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Abstract

A higher order scheme is presented for the optimal correction method of
Kanatani [5] for triangulation from two views and is compared with the
method of Hartley and Sturm [3]. It is pointed out that the epipole is a singu-
larity of the Hartley-Sturm method, while the proposed method has no singu-
larity. Numerical simulation confirms that both compute identical solutions
at other points. However, the proposed method is significantly faster.

1 Introduction
Stereo vision is a method for reconstructing the 3-D structure of a scene from correspond-
ing points by triangulation: if the configuration of the cameras and their intrinsic parame-
ters are known, one can compute the “line of sight” of each pixel, and the intersection of
the corresponding lines of sight gives their 3-D position. If the camera configuration and
the intrinsic parameters are not known, they can be estimated from point correspondences
by computing the fundamental matrix; this procedure is known as structure from motion
[4, 5].

In practice, correspondence detection entails uncertainty, so corresponding lines of
sight may not meet in the scene. In the old days, this was handled by a practical com-
promise such as regarding the “midpoint” of the shortest line segment connecting the two
lines of sight as the intersection (Fig. 1(a)). However, Kanatani [5] pointed out that an
optimal method is to displace the corresponding pixels so that their lines of sight intersect
in such a way that the amount of the displacement is minimum (Fig. 1(b)). Kanatani [5]
called this strategy optimal correction, and Kanazawa and Kanatani [6] used this principle
for reliability evaluation of stereo reconstruction.

Hartley and Sturm [3] independently introduced a similar idea and presented a numer-
ical scheme of reducing the problem to solving a 6-degree polynomial. Some researchers
compared the two methods and found that Kanatani’s method was far more practical. For
example, Torr and Zissermann [9] wrote “Hartley and Sturm provide ... This turns out to
be equivalent to the optimally corrected correspondence of Kanatani. Comparisons of the
computation of x̂ and x̂′ by Hartley and Sturm’s method and that of Kanatani have again



(a) (b)

Figure 1: Triangulation. (a) The mid-point method. (b) Optimal correction.

shown agreement to three or four significant figures, as mentioned, but Kanatani’s method
is several orders of magnitude faster, being a linear method and hence preferable for rapid
evaluation purposes”. Yet, the Hartley-Sturm method has won popularity and currently is
widely regarded as a standard tool for triangulation.

In this paper, we modify Kanatani’s method and compare it with the Hartley-Sturm
method. First, we state the problem in mathematical terms (Sec. 2) and describe
Kanatani’s formula (Sec. 3). Then, we extend it to higher orders so that an exact optimal
solution is computed (Sec. 4). Next, we recast it into a very compact form suitable for
numerical computation (Sec. 5). We point out that the Hartley-Sturm method has a singu-
larity at epipoles, while our method does not, and discuss the convergence issue (Sec. 6).
From simulation, we observe that the Hartley-Strum method and our method compute
identical solutions other than at epipoles, while our method is significantly faster (Sec. 7).
We conclude that our method best suits practical use (Sec. 8).

2 Mathematical Background
Suppose point (x,y) in the first image corresponds to point (x′,y′) in the second. We
represent them in 3-D vectors in the form

x =

 x/ f0
y/ f0

1

 , x′ =

 x′/ f0
y′/ f0

1

 , (1)

where f0 is a scale constant of approximately the image size1. We refer to the point
represented by vector x simply as “point x”. As is well known [4, 5], the necessary and
sufficient condition for the lines of sight of points x and x′ meet in the scene is the epipolar
equation

(x,Fx′) = 0, (2)

where F is the fundamental matrix [4]. Throughout this paper, we denote the inner product
of vectors a and b by (a,b). We assume that the fundamental matrix F is already given.

The detected corresponding points x and x′ may not exactly satisfy Eq. (2) due to
uncertainty of image processing operations. Kanatani’s principle of optimal correction
[5] is to minimally correct points x and x′ to points x̂ and x̂′ so that Eq. (2) is satisfied,
where by “minimally” we mean that the sum of square distances, or the reprojection error

1This is for numerical stability [1]. In our experiment, we set f0 = 600 pixels.
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[4],
E = ‖x− x̄‖2 +‖x′− x̄′‖2, (3)

is kept minimum. In mathematical terms, we minimize Eq. (3) with respect to x̄ and x̄′
subject to

(x̄,Fx̄′) = 0. (4)

In statistical terms, this is interpreted as follows. Suppose the points x and x′ are observed
after displaced from their true positions x̄ and x̄′ by noise in the form

x = x̄+∆x, x′ = x̄′ +∆x′. (5)

If the noise terms ∆x and ∆x′ are independent and isotropic Gaussian random variables
of mean 0 and a constant covariance, minimization of Eq. (3) is equivalent to maximum
likelihood (ML) estimation of the true positions x̄ and x̄′.

3 Optimal Correction Procedure
Kanatani’s formula for optimal correction [5, 6] is derived as follows. Instead of directly
estimating x̄ and x̄′, we write

x̄ = x−∆x, x̄′ = x′−∆x′, (6)

and estimate the correction terms ∆x and ∆x′. On substitution of Eqs. (6), Eq. (3) becomes

E = ‖∆x‖2 +‖∆x′‖2, (7)

and Eq. (4) is written as
(x−∆x,F(x′−∆x′)) = 0. (8)

Expanding this and ignoring second order terms in ∆x and ∆x′, we obtain

(Fx′,∆x)+(F>x,∆x′) = (x,Fx′). (9)

Since the correction is done on the image plane, the third components of ∆x and ∆x′
should be zero, so we have

(k,∆x) = 0, (k,∆x′) = 0, (10)

where and throughout this paper, we define k ≡ (0,0,1)>. Introducing Lagrange multi-
pliers to Eqs. (9) and (10) in the form

‖∆x‖2 +‖∆x′‖2 −λ
(
(Fx′,∆x)+(F>x,∆x′)

)
−µ(k,∆x)−µ ′(k,∆x′), (11)

and letting the derivatives with respect to ∆x and ∆x′ be zero, we obtain

2∆x−λFx′−µk = 0, 2∆x′−λF>x−µ ′k = 0. (12)

Multiplying these by the projection matrix

Pk ≡ diag(1,1,0), (13)
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which makes the third component 0, and noting that Pk∆x = ∆x, Pk∆x′ = ∆x′, and Pkk =
0, we obtain

2∆x−λPkFx′ = 0, 2∆x′−λPkF>x = 0. (14)

Hence,

∆x =
λ
2

PkFx′, ∆x′ =
λ
2

PkF>x. (15)

Substituting these into Eq. (9), we obtain

(Fx′,
λ
2

PkFx′)+(F>x,
λ
2

PkF>x) = (x,Fx′), (16)

from which λ is determined in the form

λ
2

=
(x,Fx′)

(Fx′,PkFx′)+(F>x,PkF>x)
. (17)

Hence, Eqs. (15) becomes

∆x =
(x,Fx′)PkFx′

(Fx′,PkFx′)+(F>x,PkF>x)
, ∆x′ =

(x,Fx′)PkF>x
(Fx′,PkFx′)+(F>x,PkF>x)

. (18)

Thus, the true positions x̄ and x̄′ are estimated from Eqs. (6) in the form

x̂ = x− (x,Fx′)PkFx′

(Fx′,PkFx′)+(F>x,PkF>x)
, x̂′ = x′− (x,Fx′)PkF>x

(Fx′,PkFx′)+(F>x,PkF>x)
. (19)

These are Kanatani’s formula given in [5, 6, 9].

4 Higher Order Correction
Since Eq. (9) is a first approximation, the points x̂ and x̂′ computed by Eqs. (19) may not
strictly satisfy (x̂,Fx̂′) = 0. We now present an iterative scheme for computing x̄ and x̄′
that exactly minimize Eq. (3). Instead of directly estimating x̄ and x̄′, we write

x̄ = x̂−∆x̂, x̄′ = x̂′−∆x̂′, (20)

and compute the higher order correction terms ∆x̂ and ∆x̂′, which are small quantities of
a higher order. Substituting Eqs. (20) into Eq. (3), we have

E = ‖x̃+∆x̂‖2 +‖x̃′ +∆x̂′‖2, (21)

where we define
x̃ = x− x̂, x̃′ = x′− x̂′. (22)

Equation (4) now becomes

(x̂−∆x̂,F(x̂′−∆x̂′)) = 0. (23)

Expanding this and ignoring second order terms in ∆x̂ and ∆x̂′, we obtain

(Fx̂′,∆x̂)+(F>x̂,∆x̂′) = (x̂,Fx̂′). (24)
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Since ∆x̂ and ∆x̂′ are small quantities of a higher order, Eq. (24) is a higher order approx-
imation of Eq. (4). The correction is done on the image plane, so we have the constraint

(k,∆x̂) = 0, (k,∆x̂′) = 0. (25)

Introducing Lagrange multipliers to Eqs. (24) and (25) in the form

‖x̃+∆x̂‖2 +‖x̃′ +∆x̂′‖2 −λ
(
(Fx̂′,∆x̂)+(F>x̂,∆x̂′)

)
−µ(k,∆x̂)−µ ′(k,∆x̂′), (26)

and letting the derivatives with respect to ∆x̂ and ∆x̂′ be zero, we obtain

2(x̃+∆x̂)−λFx̂′−µk = 0, 2(x̃′ +∆x̂′)−λF>x̂−µ ′k = 0. (27)

Multiplying these by the projection matrix Pk in Eq. (13) and noting that Pkx̃ = x̃, Pkx̃′ =
x̃′ from the definition of x̃′ in Eq. (22), we obtain

2x̃+2∆x̂−λPkFx̂′ = 0, 2x̃+2∆x̂′−λPkF>x̂ = 0. (28)

Hence, we have

∆x̂ =
λ
2

PkFx̂′− x̃, ∆x̂′ =
λ
2

PkF>x̂− x̃′. (29)

Substituting these into Eq. (24), we obtain

(Fx̂′,
λ
2

PkFx̂′− x̃)+(F>x̂,
λ
2

PkF>x̂− x̃′) = (x̂,Fx̂′), (30)

from which λ is determined in the form

λ
2

=
(x̂,Fx̂′)+(Fx̂′, x̃)+(F>x̂, x̃′)
(Fx̂′,PkFx̂′)+(F>x̂,PkF>x̂)

. (31)

Hence, Eq. (29) becomes

∆x̂ =

(
(x̂,Fx̂′)+(Fx̂′, x̃)+(F>x̂, x̃′)

)
PkFx̂′

(Fx̂′,PkFx̂′)+(F>x̂,PkF>x̂)
− x̃,

∆x̂′ =

(
(x̂,Fx̂′)+(Fx̂′, x̃)+(F>x̂, x̃′)

)
PkF>x̂

(Fx̂′,PkFx̂′)+(F>x̂,PkF>x̂)
− x̃′. (32)

Thus, the true positions x̄ and x̄′ are estimated from Eqs. (22) and (20) in the form

ˆ̂x = x−

(
(x̂,Fx̂′)+(Fx̂′, x̃)+(F>x̂, x̃′)

)
PkFx̂′

(Fx̂′,PkFx̂′)+(F>x̂,PkF>x̂)
,

ˆ̂x′ = x′−

(
(x̂,Fx̂′)+(Fx̂′, x̃)+(F>x̂, x̃′)

)
PkF>x̂

(Fx̂′,PkFx̂′)+(F>x̂,PkF>x̂)
. (33)

This is a higher order approximation. Still, they may not strictly satisfy ( ˆ̂x,F ˆ̂x′) = 0, so
we let x̂ ← ˆ̂x and x̂′ ← ˆ̂x′ and repeat the same computation until the iterations converge.
In the end, ∆x̂α and ∆x̂′α in Eq. (23) become 0.
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5 Compact Numerical Scheme
We now reduce our algorithm to a compact form suitable for numerical computation.
First, we encode the fundamental matrix F = (Fi j) and the corresponding point pair {(x,y),
(x′,y′)} in the following 9-D vectors:

u = (F11,F12,F13,F21,F22,F23,F31,F32,F33)>,

ξ = (xx′,xy′, f0x,yx′,yy′, f0y, f0x′, f0y′, f 2
0 )>. (34)

The epipolar equation in Eq. (2) now becomes (u,ξ ) = 0. We can also rewrite part of the
numerators and denominators in Eqs. (19) as follows:

(x,Fx′) =
1
f 2
0
(u,ξ ), (Fx′,PkFx′)+(F>x,PkF>x) =

1
f 2
0
(u,V0[ξ ]u). (35)

Here, we define the matrix V0[ξ ] as follows:

V0[ξ ] =



x2 + x′2 x′y′ f0x′ xy 0 0 f0x 0 0
x′y′ x2 + y′2 f0y′ 0 xy 0 0 f0x 0
f0x′ f0y′ f 2

0 0 0 0 0 0 0
xy 0 0 y2 + x′2 x′y′ f0x′ f0y 0 0
0 xy 0 x′y′ y2 + y′2 f0y′ 0 f0y 0
0 0 0 f0x′ f0y′ f 2

0 0 0 0
f0x 0 0 f0y 0 0 f 2

0 0 0
0 f0x 0 0 f0y 0 0 f 2

0 0
0 0 0 0 0 0 0 0 0


. (36)

From Eqs. (35), Eqs. (19) can be written as

x̂ = x− (u,ξ )PkFx′

(u,V0[ξ ]u)
, x̂′ = x′− (u,ξ )PkF>x

(u,V0[ξ ]u)
. (37)

Now, if we define the vector

ξ̂ =



x̂x̂′ + x̂′x̃+ x̂x̃′

x̂ŷ′ + ŷ′x̃+ x̂ỹ′

f0(x̂+ x̃)
ŷx̂′ + x̂′ỹ+ ŷx̃′

ŷŷ′ + ŷ′ỹ+ ŷỹ′

f0(ŷ+ ỹ)
f0(x̂′ + x̃′)
f0(ŷ′ + ỹ′)
f 2
0


, (38)

part of the numerators and denominators in Eqs. (33) can be rewritten as

(x̂,Fx̂′)+(Fx̂′, x̃)+(F>x̂, x̃′) =
1
f 2
0
(u, ξ̂ ), (39)

(Fx̂′,PkFx̂′)+(F>x̂,PkF>x̂) =
1
f 2
0
(u,V0[ξ̂ ]u), (40)
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where V0[ξ̂ ] is the matrix obtained by replacing x, y, x′, and y′ by x̂, ŷ′, x̂′, and ŷ′, respec-
tively, in Eq. (36). From Eqs. (39) and (40), we can write Eqs. (33) as

ˆ̂x = x− (u, ξ̂ )PkFx̂′

(u,V0[ξ̂ ]u)
, ˆ̂x′ = x′− (u, ξ̂ )PkF>x̂

(u,V0[ξ̂ ]u)
. (41)

Thus, we can obtain the following compact procedure:

1. Let E0 = ∞ (a sufficiently large number), x̂ = x, ŷ = y, x̂′ = x′, ŷ′ = y′, and x̃ = ỹ = x̃′

= ỹ′ = 0.

2. Compute the 9-D vector ξ̂ in Eq. (38) and the corresponding 9×9 matrix V0[ξ̂ ].

3. Update x̃, ỹ, x̃′, and ỹ′ as follows:

(
x̃
ỹ

)
← (u, ξ̂ )

(u,V0[ξ̂ ]u)

(
u1 u2 u3
u4 u5 u6

) x̂′

ŷ′

f0

,

(
x̃′

ỹ′

)
← (u, ξ̂ )

(u,V0[ξ̂ ]u)

(
u1 u4 u7
u2 u5 u8

) x̂
ŷ
f0


(42)

4. Compute the reprojection error E = (x̃2 + ỹ2 + x̃′2 + ỹ′2)/ f 2
0 .

5. If E ≈ E0, return (x̂, ŷ) and (x̂′, ŷ′) and stop. Else, let x̂ ← x− x̃, ŷ ← y− ỹ, x̂′ ←
x′− x̃′, and ŷ′ ← y′− ỹ′, and go back to Step 2.

6 Theoretical Issues
Effect of epipoles. Point x in the first image is called its epipole if F>x = 0; point x′ in
the second is called its epipole if Fx′ = 0. The Hartley-Sturm method [3] first translates
the images so that the corresponding points are at the coordinate origins and next rotates
the images so that their epipoles are on the x-axes. Then, the observed points at the
origins are orthogonally projected onto the parameterized epipolar lines passing through
the respective epipoles. The parameter of the epipolar lines is determined so that the sum
of the square distances from the origins is minimized, which reduces to solving a 6-degree
polynomial.

If either of the corresponding points is at the epipole, no epipolar line is defined, so
an ad hoc procedure is necessary. In our procedure, (u,V0[ξ̂ ]u) is the only quantity that
appears in denominators. From Eqs. (35), (39), and (40), we see that it becomes zero only
when x and x′ (or x̂ and x̂′ in the course of iterations) are both at the epipoles, in which case
the numerators in Eqs. (42) are also zero, so the computation ends without any correction.
If one of the corresponding points is at the epipole, we see from Eqs. (42) that our method
displaces it away from the epipole, while the other point (not at the epipole) is unchanged.
In contrast, the ad hoc rule of the Hartley-Sturm method [3] moves the point not at the
epipole to the epipole. Thus, our method is theoretically more consistent, although this
difference has little effect in practical situations.

Convergence. Our method consists of iterative updates, so one may wonder if the correct
solution is reached. In fact, Hartley and Sturm [3] emphasized this as the raison d’être
of their method. They parameterized the pair of corresponding epipolar lines and argued,
showing numerical examples, that Newton-type search could be trapped into local minima

179



(a) (b)

Figure 2: Stereo image pairs of a planar grid (the epipolar lines are overlaid), and the camera
configuration. (a) Stable camera configuration. (b) Unstable camera configuration.

if arbitrarily started in the parameter space. This does not apply to our method, since our
problem does not have any local minima (or even a global minimum).

The Hartley-Sturm method searches the space in which the epipolar equation is sat-
isfied for minimizing the reprojection error. We search the joint image plane for the
positions x̂ and x̂′ that satisfy (x̂,Fx̂′) = 0 in the end: intermediate positions do not. If
(x̂,Fx̂′) = 0 is first satisfied, we are done.

Evidently, whatever local search should start near the true solution to converge to it,
since we may be trapped into a false solution if it is located closer to us than the true
solution. In our problem, however, we are searching for the positions x̂ and x̂′ that are the
closest to the data x and x′, starting from them. If there happens to be a “false” solution
that satisfies the epipolar equation and is closer to us than the true solution, it should be
the true solution by the very definition of the reprojection error2.

Our method can be imagined to move points x̂ and x̂′ that are connected to x and
x′ with “springs” whose energy is proportional to the square distance of extension. The
points x̂ and x̂′ are gradually “pulled” toward the hypersurface (x,Fx′) = 0 in the joint
space until they reach it. This is similar to the well-known global optimization technique
of gradually raising the reprojection error threshold from 0 and testing if a feasible solu-
tion exists [2, 7]; the one first found is the globally optimal solution.

7 Experiments
Setting Figure 2(a), (b) shows simulated images (supposedly 400×400 pixels) of a grid
pattern viewed by two cameras with focal length 1200 pixels. In Fig. 2(a), the baseline
is nearly perpendicular to the camera optical axes (call this the “stable camera configura-
tion”); in Fig. 2(b), it is nearly parallel to them (call this the “unstable camera configura-
tion”). Some of the corresponding epipolar lines are overlaid; the epipoles are located at
their intersections.

Adding independent Gaussian noise of mean 0 and standard deviation σ pixels to the
x- and y-coordinates of the grid points, we computed their 3-D positions. We varied σ
from 0 to an extremely large value 10 to see if our method still works. The iterations of
our method are terminated when the update of the reprojection error E is less than 10−6.

Reprojection error. Figure 3 plots, for each σ , the reprojection error E averaged for all
the grid points over 1000 independent trials. The solid line shows the result of our opti-
mal correction; the dashed line the Hartley-Sturm method; the dotted line the theoretical

2There may exist a pathological situation in which this argument does not hold in the presence of extremely
large noise, but we doubt if there is any.
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Figure 3: Mean reprojection error. Solid line: optimal correction. Dashed line: Hartley-Sturm.
Dotted line: theoretical expectation. (a) Stable camera configuration. (b) Unstable camera configu-
ration.
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Figure 4: Computation time (in ms). Solid line: optimal correction. Dashed line: Hartley-Sturm.
(a) Stable camera configuration. (b) Unstable camera configuration.

expectation3 (σ/ f0)2. The plots of the two methods completely coincide in whichever
camera configuration. Numerically, they agree up to significant digits, confirming that the
two algorithms are mathematically equivalent. Also, the reprojection error nearly coin-
cides with the theoretical expectation, indicating that the true ML solution is computed
indeed.

As Fig. 3 shows, the reprojection error is basically the same in the stable and unstable
camera configurations. This is because optimal correction depends only on the statistical
properties of noise: if the noise distribution is the same, say Gaussian, minimization of
the reprojection error does not depend on the camera configuration, the image content,
or the 3-D structure of the scene. What the camera configuration affects is the reliability
of 3-D reconstruction, irrespective of the method for triangulation, for which our method
and the Hartley-Sturm methods produce the same result.

Computation time. Figure 4 shows the average computation time over 1000 trials. We
implemented the two method using the C language and used the eigenvalue method [8]
for solving a 6-degree polynomial. We used Intel Core2Duo E6700 2.66GHz for the CPU
with main memory 4GB and Linux for the OS.

As we see from Fig. 4, the computation time of the Hartley-Sturm method almost does
not depend on the noise level σ . As we confirmed, most of the time is spent on solving
a 6-degree polynomial. At σ = 0, the computation is slightly faster (see the black dots

3For an ML solution, f 2
0 E/σ2 is to a first approximation subject to a χ2 distribution with one degree of

freedom, hence has expectation 1 [5].
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on the vertical axes). For exact data, the 6-degree polynomial degenerates into degree 5,
which is probably easier to solve. We also observe that the computation is faster for the
unstable camera configuration, in which case the 6-degree polynomial is probably easier
to solve, but we did not analyzed the details.

Our method is, on the other hand, iterative. From Fig. 4, we observe that the number
of iterations slightly increases as noise increases and also when the camera configuration
is unstable. However, the increase is very small, converging after at most three to four
iterations. We have also found that because our method consists of simple vector and ma-
trix operations only, the computation time depends to a large extent on the vector-matrix
calculus library and the complier that we use, while the Hartley-Sturm method takes al-
most the same time in whatever implementation. Overall, however, as demonstrated by
Fig. 4, our method is significantly faster than the Hartley-Sturm method.

8 Conclusions
We have extended the first order optimal correction of Kanatani [5] for triangulation from
two views to higher orders and shown that it can be written in a very compact form suitable
for numerical computation. We compared it with the Hartley-Sturm method [3], widely
regarded as a standard tool for triangulation.

We have pointed out that the epipole is a singularity of the Hartley-Sturm method, at
which the computation breaks down, while our method does not. We have also argued
that we need not worry about local minima for our iterations. By simulation, we have
demonstrated that our method and the Hartley-Sturm method compute identical solutions,
yet our method is significantly faster, confirming the observation of Torr and Zissermann
[9]. We conclude that our method best suits practical use.
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