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Abstract

Many mathematical techniques have been presented for classifying feature point trajectories
over multibody motion video sequences into different motions, and most are applied to the Hop-
kins155 database for evaluating their performance. In this paper, we point out that Hopkins155
has problems and that correct performance evaluation is not necessarily done using it. We cre-
ate a new database by removing incorrect trajectories from Hopkins155. The basic principle of
mistracking removal is the fact that correct trajectories all belong to parallel 2-D affine spaces
in a high-dimensional space if all motions are translational and that parallel 2-D affine spaces
are included in a 3-D affine space. Noting that if the image sequence is divided into short in-
tervals, individual motions can be regarded as approximately translational in each interval, we
detect incorrect trajectories by repeated plane fitting in the 3-D space by RANSAC. We point
out why conventional RANSAC voting does not work and demonstrate that out method allows
us to tell in which frames incorrect trajectoires occurred. The performance of multibody motion
segmentation can be correctly evaluated using our database.

1 Introduction

Separating independently moving objects in a video stream has attracted attention of many re-
searchers. The most classical work is by Costeira and Kanade [2], who proposed a segmentation
algorithm based on the shape interaction matrix. Gear [5] used the reduced row echelon form and
graph matching. Ichimura [7] used the discrimination criterion of Otsu [16]. He also used the QR de-
composition [8]. Inoue and Urahama [9] introduced fuzzy clustering. Kanatani [11, 12, 13] combined
the geometric AIC [10] and robust clustering. Wu et al. [25] introduced orthogonal subspace decom-
position. Gruber et al. [6] applied an EM algorithm to the factorization method. Sugaya Kanatani
[20, 21] proposed a multistage learning strategy using hierarchical models. Vidal et al. [23, 24]
applied GPCA (Generalized Principal Component Analysis), which fits high-degree polynomial to
multiple subspaces. Fan et al. [4] and Yan and Pollefeys [26] introduced new voting schemes for
classifying oints into different subspaces in high dimensions. Schindler et al. [18] and Rao et al. [17]
incorporated model selection based on the MDL (Minimum Description Length) principle. Recently,
various schemes are investigated for expressing individual data as linear combinations of a small num-
ber of other data and separating the associated similarity graph. These include SSC (Sparse Subspace
Clustering) [1, 3], LRR (Low Rank Representation) [14] and LSR (Least Squares Regression) [15].
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2 Issues of Existing Methods

All existing methods are based on the fact that, under affine camera modeling, trajectories of image
points in the same motion belong to a common 4-D subspace or 3-D affine space in a high-dimensional
space. Hence, typical situations where correct segmentation cannot be done are:

1. Imaging geometry cannot be modeled by an affine camera due to foreshortening effects.

2. Degeneracies occurs in the trajectory space, depending on motion types.

3. Feature points are not extracted in the correct positions in individual frames.

4. Different feature points are matched between different frames, resulting in incorrect trajecto-
ries.

However, most of the existing methods only evaluate their performance in terms of the correct seg-
mentation ratio, and the origin of incorrect segmentation have rarely been investigated. This tendency
has became conspicuous since Tron and Vidal [22] presented the Hopkins155 video database. This
hides the details of the working of algorithms. Rather than proposing new mathematical techniques
and testing them on Hopkins155, we need to scrutinize individual cases as to how and why correct
segmentation is done or not done.

According to our experiences, the above item 1 (foreshortening) need not be worried about, be-
cause in situations when motions of multiple objects are captured by a video camera over a certain
length of time, the camera is usually far apart from the objects. In contrast, item 2 (degeneracy) is an
important issue, because almost all “natural” motions lead to degenerate or nearly degenerate trajec-
tories in the trajectory space, typical instances including the objects simply translating in the image.
This was extensively studied by Sugaya and Kanatani [20, 21], who proposed a multi-stage learning
strategy, assuming various degenerate motion models and starting from special to general models.

On the other hand, items 3 and 4 do not seem to have been fully investigated. In the past, any
trajectoires that do not belong to a 4-D subspace or a 3-D affine space are collectively called “outliers”,
and outlier removal procedures have been proposed using RANSAC in the trajectory space [19]. In
this paper, we point out that such across-the-board voting is not effective and why. In the past,
however, performance has often tested using non-realistic data generated such as adding Gaussian
noise to the feature point locations or introducing artificial points sampled from a uniform distribution.
For realistic evaluation, we need to pay more attention to the data data generating mechanism.

3 Scrutiny of Hopkins155

In this paper, we consider the Hopkins155 database1, which most researchers use for performance
evaluation of multibody motion segmentation algorithms. The video images it provides are carefully
prepared so that all the trajectoires appear to be correct. We have found, however, that many subtle
problems exist and that they are very difficult to detect by visual inspection. So, we build a supporting
interface.

The basic principle is as follows. A trajectory of a feature point over M frames is represented
by a point in a 2M -D space, and trajectories of points in a common rigid motion are constrained
to be in a 3-D affine space in 2M -D under affine camera modeling [11, 12, 13]. However, many
real motions are translations and rotations within the image frame. In this case, the 3-D affine space
degenerate into a 2-D affine space. Furthermore, if multiple motions are all in-plane translations, the

1http://www.vision.jhn.edu/data/hopkins155
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corresponding 2-D affine spaces are all parallel to each other, and there exist a 3-D affine space that
include all these 2-D affine spaces. Hence, if the 2M -D trajectory space is projected onto that 3-D
affine space, we can visualize all the trajectories as points in 3-D. Even if the motions are not exactly
translational but nearly so, which is the case in most natural scenes, we can view all the trajectory as
points on nearly parallel curved surfaces in 3-D, and we can easily find incorrect trajectories, because
they stick out from the others on a common surface. We take a step further and automate this process,
providing a reliability measure that tells to what extent each trajectory is likely to be correct.

4 Affine Camera Modeling

We first summarize the well known fact that the trajectories of points in a common rigid motion are
constrained in a 3-D affine space in the 2M -D trajectory space. Suppose we track N feature points
{pα} over M frames. Let (xκα, yκα), κ = 1, ..., M, α = 1, ..., N , be the image coordinates of the
αth point pα in the κth frame. Its motion history is represented by the 2M -D vector

pα = (x1α, y1α, x2α, y2α, ..., xMα, yMα)>, (1)

which we simply call the “trajectory” of pα. Thus, all trajectories can be identified with points in an
2M -D space.

We regard the camera as fixed, relative to which the scene and multiple objects are moving. Take
an XY Z coordinate system fixed to the camera with the Z axis in the optical axis direction, and
regard it as the world coordinate system. Define a coordinate system attached to a moving object,
and let (aα, bα, cα) be the coordinates of pα with respect to that object coordinate system. If tκ

and {iκ, jκ,kκ} are, respectively, the origin and the basis vectors of the object coordinate system
described with respect to the world coordinate system (Fig. 1(a)), the point pα in the κth frame is in
the following position with respect to the world coordinate system:

rκα = tκ + aαiκ + bαjκ + cαkκ. (2)

Under the affine camera modeling, which generalizes orthographic, weak perspective, and paraper-
spective projections, the point rκα in Eq. (2) is projected onto a point (xκα, yκα) in the image as
follows: (

xκα

yκα

)
= Aκrκα + bκ. (3)

Here, Aκ and bκ are, respectively, 2 × 3 matrix and a 2-D vector determined by the position and
orientation of the object coordinate system and the camera parameters for the κth frame. If Eq. (2) is
substituted, Eq. (3) becomes(

xκα

yκα

)
= m̃0κ + aαm̃1κ + bαm̃2κ + cαm̃3κ, (4)

where m̃0κ, m̃1κ, m̃2κ, and m̃3κ are 2-D vectors determined by the position and orientation of the
object coordinate system and the camera parameters for the κth frame. If we vertically align all such
2-D vectors for κ = 1, ..., M into a 2M -D vector, the trajectory pα in Eq. (1) has the following
expression:

pα = m0 + aαm1 + bαm2 + cαm3. (5)
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Figure 1: (a) Affine camera modeling. (b) The trajectories of points in in-plane motions are constrained to be
in 2-D affine spaces. (c) The trajectories of translating points are constrained to be in parallel 2-D affine spaces.

Here, mi, i = 0, ..., 3, are the 2M -D vectors obtained by vertically aligning m̃iκ, κ = 1, ..., M , for all
the frames.

Equation (5) shows that the trajectories pα of points in a common rigid motion are constrained to
be in the 4-D subspace of the 2M -D trajectory space spanned by {m0, m1, m2, m3}. However, the
coefficient of m0 is 1 irrespective of α. Hence, pα is constrained to be in the 3-D affine space passing
through m0 and spanned by {m1, m2, m3}.

5 Visualization of Trajectories

In many scenes, objects (including the background) simply translate and rotate within the image
plane. If the object coordinate basis vector kα to taken to be in the Z-axis (= the camera optical axis),
the vector m3 in Eq. (5) is 0 for such in-plane motions under the affine camera modeling (recall that
the object coordinate system can be arbitrarily defined as long as it is fixed to the object). Hence, all
the trajectories of points of that object are constrained to be the 2-D affine space passing through m0

and spanned by {m1,m2} (Fig. 1(b)).
If furthermore all objects are simply translating without rotation, the basis vectors iκ and jκ in

Eq. (2) can be aligned to the basis vectors i and j of the world coordinate system. Since these are
common to all the motions, the vectors m1 and m2 in Eq. (5) are also common to all the motions.
Hence, the 2-D affines spaces of the motions are parallel to each other (Fig. 1(c)). It follows that there
exists a 3-D affine space that include these parallel 2-D affine spaces. Hence, if all the trajectories in
the 2M -D space are projected onto that 3-D affine space, we can visualize the points lying on parallel
planes in 3-D. Even if the motions are not exactly translational but nearly translational, which is the
case in most natural scenes, we can see points on nearly parallel curved surfaces in 3-D. The actual
procedure is done by principal component analysis as follows:

1. Compute the centroid pC of the trajectories pα, α = 1, ..., N and the deviations p̃α from pC :

pC =
1
N

N∑
α=1

pα, p̃α = pα − pC . (6)

2. Compute the singular value decomposition of the 2M × N matrix

(p̃1, ..., p̃N ) = Udiag(σ1, ...., σr)V>, (7)

4



where r = min(2M,N), U is a 2M × r matrix with r orthonormal columns, V is an N × r
matrix with r orthonormal columns, and σ1 ≥ · · · ≥ σr (≥ 0) are the singular values.

3. Let ui be the ith column of U, and compute the following 3-D vectors rα, α = 1, ..., N :

rα = ((p̃α,u1), (p̃α,u2), (p̃α,u3))>, (8)

where and hereafter we denote the inner product of vectors a and b by (a,b).

Geometrically, we are translating the coordinate system of the 2M -D trajectory space so that the
origin is at the centroid pC , computing the three vectors (the columns of U) that span the affine
space, and expressing all the trajectories as their linear combinations.

6 Detection of Incorrect Trajectoires

Using the above technique, we can visualize all correct trajectories as points in 3-D on nearly parallel
curved surfaces in 3-D, and we can easily find incorrect trajectories, because they stick out from the
others. Such irregular points are very easily discernible if the 3-D space is displayed on a display by
continuously moving the viewpoint. If we re-examine such irregular trajectories on the original video
images, we can find tacking errors that are often overlooked on the first visual inspection and also tell
where and how they occur.

This process is very effective but involves human intervention. We next automate this. The core
idea is the fact that even if the object and background motions are not exactly translational, they
are nearly translational if the video stream is divided into very short sequences. Hence, incorrect
trajectories can be detected by fitting multiple planar surfaces in 3-D, and RANSAC is suited for this
purpose. The reliability of individual trajectories can be evaluated by the distance to the nearest fitted
plane. Finally, we obtain a reliability measure of each trajectory by integrating its behavior in all the
intervals. We now describe this procedure step by step.

We fit a plane
Ax + By + Cz + Df0 = 0 (9)

to points (xα, yα, zα), α = 1, ..., N , in 3-D, where f0 is a scale normalization constant to stabilize
numerical computation. If we define 3-D vectors ξ and θ by

ξ = (x, y, z, f0)>, θ = (A,B, C,D)>, (10)

Eq. (9) is written as (ξ,θ) = 0. In order to remove the scale indeterminacy, we normalize θ to unit
norm: ‖θ‖ = 1. The simplest fitting scheme is least squares (LS). Letting ξα = (xα, yα, zα, f0)>, we
minimize

J =
N∑

α=1

(ξα, θ)2 = (θ,

N∑
α=1

ξαξ>α︸ ︷︷ ︸
≡M

θ) = (θ,Mθ). (11)

The solution is the unit eigenvector of the matrix M for the smallest eigenvalue. We fit multiple
planes to multiple points in 3-D by the following RANSAC:

1. Randomly choose three from among points rα, α = 1, ..., N .

2. Fit a plane to the selected three points and compute θ by LS.
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(a)

(b)

(c)

Figure 2: Three video sequences in Hopkins155. The marks 2 and × indicate feature point locations regarded
as correctly tracked and incorrectly tracked, respectively, by our procedure.

3. Let S be the number of points rα that satisfy

(rα, θ)2

θ2
1 + θ2

2 + θ2
3

≤ σ2, (12)

where θi is the ith component of θ. The left hand side is the square distance of point rα from
the fitted plane, and σ is the standard deviation of feature point detection accuracy, which is
empirically set.

4. Repeat the above computation many times and find the value θ that maximize S.
5. Remove those points rα that satisfy

(rα, θ)2

θ2
1 + θ2

2 + θ2
3

< σ2χ2
1;99, (13)

where χ2
r;a is the ath percentile of χ2 distribution with r degrees of freedom. This means that

we retain those points that cannot be regarded as deviated from the fitted plane by Gaussian
noise of mean 0 and standard deviation σ with 1% significance level.

We integrate the result in all intervals by defining the reliability index for the ith interval using
the sigmoid function as follows:

P (p(i)
α ) =

1

1 + e−(d
(i)
α −σ2χ2

1;99)
. (14)

Here, p(i)
α is the vector that describe the partial trajectory of pα over the ith interval, and d

(i)
α is the

left-hand side of Eq. (13) for the ith interval. However, we regard those points that satisfy Eq. (13)
as correct and let P (p(i)

α ) = 0. We integrate the results in all the interval in the following form (the
trajectory is more likely to be incorrect if it is larger):

L(pα) = ΠK

i|P (p
(i)
α ) 6=0

P (p(i)
α ). (15)

Here, K is the number of intervals.
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(a) (b) (c)

Figure 3: 3-D visualization tracking trajectory in the first five frames in the sequences in Fig. 2.

1st interval 2nd interval 3rd interval 4th interval

Figure 4: 3-D visualization of partial trajectories in four consecutive five-frame intervals of Fig. 2(a).

7 Experiments

Figure 2 shows three videos of Hopkins155. We added new feature tracking and divided the sequence
into five-frame intervals with one frame overlaps. Five decimated frames are shown in Fig. 2. The
marks 2 and × indicate feature point locations regarded as correctly tracked and incorrectly tracked,
respectively. We set σ =1.0, which we judged to be reasonable according to our experiences. Figure
3 shows 3-D visualization of partial trajectories in the first five-frame intervals. We can clearly see
that correct trajectories lie on two planes and that incorrect trajectories stick out from them.

Next, we closely examined each five-frame interval of the sequence of Fig. 2(a). Figure 4 shows
3-D visualization of partial trajectories in each interval. The marks + indicted trajectories regarded
as on a plane in the first RANSAC run, the marks × as on another plane in the second run, and the
mark ∗ indicate trajectories regarded as incorrect. Then, we re-examined the corresponding video
frames to see how and where incorrect tracking occurred. We find that one feature point of a moving
vehicle (the leftmost one in Fig. 5) is wrong in the 5th frame. However, this point, although in a
wrong position, is tracked correctly in the subsequent frames. Hence, the trajectory of this point is
not judged to be incorrect. On the other hand, the trajectories judged to be incorrect from the 6th
through the 10th frames (the three from right in Fig. 5) should belong to the background but are
occluded by the moving vehicle and tracked as feature points of the vehicle. Thus, their trajectories
are regarded as correct background points in the first interval, then regarded as incorrect in the second
interval, and subsequently regarded as correct as vehicle points.

This shows how difficult it is to tell whether the feature tracking is correct or not simply by seeing
individual frames. Our procedure can not only find such incorrect tracking automatically but also tell
where the errors have occurred. As a comparison, we conducted the standard outlier procedure of
fitting 4-D subspaces by RANSAC in the 2M -D trajectory space and found that 50% of our detected
errors were not detected. If 3-D affine spaces are fitted by RANSAC, again 50% of our detected errors
were not detected. Thus, the RANSAC in 2M -D is not effective, and voting within in the reduced
3-D space is indispensable.

Among the natural scenes of Hopkins155 (we do not consider artificial images created by CG),
there are 35 scenes consisting of two motions i.e., a moving object and a moving background. We
applied the algorithm of Sugaya and Kanatani [21] and found that all scenes were successfully seg-
mented but three. The three unsuccessful scenes are shown in Fig. 6 along with the correctness ratio
(above). After removing incorrect trajectories using our technique, we applied the same algorithm
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4th frame 5th frame 6th frame 7th frame 8th frame

Figure 5: Incorrect feature point tracking in Fig. 2(a).

(a) cars2 (b) cars5 g12 (c) head

99.38% 61.9% 91.92%

100% 61.7% 100%

Figure 6: Segmentation results and the correctness ratios by the algorithm of Sugaya and Kanatani [21].
Above: original Hopkins155. Below: after incorrect trajectories have been removed. [21]

again. The result is shown below. We can see that 100% correctness is achieved for the scenes (a)
and (c). We conclude that for these two scenes there were no problems in the segmentation algorithm
and that the low performance was due to the database.

For the scene (b), on the other hand, something should be wrong with the algorithm. We found that
in the program the initial segmentation was poor and not much improved by subsequent EM iterations.
Since the performance of EM algorithms heavily depends on the initial value, this suggests that the
performance could be made higher by improving the initial segmentation, for which the algorithm of
Sugaya and Kanatani [21] used the GPCA (Generalized Principal Component Analysis) of Vidal et
al. [23, 24] for fitting two planes simultaneously. We tentatively replaced it with the progressive plane
fitting by RANSAC described in Sec. 6 and found that 100% correctness was achieved. Thus, in this
case the problem was not in the database but in the algorithm, and this observation successfully lead
to the improvement of the algorithm.

In the past, new mathematical techniques have been proposed one after another and tested on
Hopkins155 for performance evaluation, and the correctness ratio has been regarded as a property
of that algorithm, not of the data. However, we need to know if the apparent high or low perfor-
mance is due to the data or due to the algorithm. Without this knowledge, we cannot improve the
algorithm. For correct evaluation, we need a reliable database. For this purpose, we created a new
database2 by removing incorrect trajectories using our technique from the above mentioned 35 scenes
of Hopkins155.

2http://www.iim.cs.tut.ac.jp/T-Hopkins/
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8 Concluding Remarks

We presented a powerful method for detecting incorrect tracking trajectories in multibody motion
video sequences. The basic principle is the fact if image motions are translational, correct trajectories
belong to parallel 2-D affine spaces included in a 3-D affine space in the trajectory space. We auto-
mated this process by noting that if the image sequence is divided into short intervals, image motions
can be regarded as approximately translational in each interval. We detected incorrect trajectories
by repeated plane fitting in the 3-D space by RANSAC and demonstrated that out method can not
only detect tracking errors that are easily overlooked by visual inspection but also tell use where they
occurred. We also pointed out why outliner removal based on RANSAC in 2M -D is not effective.
Using our method, we removed incorrect trajectories from Hopkins155 and create a new database,
which is expected to serve as an indispensable benchmark for multibody motion segmentation study.
Acknowledgments: This work was supported in part by JSPS Grant-in-Aid for Young Scientists (B 23700202)
and for Challenging Exploratory Research (24650086).
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