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Abstract

We compare the convergence performance of different numerical schemes
for computing the fundamental matrix from point correspondences over two
images. First, we state the problem and the associated KCR lower bound.
Then, we describe the algorithms of three well-known methods: FNS, HEIV,
and renormalization, to which we add Gauss-Newton iterations. For initial
values, we test random choice, least squares, and Taubin’s method. Experi-
ments using simulated and real images reveal different characteristics of each
method. Overall, FNS exhibits the best convergence performance.

1 Introduction

Computing the fundamental matrix from point correspondences over two images is the
first step of many vision applications including camera calibration, image rectification,
structure from motion, and new view generation. Well known numerical schemes for
optimal fundamental matrix estimation in the presence of noise are FNS [2] and HEIV
[11], which compute maximum likelihood (ML) in different ways. The solution is optimal
in the sense that its covariance matrix agrees with the theoretical accuracy bound (KCR
lower bound) except for higher order terms in noise [1, 8]. Kanatani’s renormalization [8]
is also known to be nearly equivalent to FNS and HEIV [9]. In this paper, we add a fourth
method: directly computing ML by Gauss-Newton iterations.

All these are iterative methods with different convergence properties, which also de-
pend on the choice of initial values. The purpose of this paper is to experimentally com-
pare their convergence performance.

In Sec. 2, we state the problem and the KCR lower bound. In Sec. 3, we describe the
four algorithms: FNS, HEIV, renormalization, and Gauss-Newton iterations. In Sec. 4,
we introduce three types of initialization: random choice, least squares, and Taubin’s
method. Sec. 5 shows numerical examples using simulated and real images, together with
discussions about the origins of the performance difference among them. In Sec. 6, we
conclude that overall FNS has the best convergence properties.



2 Fundamental Matrix Estimation

If point (x,y) corresponds to point(x′,y′) over two images of the same scene, we have the
following epipolar equation[6]:
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x′
y′
f0


) = 0. (1)

Throughout this paper, we denote the inner product of vectorsa and b by (a,b). In
eq. (1), the matrixF = (Fi j ) is called thefundamental matrix, where f0 is an appropriate
scale constant for stabilizing numerical computation [5]. If we define vectors

u = (F11, F12, F13, F21, F22, F23, F31, F32, F33)
>,

ξ = (xx′, xy′, x f0, yx′, yy′, y f0, f0x′, f0y′, f 2
0 )>, (2)

eq. (1) is written as
(u,ξ ) = 0. (3)

The absolute scale of the vectoru is indeterminate, so we adopt normalization‖u‖ = 1.
Fundamental matrix estimation thus reduces to fitting a hyperplane of the form of

eq. (3) to noisy vector data{ξα} in R9. In this paper, we assume that outliers have
already been removed. Let us write

ξα = ξ̄α +∆ξα , (4)

whereξ̄α is the noiseless value, and∆ξα the noise term. We define the covariance matrix
of ξα by V[ξα ] = E[∆ξα ∆ξ>α ], whereE[ · ] denotes expectation for the noise distribution.

If each image coordinate of matching points is perturbed by independent random noise
of mean 0 and standard deviationσ , the covariance matrixV[ξα ] has the formσ2V0[ξα ]
up toO(σ4), where

V0[ξα ] =
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

. (5)

Here,(x̄α , ȳα) and(x̄′α , ȳ′α) are the true positions of(xα ,yα) and(x′α ,y′α), respectively.
They are replaced by(xα ,yα) and(x′α ,y′α) in actual computation1.

Let û be an estimate ofu. We define its covariance matrixV[û] by

V[û] = E[(Puû)(Puû)>], (6)

1It has been confirmed by simulation that this replacement or omission of termsO(σ4) does not produce any
significant changes.
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wherePu is the following projection matrix (I denotes the unit matrix):

Pu = I −uu>. (7)

Sinceu is normalized to unit norm, its domain is the unit sphereS 8 in R9. Eq. (6) means
that the error is evaluated after projected onto the tangent space toS 8 atu.

It has been shown by Kanatani [8] that ifξα is identified with an independent Gaussian
random variable of mean̄ξα and covariance matrixV[ξα ], the covariance matrixV[û] of
any unbiased estimator satisfies

V[û]Â σ2
( N

∑
α=1

ξ̄α ξ̄>α
(u,V0[ξα ]u)

)−
, (8)

where the relationÂmeans that the left-hand minus the right is positive semidefinite. The
superscript− denotes pseudoinverse (of rank 8).

Chernov and Lesort [1] called the right-hand side of eq. (8) theKCR (Kanatani-
Cramer-Rao) lower boundand showed that this holds except forO(σ4) even if û is not
unbiased; it is sufficient that̂u is “consistent” in the sense thatû → u asσ → 0.

3 Maximum Likelihood Estimation

If ξα is regarded as an independent Gaussian random variable of meanξ̄α and covari-
ance matrixV[ξα ], maximum likelihood(ML) estimationis to minimize the sum of the
square Mahalanobis distances of the data pointsξα to the hyperplane to be fitted inR9,
minimizing

JML =
1
2

N

∑
α=1

(ξα − ξ̄α ,V0[ξα ]−(ξα − ξ̄α)), (9)

subject to the constraint(u, ξ̄α) = 0, α = 1, ..., N, where we can useV0[ξα ] instead of
V[ξα ] because the solution is unchanged ifV0[ξα ] is multiplied by a positive constant.
Introducing Lagrange multipliers for the constraint(u, ξ̄α) = 0, we can reduce the problem
to unconstrained minimization of the following function [2, 8, 11]:

JML =
1
2

N

∑
α=1

(u,ξα)2

(u,V0[ξα ]u)
. (10)

The solution is obtained by solving

∇uJML =
N

∑
α=1

(u,ξα)ξα
(u,V0[ξα ]u)

−
N

∑
α=1

(u,ξα)2V0[ξα ]u
(u,V0[ξα ]u)2 = (M −L)u = 0, (11)

where we define

M =
N

∑
α=1

ξα ξ>α
(u,V0[ξα ]u)

, L =
N

∑
α=1

(u,ξα)2V0[ξα ]
(u,V0[ξα ]u)2 . (12)

We need not consider the normalization constraint‖u‖ = 1, because eq. (10) is a homo-
geneous expression of degree 0 inu. In fact, multiplication ofu by a nonzero constant
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does not affect the value ofJML . Hence, the gradient∇uJML is always orthogonal tou. It
can be shown that the covariance matrix of the resulting solutionû coincides with the the
KCR lower bound (the right-hand side of eq. (8) except forO(σ4) [1, 8, 9].

The fundamental matrixF should also satisfy the constraintdetF = 0 [5]. However,
once the solution̂u of eq. (11) is obtained, it can be easily corrected so as to satisfydetF =
0 in such a way that the accuracy is equivalent to the constrained minimization of eq. (10)
subject todetF = 0 except for higher order terms inσ [10]. So, we focus here on the
solution of eq. (11).

FNS

The procedure calledFNS (fundamental numerical scheme) of Chojnacki et al. [2] for
solving eq. (11) is described as follows:

1. Initializeu.
2. Compute the matricesM andL in eqs. (12).
3. Solve the eigenvalue problem

(M −L)u′ = λu′, (13)

and compute the unit eigenvectoru′ for the eigenvalueλ closest to 0.
4. If u′ ≈ u except for sign, returnu and stop. Else, letu ← u′ and go back to Step 2.

Chojnacki et al. [3] also showed how to incorporate the constraintdetF = 0 in the above
iterations. Later, they pointed out that convergence performance improves if we choose in
Step 3 not the eigenvalue closest to 0 but the smallest one [4]. We call the above procedure
theoriginal FNSand the one using the smallest eigenvalue themodified FNS.

Whichever eigenvalue is chosen forλ , we haveλ = 0 after convergence. In fact,
convergence means

(M −L)u = λu (14)

for someu. Computing the inner product withu on both sides, we have

(u,Mu)− (u,Lu) = λ . (15)

On the other hand, eqs. (12) imply that(u,Mu) = (u,Lu) identically, soλ = 0.

HEIV

Eq. (11) can be rewritten as
Mu = Lu . (16)

The HEIV (heteroscedastic errors-in-variables) method of Leedan and Meer [11] is to
iteratively solve the generalized eigenvalue problemMu = λLu . However, we cannot
directly solve this, becauseL is not positive definite. So, we write

ξα =
(

zα
f 2
0

)
, u =

(
v

F33

)
, V0[ξα ] =

(
V0[zα ] 0

0> 0

)
, (17)

and define8×8 matricesM̃ andL̃ by

M̃ =
N

∑
α=1

z̃α z̃>α
(v,V0[zα ]v)

, L̃ =
N

∑
α=1

(v, z̃α)2V0[zα ]
(v,V0[zα ]v)2 , (18)
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where we put

z̃α = zα − z̄, z̄ =
N

∑
α=1

zα
(v,V0[zα ]v)

/
N

∑
β=1

1
(v,V0[zβ ]v)

. (19)

Then, eq. (16) is decomposed into the following two equations [4, 11]:

M̃v = L̃v , (v, z̄)+ f 2
0 F33 = 0. (20)

If we compute a 8-D unit vectorv that satisfies the first equation, the second equation
givesF33, andu is given by

u = N[
(

v
F33

)
], (21)

whereN[ · ] denotes normalization to unit norm. The vectoru that satisfies the first of
eqs. (20) is computed by the following iterations [4, 11]:

1. Initializev.
2. Compute the matrices̃M andL̃ in eqs. (18).
3. Solve the generalized eigenvalue problem

M̃v ′ = λ L̃v ′, (22)

and compute the unit eigenvectorv′ for the eigenvalueλ closest to 1.
4. If v′ ≈ v except for sign, returnv and stop. Else, letv ← v′ and go back to Step 2.

However, Leedan and Meer [11] pointed out that choosing in Step 3 not the eigenvalue
closest to 1 but the smallest one improves the convergence performance. We call the
above procedure theoriginal HEIV and the one using the smallest eigenvalue themodified
HEIV.

Whichever eigenvalue is chosen forλ , we haveλ = 1 after convergence. In fact,
convergence means

M̃v = λ L̃v (23)

for somev. Computing the inner product withv on both sides, we have

(v,M̃v) = λ (v, L̃v). (24)

On the other hand, eqs. (18) imply that(v,M̃v) = (v, L̃v) identically, soλ = 1.

Renormalization

The renormalizationof Kanatani [8] is to approximate the matrixL in eqs. (12) in the
form

L ≈ cN, N =
N

∑
α=1

V0[ξα ]
(u,V0[ξα ]u)

. (25)

The constantc is determined so thatM − cN has eigenvalue 0. This is done by the fol-
lowing iterations [8]:

1. Initializeu and letc = 0.
2. Compute the matrixM in eqs. (12) and the matrixN in eqs. (25).
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3. Solve the eigenvalue problem

(M −cN)u′ = λu′, (26)

and compute the unit eigenvectoru′ for the eigenvalueλ closest to 0.
4. If λ ≈ 0, returnu and stop. Else, let

c← c+
λ

(u′,Nu′)
, u← u′ (27)

and go back to Step 2.

It can be shown that the resulting solution has accuracy nearly equivalent to FNS and
HEIV [9].

Gauss-Newton Iterations (GN)

Since the gradient∇uJML is given by eq. (11), the functionJML in eq. (10) can be mini-
mized by Newton iterations. If we evaluate the Hessian∇2

uJML , the increment∆u in u is
determined by solving

(∇2
uJML )∆u =−∇uJML . (28)

Since∇2
uJML is singular (the functionJML is constant in the direction ofu), the solution

is indeterminate. However, if we use pseudoinverse and compute

∆u =−(∇2
uJML )−∇uJML , (29)

we obtain a unique solution, which is orthogonal tou.
Differentiating eq. (11) and introducing Gauss-Newton approximation (i.e., ignor-

ing terms that contain(u,ξα)), we see that the Hessian is nothing but the matrixM in
eqs. (12). In order to compute pseudoinverse, we enforceM , which is generally nonsin-
gular, to have eigenvalue 0 foru, using the projection matrixPu of eq. (7). The iteration
procedure goes as follows:

1. Initializeu.
2. Compute

u′ = N[u− (PuMPu)−(M −L)u]. (30)

3. If u′ ≈ u, returnu and stop. Else, letu ← u′ and go back to Step 2.

4 Initialization

We test the following three types of initialization to examine the dependence of conver-
gence properties on initial values.

Random Choice

We generate nine independent Gaussian random numbers of mean 0 and standard devia-
tion 1 and normalize the vector consisting of them into unit norm.

Least Squares (LS)
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Approximating the denominators in eq. (10) by a constant, we minimize

JLS =
1
2

N

∑
α=1

(u,ξα)2 =
1
2
(u,MLSu), MLS =

N

∑
α=1

ξα ξ>α . (31)

The solution is obtained by the unit eigenvector ofMLS for the smallest eigenvalue.

Taubin’s Method

Replacing the denominators in eq. (10) by their average, we minimize the following func-
tion [12]:

JTB =
1
2

∑N
α=1(u,ξα)2

∑N
α=1(u,V0[ξα ]u)

=
1
2

(u,MLSu)
(u,NTBu)

, NTB =
N

∑
α=1

V0[ξα ]. (32)

The solution is obtained by solving the generalized eigenvalue problem

MLSu = λNTBu (33)

for the smallest eigenvalue. However, we cannot directly solve this, becauseNTB is not
positive definite. So, we decomposeξα , u, andV0[ξα ] in the form of eqs. (17) and define
8×8 matricesM̃LS andÑTB by

M̃LS =
N

∑
α=1

z̃α z̃>α , ÑTB =
N

∑
α=1

V0[zα ], (34)

where

z̃α = zα − z̄, z̄ =
1
N

N

∑
α=1

zα . (35)

Then, eq. (33) is decomposed into two equations

M̃LSv = λ ÑTBv, (v, z̄)+ f 2
0 F33 = 0. (36)

If we compute the unit eigenvectorv of the first equation for the smallest eigenvalueλ ,
the second equation givesF33, andu is given in the form of eq. (21).

5 Numerical Examples

Simulated Images

Fig. 1(a) shows two simulated images of two planar grid planes joined at angle60◦. The
image size is600×600(pixels), and the focal length is 1200 (pixels). We added random
Gaussian noise of mean 0 and standard deviationσ (pixels) to the image coordinates
of each grid point independently and estimated the fundamental matrix by FNS, HEIV,
renormalization, and Gauss-Newton iterations (GN).

Fig. 1(b) plots for eachσ the root-mean-squares of‖Puû‖ over 1000 independent
trials. We compared LS, Taubin’s method, and the four iterative methods starting from the
Taubin solution and confirmed that for each method the final solution does not depend on
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Figure 1: Left: Simulated images of planar grid surfaces. Right: Root-mean-squares error vs.
noise level.
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Figure 2:Average number of iterations vs. noise level.

the initial value as long as the iterations converge. The dotted line indicates the KCR lower
bound implied by Eq. (8). We can see that Taubin’s method is considerably better than LS.
The four iterative methods indeed improve the Taubin solution, but the improvement is
rather small. All the solutions nearly agree with the KCR lower bound when noise is small
and gradually deviate from it as noise increases. Since FNS, HEIV, and GN minimize the
same function, the resulting solution is virtually the same. The renormalization solution
is nearly equivalent to them.

Fig. 2 shows the average number of iterations of each method for 1000 trials. We
stopped the iterations when the increment inu was less than10−6 in norm. Fig. 2(a) is
for random initialization. The original FNS did not converge for about 99% of the trials
after 100 iterations; the original HEIV not for about 40%. We stopped after 100 iterations
and set the iteration count to 100.

Fig. 2(a) shows that the modified FNS/HEIV converge much more quickly than the
original FNS/HEIV. This can be explained as follows. If the computedu′ is close to the
true valueu, the matrixL in eqs. (12) and the matrix̃L in eqs. (18) are both close toO.
Initially, however, they may be very different fromO, in particular when the initial value
is randomly chosen. Eqs. (13) and (22) are written, respectively, as

(M −L −λ I)u′ = 0, (M̃ −λ L̃)v′ = 0. (37)
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RD LS T
o-FNS 94.3 5 5
m-FNS 12.0 5 5
o-HEIV 74.6 7 7
m-HEIV 9.1 7 7
renorm 7.0 7 7

GN 10.3 5 6

Figure 3:Left: Corresponding points in real images and estimated epipolar lines. Right: Number
of iterations of the original/modified FNS/HEIV (o/m-FNS/HEIV), renormalization (renorm) and
GN for random initialization (RD), LS initialization (LS) and Taubin initialization (T).

The matricesL andL̃ are both positive definite in general. In order that their effects be
canceled, we need to chooseλ to be negative in the first equation and smaller than 1 in
the second.

As predicted from this explanation, the difference between the original FNS/HEIV
and the modified FNS/HEIV shrinks as we use better initial values, as seen from
Fig. 2(b),(c). We also see that the (original or modified) FNS is more efficient than (orig-
inal or modified) HEIV.

Another finding is that, for random initialization, renormalization is the most efficient.
This is because we start solving eq. (26) withc = 0, canceling the effect ofN whatever
it is initially, and the resultingu′ is close to the LS solution. In contrast, FNS and HEIV
may produce a solution very different from the true value when initially the matricesL
andL̃ are very different fromO.

As Fig. 2(b),(c) shows, however, the convergence performance of FNS and HEIV
improves as we use better initial values. Naturally, GN converges faster when started
from better initial values. In contrast, renormalization behaves almost independently of
initialization, confirming the above explanation. Overall, Taubin-initialized (original or
modified) FNS shows the best convergence performance.

Real Images

Fig. 3 shows two images of the same scene on the left. We manually chose correspond-
ing 100 points as marked there and computed the fundamental matrix by six different
methods. The solution is the same whichever is used, and the estimated epipolar lines are
drawn in the images.

The number of iterations for each method is listed on the right. For random ini-
tialization, we computed the average over 100 independent trials. We conclude that for
whichever initialization, FNS is always better than HEIV. For both, the choice of the
eigenvalue is irrelevant if the iterations are initialized by LS or Taubin’s method; for ran-
dom initialization, the original FNS/HEIV do not converge in most of the trials (recall
that 100 means nonconvergence). As predicted, the number of iterations of renormaliza-
tion does not depend on initialization. Overall, the LS or Taubin initialized (original or
modified) FNS shows the best convergence performance.
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6 Conclusions

We have compared the convergence performance of different numerical schemes for com-
puting the fundamental matrix from point correspondences over two images. First, we
stated the problem and the associated KCR lower bound. Then, we described the al-
gorithms of three well-known methods: FNS, HEIV, and renormalization, to which we
added Gauss-Newton iterations (GN). For initial values, we tested random choice, LS,
and Taubin’s method. Experiments using simulated and real images revealed different
characteristics of each method. Overall, FNS exhibited the best convergence performance.
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