R, & } and { R", &’} before and after the
motion, respectively, the motion parameters { R, A}
are given-by

R=R"R, hF=R"(K—h). (8)

4. Determination of the Absolute Depth

In order to determine the distance r, of the scene
coordinate origin O from the viewpoint O, we need
some information about absolute length in the scene.
Here, we observe, on the X ¥-plane, a fixed a point Q
whose distance | OQ | from O is known (Fig.2). Let
mg be the unit vector starting from the viewpoint O
and pointing toward @; we call mg the “N-vector” of
point Q. Let (a, b) designate the inner product of
vectors @ and b, and || a | the norm of vector a. It is
easy to confirm that the distance 7, of the scene coordi-
nate origin O from the viewpoint O is given by

I(ma, es)Hle (9)

[(mo, €s) mg— (mq, e) mo|

Fo=

5. N-vectors of Points and Lines

Given a point P in the scene, we call the unit
vector m starting from the viewpoint O and pointing
toward P the “N-vector”” of point P. If we use the

Fig. 4 The N-vectors of a point and a line.
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notation N [ a]= a/ | a| to designate the normaliza-
tion of vector & into a unit vector, the N-vector m of
a point P whose image coordinates are (a, b) is given
by

a
m = N[|b|] (10)

Given a line / in the scene, we define its “N-vec-
tor”™ as the unit vector n normal to the plane passing
through the viewpoint O and intersecting the image
plane along / (Fig.4). It is easy to see that if the
projection image of / is Ax + By + C =0, its N-
vector n is given by

A
n==x N[ B |[], (11)
c/f

where the sign is arbitrarily chosen.

From Fig. 4, we can see that a point of N-vector m
is on a line of N-vector n if and only if (m, n)=0.
Hence, if point P is on both lines 4 and £, N-vector m
must be orthogonal to both m and m;. Thus, the
N-vector m of the intersection P of two lines 4 and &
given by

m=* N[mX n), (12)

where n; and m, are the N-vectors of 4 and bk, respec-
tively, and the sign is chosen so that the Z-component
becomes nonnegative.

Lines that meet at a common intersection on the
image plane are said to be “concurrent”. Computation
of the common intersection of concurrent lines plays
an essential role in our calibration procedure. How-
ever, if lines are obtained from real data by image
processing, error is inevitable; lines that are supposed
to be concurrent may not concurrent. Hence, we need
to estimate a common intersection of not necessarily
concurrent lines (Fig.5). The common intersection
may not be found within the image frame; it may be
located at infinity if the lines happen to be parallel on
the image plane. In view of this, the computation
should be done in terms of N-vectors.

Let m, ---, ny be the N-vectors of not necessarily

. Py
1- n] _____ '/.P/
PR ///I

e /

7
l2 :V e |
\\
T lyiny

Fig. 5 Estimation of a common intersection.

IEICE TRANSACTIONS, VOL.E 74, NO. 10 OCTOBER 1991

concurrent lines. If these lines exactly pass through a
point of N-vector m, we have (m, n,) = 0, =1, -+-, N.

N
Hence, m is estimated by minimizing 21 Wo(m, n.)?
=

N
(=(m, (21 Wan.nl) m)) by appropriately introduc-
a=

ing a weight w, to each line. Since this is a quadratic
form in m, it is minimized by the unit eigenvector of
the “moment matrix”

N
N=21 Wy ny nk (13)

for the smallest eigenvalue® ™. The sign is chosen so
that the Z-component becomes nonnegative.

The weights W, should be determined in such a
way that the resulting estimate is most robust to noise.
The optimal weights and the “covariance matrix” of
the resulting optimal estimate are given as follows (the
proof requires many mathematical preliminaries and
long derivation):

[Proposition 1] The optimal weights W, for estimat-
ing a common intersection are given by

1

We=(m, Vind m)’

(14)
where n, is the N-vector of the @th line, m the N-vector
of the intersection, and ¥ [n,] the covariance matrix
of n, (see Appendix A). ]

[ Proposition 2] The covariance matrix V [ m ] of
the N-vector m of an optimally estimated common
intersection is given by

T

T
Viml="3 4

where # and » are the unit eigenvectors of the moment
matrix M other than m, and A, and A, their respective
eigenvalues. O

The optimal weights W, contain the N-vector m
that we want to compute. Hence, in practice, we must
use an appropriate estimate of m, say, the value esti-
mated with uniform weights. In order to apply the
procedures described above, we need not know the true
value of the focal length f; we can use an estimate of
Jf for computing N-vectors. As long as the same f is
used (including the optimization), the result is not
significantly affected.

If the value of f is altered, it is clear from Egs.

(15)

Fig. 6 The focal length f and N-vectors.
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(10) and (11)and Fig. 6 that if m = (my, ma, ms) 7 is
the N-vector of a point and n = (m, n, ns)7 is the
N-vector of a line with respect to focal length f, the
corresponding N-vectors m’ and n' with respect to
another focal length ' are respectively given by

nhy
m =N| e 1,

(f'/f) s

m
n=N]| 7 ]. (16)
(f/f)ns

6. Determination of the Focal Length

If an infinitely long line in the scene is projected
onto the image plane, its image terminates at a point
called the “vanishing point”. From Fig. 7, it is easy to
confirm that the N-vector of the vanishing point of a
line in the scene indicates its 3-D orientation® ™.

Hence, if lines parallel in the scene are projected
onto the image plane, they meet at their common
vanishing point. From this fact, we obtain the follow-
ing procedure™®:

1. Take an image of two mutually orthogonal sets of
parallel lines in the scene.

2. Assuming a tentative value / for the focal length,
compute the N-vectors m = (my, mp, m3)T and m'=
(my, my, mz)" of the vanishing points of these lines by
the method described in Sect. 5.

3. From Egs. (16), the true focal length f is given by

. mlmH- mzmé

P (17)

f=r

Equation (17) yields a less reliable value as the
vanishing points move farther away from the image
origin ; both the numerator and the denominator in
the square-root of Eq. (17) approach 0. This instabil-
ity is inevitable, since the focal length affects the image
in the form of “foreshortening”. If the vanishing points
are far apart from the image origin, the image is
affected little (except for the scale) by the value of f,
which means that the focal length f cannot be deter-

Fig. 7 The vanishing point of a line in the scene.
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mined reliably. On the other hand, if the vanishing
points are close to the image origin, some line segments
may become very short, which decreases the reliability
of line fitting, or some line segments may come very
close to each other, which decreases the reliability of
vanishing point detection.

One way to increase the reliability is repeating the
measurement in different settings and average the
result. However, if we take the direct average, a small
number of very deviated values (the so called “out-
liers”) may damage the result. This is avoided if we
take a weighted average in such a way that unreliable
data are given small weights while reliable data are
given large weights. To this end, we must compute the
“variance” of f. For simplicity, assume that the current
focal length f is a fairly accurate estimate of the true
f. Here, we list the final result without a proof (a
complete proof would require many mathematical
preliminaries and long derivation procedures).

[ Proposition 3] If m and m’ are independent data,
and if f = f, the variance of f is given by

_fE(m, Vmlm')+ (m, V(m'lm’)
visi=4 (o)

’

(18)

where ¥[m] and V[m'] are the “covariance matrices”
(given by Propositiong 2) of m and m’, respectively.
L]

If the vanishing points are far apart from the
image orign, the denominator becomes small. If the
vanishing points are close to the image origin, and
some line segments are very short or very close to each
other, the covariance matrices ¥'[m] and V[m'] grow
large(cf. Appendix A and Proposition 2). Thus, the
most reliable value is obtained when the variance

V [ f] of Eq. (18) takes its minimum.

Suppose we repeat the measurement N times in
different settings, and obtain values { f,} with variances
{ V' [ f2]}. Let us take a weighted average in such a way
that the resulting f is most reliable, which we interpret
as having a minimum variance. Then, we obtain the
following result (we omit the proof):

[ Proposition 4] For independent N data { £}, the
optimal estimate is given by

= N fa N 1

F=E&VTIR/ & VIAD (19)
and its variance is given by

V=1 Sy (20)

where V [ f,] is the variance (given by Eq. (18)) of fa.

Thus, we can obtain not only the optimal estimate
f but also its variance ¥ [ f ], from which we can
deduce the reliability of the f. For example, we can
conclude that the true focal length f is in the range f
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Fig. 8 The square grid pattern of the calibration board.

Fig.9 Line fitting of the calibration board image.

+ 196 YV [ /] with 95% confidence, assuming that
the error distribution is approximately Gaussian.

7. Procedure of Focal Length Calibration

The actual procedure to determine the focal length
is as follows. We use a calibration board on which the
square grid pattern of Fig. 8 is drawn.

[ Calibration of the focal length ]

1. Detect line segments in the calibration pattern
image, say, by the Hough transform or by manual
specification though an interactive interface.

2. Fit lines to the detected line segments (Fig.9) by
the least-squares method, and determine the N-vectors
of the fitted lines with respect to an estimate f of the
true focal length f.

3. Compute the N-vectors of points P, -+, Py with
respect to the temporal focal length f by Eq. (12).
4. Compute the N-vector m of the vanishing point of
lines P, P,P;, PyPyPy, and P,;PsPs, and the N-vector
m’ of the vanishing point of lines P,PsP,, PsPyP;, and
P;P,P; with respect to the temporal focal length f by
the method described in Sect. 5.

5. Determine the true focal length f by Eq. (17).

6. Repeat the above procedure N times, each time
changing the position of the camera relative to the
calibration board, and take the optimal weighted
average f as given in Proposition 4.

7. Compute the variance V [ f ] of the optimal esti-
mate / by Proposition 4. The true focal length f is

estimated to be in the range of £ £ 1.96 V¥V [ f | with
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95% confidence. OJ
The theoretically optimal weights are given in Eq.
(19), and the variance V[ f,] can be computed by Eq.
(18). However, this computation requires a priori
information about the accuracy of pixel data (see
Appendix A). This prior knowledge can be dispensed
with by an “a posteriori approximation” given in
Appendix B. If this approximation is adopted, the
variance ¥ [ £ ] of Eq. (20) can be approximated by

VBt (B rta) o

8. Procedure of Pose Parameter Calibration

Again, we use the same calibration board on
which the square grid pattern of Fig. 8 is drawn (Fig.
9). We define the XYZ scene coordinate system by
regarding point Py as the origin 0, and define the X-
and Y-axes by e,= Py P, and e, = P, P,. The Z-axis is
defined to be perpendicular to both the X- and Y -axes:
e; = e X &. We use the scale such that the sides of the
four squares are all of unit length.

[ Calibration of the pose parameters |

1. Detect line segments in the calibration pattern
image.

2. Fit lines to the detected line segments, and deter-
mine the N-vectors of the fitted lines with respect to the
true focal length f.

3. Compute the N-vectors of points P, *--,
(12).

4. Compute the N-vector m of the vanishing point of
lines P .P,P;, PsPyP,, and P,P;P;, and the N-vector
m’ of the vanishing point of lines P;,P;P,, PsPyP;, and
P;P,P; by the method described in Sect. 5.

5. Adjust the signs of m and m’ so that (m, my;— ms)
> 0and (m', m;— mg) > 0, where my, my, mg, and mg
are, respectively, the N-vectors of points P, P;, Ps,
and Ps.

6. Compute an orthonormal right-hand system { e,
e, e;} such that e~ m and ex m’ in an optimal
manner (Appendix C).

7. Adjust the locations of points P, -+, Py so that the
projective geometric constraints (see Appendix D) are
all satisfied. Let P, ---, Py be the corrected positions.

8. Let m, be the N-vector of point Py, and compute
the distance #, by Eq. (9), in which we take the
reference point Q to be any of the eight points P, -+,
P; with the knowledge that in the scene | PoP,|, | Py Py,
|P,P;| are all v/ 2, while | P,Py|, | PsPy|, | P, Ps|, and | Py Pyl
are all 1.

9. Compute the pose parameters { R, h}by Egs.
(4) and (5). L]

Step 1-4 are the same as for the calibration of the
focal length f except that the already determined true
focal length f is used instead of a tentative value 7. In
Step 5, the signs of m and m’ are chosen so that they

P, by Eq.
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are respectively oriented along Pgﬁ and PG?Z.

Vectors m and m’ computed in Step 4 should the
oretically be orthogonal to each other, but they may
not be exactly orthogonal in the presence of noise. In
Step 6, they are forced to be orthogonal. This is
necessary because otherwise the rotation matrix R
computed in Step 9 may not be an orthogonal matrix.

In Step 7, the pattern is adjusted so that it can be
a perspective projection of an orthogonal square-grid
pattern (cf. Appendix D). The choice of the reference
point in Step 9 is arbitrary ; any choice will yield an
identical result due to the consistency enforced in Step
7.

9. Concluding Remarks

We have presented a new theoretical framework
for camera calibration using images by representing all
points and lines by unit vectors, which we called
“N-vectors””, The calibration process is decomposed
into atomic modules: The focal length f and the pose
parameters { R, & } are computed by detecting, on the
image plane, the “vanishing points” of two sets of lines
that are mutually orthogonal in the scene; the absolute
distance of the scene coordinate origin is determined
by locating a point whose scene coordinates are
known. This decomposition has the following advan-
tages:

» The mathematics is extremely refined in terms of
N-vectors in each module.

» Computation steps are given as simple algebraic
expressions without iterations.

» Statistical analysis of error behaviors becomes easy,
and as a result noise robustness can be maximized.

 Not only statistically optimal estimates but also their
“variances” are obtained in analytical forms, from
which we can deduce the “confidence level”
quasntitatively.

These advantages would be impossible if an overall

parametric fitting approach were adopted.

In this paper, image distortions due to lens abbera-
tion and raster scanning (including the “aspect ratio”)
are not considered, because image distortions can be
corrected as a separate process beforehand, while the
focal length and the pose parameters(and the motion
parameters)are of ten changed, necessitating quick
recalibrations frequently.

We also assumed that the center of the image
plane was known, say at the center of the frame. The
exact location of the center of the image plane is not
necessary in some applications. It is also reported that
a small distortion of its location affects 3-D interpreta-
tion of the scene almost negligibly®. The exact center
of the image is difficult to locate by the very reason that
it affects 3-D interpretation very little. This fact makes
the overall parametric fitting approach all the more
dangerous, because the center of the image is easily
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distorted by other parameters in the course of optimiza-
tion.

If we do want to locate the image origin, the most
effective way may be the use of a “mechanical”
method, since image analysis is very insensitive to the
location of the image origin. For example, identifying
the faces of the camera body that are parallel to the
optical axis of the lens, we move the camera along the
assumed optical axis and detect the “focus of expan-
sion” on the image plane™.
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Appendix A

The “covariance matrix” of vector quantity a is
defined by

Vial= E [da 4daT]. (A-1)

Here, quantity a is assumed to be disturbed into
a + 4 a by random disturbance 4 a of mean 0, and E
[-] designates the expectation.

- As shown in the text, the accuracy of the estima-
tion of vanishing points, thereby the focal length and
the pose parameters, depends on the accuracy of line
fitting, and the accuracy (or rather “inaccuracy”) of line
fitting is quantitatively described by the covariance
matrix ¥ [ n ] of the N-vector n of the fitted line. It can
be theoretically estimated as shown below, but since
the proof requires many mathematical preliminaries
and long derivations, we only list the finial results.

If a line is fitted to an edge segment, the covariance
matrix V [ n] of the N-vector n of the fitted line is
given by

2
Vinlz=S <£uuT+ %mcmg), (A-2)

T 20w\ WP
where ¢ (measured in pixels) is the average displace-
ment of each edge point (assuming that statistical
behaviors are the same for all edge points and indepen-
dent of each other), y (pixel™) is the number of edge
points per unit length, w (measured in pixels) is the
length of the edge segment, # is the unit vector indicat-
ing the orientation of the fitted line, m¢ is the N-vector
of the center of the edge segment®, and f (measured in
pixels) is the value of the focal length used in the
computation (it need not be the true focal length).

Appendix B

Consider a projection image of a square grid
pattern of Fig. 8. Let my, ---, my be the N-vectors of
points P, -+, Py, respectively. Let 4, ‘-, k be the lines
passing through image points { P, P, Ps}, { Ps, Ps, P},
{ P, Ps, Ps}, {P,, Ps, P;}, { Po, Po, P}, { Ps, P, P5},
respectively. Let ny, -+, ns be their respective N-vectors.
Then, the variance V [ f ] of Eq. (18) is approximated
as follows (we omit the details):

___const. (| mm'ny|* |mm'n5|z>
R e ) Ll S

>

(A-3)
where
_ s | mnynf? s | mngnsl? .
A=| PP W‘H PPy mnsme®” (A-4)

IEICE TRANSACTIONS, VOL. E 74, NO. 10 OCTOBER 1991

4 2 ’ 2
——|| - "::;’:JP +| 19313‘L;|’¢‘*—|| jud ”5"‘5"2. (A-5)

r__ 3
A=| PPl m nem,

Here, | P, P3|, etc., denote the lengths of the correspond-
ing line segments in the image (measured in pixels), and
| abe |(=(a,b X ¢)=(b,c X a)=(c,a X b)) denotes
the scalar triple product of vectors @, b, and ¢. The
constant in Eq.(A-3) can be chosen arbitrarily; it
does not affect Eqs. (19) and (21).

Appendix C

Let m, and m, be unit vectors with covariance
matrices ¥ [m;] and V[ m.)], respectively. The orth-
onormal system { e;, e, es} such that e~ m; and e~
m; is optimally determined as follows (we omit the
proof):

1. Let M be the matrix consisting of tr¥ [ my] my,
trV [mz] my, and 0 as its three columns in this order:

m my 0]
trVm]’ trV[ms]’

M= (A-6)
where tr V[ m,] and tr V[ m,] are the traces of covariance
matrices V{m] and V [ m,], respectively.

2. Let

M=V AU" (A7)

be the “singular value decomposition” of M, where ¥V
and U are orthogonal matrices, and A a diagonal
matrix with nonnegative diagonal elements.

3. Vectors e, e, and e; are given as the first, the
second, the third columns of matrix VU7, respectively:

(e, e, )= VU". (A-8)

If m and m, are equally reliable and their distri
butions are approximately isotropic (V [ m]= V [ m,]
= const. X I), the following computation gives a
simple approximation (Fig. A-1):

elzﬁ(N[m +m]+N[m—m))),

= 717(N [m+m]—-N[m—mT,

0 NIm-m’]

Fig. A1 Enforcement of orthogonality of two unit vectors.
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(A-9)

e— e X eé,.

Appendix D

Let Fig. A-2 be a perspective projection of the
square grid pattern of Fig. 8. Let my, ---, my be the
N-vectors of points Py, -+, Py, respectively. Let lines 4,
-+, L be the lines passing through { P, P, Ps}, { P,
Py, P, { P, Ps, Ps}, { P, Ps, P}, { P, Py, Pe}, { Ps, P,
Ps}, respectively. Let mi, -+, ms be their respective
N-vectors. Let P and Q be the vanishing points of lines
{4, b, b} and { 4, &, &}, resectively. Let mp and mq be
their respective N-vectors. Define the vanishing line L
as the line passing through the vanishing points P and
Q. Let n., be its N-vector.

Define the diagonal lines 4, and & as the lines
passing through points { P, P,, Ps} and { Ps, Py, Py},
respectively. Let n; and ns be their respective N-vectors.
Let R and S be the intersections of line L, with lines %
and k, respectively. They are, respectively, the vanish-
ing points of lines %, and k. Let myz and ms be their
respective N-vectors.

By the above definition of points P, ---, P, and

lines 4, ---, k, the following constraints must be
satisfied.
1. Points P, P, and P; must be on line 4:
(m, m)=0, (m, m)=0, (m, mg)=0.
(A-10)
2. Points B, P, and P, must be on line A:
(g, mg) =0, (my, m)=0, (m, my)=0.
(A-11)

3. Points P;, Ps;, and P; must be on line A:

(n3, ms) = 0.
(A-12)

4. Points P,, Ps, and P; must be on line I:

(ns, m;) =0, (ns, mg) = 0,

Fig. A2 A perspective projection image of a square grid
pattern.
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("4, m7) = 0.
(A-13)

5. Points P, P,, and P; must be on line 4:

(ns, my) =0, (ny, mg)=0,

(ns, m)=0, (ns, my)=0, (ns, ms)=0.
(A-14)
6. Points P;, P;, and P; must be on line &:
(n, ms) =0, (nms, my) =0, (ns, ms)=0.
(A-15)
7. Points P, P, and Ps must be on line &:
(n7, m)=0, (n;, my)=0, (ny, ms)=0.
(A-16)
8. Points P, Py, and P; must be on line A:
(ng, ms) =0, (nms, mo)=0, (ms, m;)=0.
(A-17)

From the definition of the vanishing points and the
vanishing line, the following constraints must be
satisfied.

9. Lines 4, & and 4 must meet at point P:

(mp, m)=0, (mp, 1;)=0, (mp, n3)=0.
(A-18)

10. Lines 4, £ and & must meet at point Q:

(mq, ns) = 0.
(A-19)

11. Points P, @, R, and S must be on line L.

(mQ, n4) = Oa (mQa nS) = 05

(feo, mp) = 0, (B, mg) = 0,

(A-20)

From the orthogonality of the lines in the scene, the
following constraints must also be satisfied.

12. The vanishing points P and Q must indicate
mutually orthogonal 3-D orientations, and the vanish-
ing points R and .S must indicate mutually orthogonal
3-D orientations, too:

(o, mg) =0, (R, ms) = 0.

(A-21)

Unless all these conditions are satisfied, the pat-
tern cannot be regarded as a perspective projection of
a square grid pattern. If the pattern is detected by
image processing of a real image, it does not necessar-
ily satisfy these conditions (in particular, Egs. (A +16)
-(A-19) and (A-21)) due to image noise and image
distortions. Hence, the computed N-vectors of points
and lines must be adjusted so that Eqs. (A-10)-
(A-21) are all satisfied. Since each N-vector is coupled
with multiple N-vectors, we must resort to iterations.
The details of this procedure are omitted.

(mPs mQ) = O’ (mR’ ms) = O
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