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The image transformation due to camera rotation relative to a stationary scene is analyzed,
and the associated transformation rules of “features” given by weighted averaging of the
image are derived by considering infinitesimal generators on the basis of group representation
theory. Three-dimensional vectors and tensors are reduced to two-dimensional invariants on
the image plane from the viewpoint of projective geometry. Three-dimensional invariants and
camera rotation reconstruction are also discussed. The result is applied to the shape recogni-
tion problem when camera rotation is involved. © 1987 Academic Press. Inc.

1. INTRODUCTION

The problem we consider in this paper is as follows. Suppose the camera is
rotated by a certain angle around its lens center relative to a stationary scene. Then,
a different projected image is seen on the image plane. However, since a point on
the image plane corresponds to a ray in the 3D scene, occlusion is not affected by
camera rotation. If the amount of camera rotation is known, the original image can
be recovered. (Here, we do not consider the effect of the image boundary. We
assume that the image plane is sufficiently large and that the object or scene of
interest is always included in the field of view.) This means that the information
content of the image is not affected by the 2D image transformation induced by the
camera rotation.

Suppose the viewed image is characterized by a finite number of parameters or
features. If the camera is rotated, the image is also changed so that the features
change their values. If the set of features is invariant in the sense that these new
values are completely determined by the original values and the amount of the
camera rotation, we can predict the values of the features which would be obtained
if the camera were rotated by a given amount. Conversely, if we are given two views
of the same object obtained from different camera orientations, we can reconstruct
the amount of camera rotation R which would transform the values of the features
to prescribed values. An important fact is that in this process we need not know the
point-to-point correspondence. All computations are based on the observed features,
which are global quantities.

These considerations are very important in many problems of computer vision
and pattern recognition when the camera orientation is controlled by a computer.
Even if the camera is fixed, various types of analysis of the image become easy if we
apply to the image the transformation equivalent to camera rotation. This technique
is used for the shape-from-texture problem by Kanatani and Chou [7] and for the
interpretation of lengths and angles by Kanatani [6). A similar analysis is done when
the object is moving and we are observing the optical flow (Kanatani [5]). In this
paper, we will discuss, as a typical example, the center of gravity and principal axes
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of a given region to see how the invariant properties can be utilized to recognize the
shape and to reconstruct the (actual or hypothetical) camera rotation.

2. CAMERA ROTATION AND INVARIANT FEATURES

Let f be the focal length of the camera. The camera image is thought of as the
projection onto an image plane located at distance f from the viewpoint O; a point
P in the scene is projected onto the intersection of the image plane with the ray,
connecting point P and the viewpoint O. Let us choose an XYZ-coordinate system
such that the viewpoint O is at the origin and the Z axis coincides with the camera
optical axis. Choose an xy-coordinate system in such a way that the x and y axes
are parallel to the X and Y axes with (0,0, /) as the origin. This xy plane plays the
role of the image plane (Fig. 1). A point (X, Y, Z) in the scene is projected onto
(x, y) on the image plane, where

x=fX/Z, y=fY/Z. (2.1)

Consider a camera rotation around O (lens center) and the induced transforma-
tion of the image. Suppose the camera is rotated by rotation matrix R, which is an
orthogonal matrix, i.e., RRT = I. Then, the point in the scene which was seen at
(x, y) now moves to another point (x’, y’) given by

THEOREM 1. The image transformation induced by camera rotation R = (r, ;) is
given by

mx +ryy+rf y _f"lzx trpyt+rf
raXx + rpy + rf’ rax + rpy +raf

X' =f 22)

Proof. A rotation of the camera by R is equivalent to the rotation of the scene in
the opposite sense. If the scene is rotated by R~!(= RT), where T denotes transpose,
point (X, Y, Z) moves to point (X’,Y’, Z’), where

?

X m o rm X
r

Y'l=|rnp m ml|Y] (2.3)
’

z ny ry ral|Z

Fi6. 1. The XYZ-coordinate system is fixed to the camera, the origin O being the camera lens
center. The image plane is taken to be Z = f, where f is the camera focal length. A point (X, Y, Z) in
the scene is projected onto point (x, y) on the image plane.
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This point is projected to (x’, y’) on the image plane, where x’ = fX’/Z’ and
y' = fY'/Z’. Combining this with Eqgs. (2.1), we obtain Eq. (2.2).

It should be emphasized that the image transformation due to camera rotation
does not require any knowledge about the scene and that the transformation has an
inverse which is obtained by interchanging R and RT. This means that transforma-
tions of the form of Eq. (2.2), which form a subgroup of the 2D projective
transformation group, do not alter the information content of the image as long as
the image boundary is ignored. (In this paper, we always regard the portion of the
image near the boundary as unimportant.) In the following, some basic results from
projective geometry are summarized in a way that is convenient in our consideration
of the image plane transformation.

Suppose the image is characterized by a finite number of parameters J, i =
1,2,..., N, which we call features of the image (Amari [1, 2]). (They are called
properties in Rosenfeld and Kak [9].) If the image is transformed by Eqs. (2.2) as a
result of camera rotation R, these features take different values J/, i=1,..., N.
We say that a set of features J;, i =1,..., N, is invariant if the values of J/,
i=1,..., N, are determined by the values of J, i =1,..., N, and the amount of
camera rotation R alone (cf. Weyl [15]). This definition suggests that an invariant
set of features describes some aspects of the image that are “inherent to the scene
itself” and are independent of the camera orientation.

Let J, i =1,..., N, be an invariant set of features. We say the set is reducible if
it splits, after an appropriate rearrangement, into two or more sets of features, each
of which is itself invariant separately. If no further reduction is possible, we say that
the set of features is irreducible (cf. Weyl [15]). This definition suggests that an
irreducible invariant set of features describes a “single” characteristic inherent to
the scene while a reducible set describes two or more different characteristics at the
same time.

If a quantity ¢ does not change its value under transformation (2.2), i.e.,

¢ =c, (2.4)

under camera rotation R, we call it a scalar. Obviously, a scalar is itself an invariant
and is irreducible. Hence, it describes a characteristic inherent to the scene.
If a pair, a, b of numbers is transformed as x, y of transformation (2.2), i.e.,

ma+ rab+ryf ,  Jmatrbtrf
ri3@ + rpb + s f’ ri3a + rpb + rf’

a'=f (2.5)

we call it a point. Note that any pair of numbers can be interpreted as a position on
the image plane. However, it is interpreted as indicating a position in the scene if
and only if it is transformed as a point. It is easily proved that a point is also an
invariant set of features and is irreducible.

A line on the image plane is expressed in the form

Ax+By+ C=0. (2.6)

Here, the ratio 4: B: C alone has a geometrical meaning; A4, B, C and c4, ¢B, cC
for a non-zero scalar ¢ define one and the same line. In order to emphasize this fact,
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let us write 4 : B: C to express a line. If transformation (2.2) is applied, line (2.6) is
mapped into
A'x’ + Blyl +C’' = , (2.7)
as in
THEOREM 2. A line A: B: C on the image plane is transformed by camera rotation
R into the line
A':B':C'=ryA+ryB+r,C/f:r;A
+rpB + r,C/f f(ri3A + ry3B) + ryC. (2.8)

Proof. In view of Egs. (2.1), Eq. (2.6) is written as A(fX/Z) + B(fY/Z)+ C
=0, or
X

Y
z

[4Bc/|y]|=o. (2.9)

From Eq. (2.3), we find that A4, B, C/f are transformed as a vector, i.e.,

A A
c/f C/f

from which Eq. (2.8) is obtained.

If the ratio of three given quantities 4, B, C is transformed by Eq. (2.8) under
camera rotation, we call it a line and write it as A : B: C. It is easily proved that it
is an invariant set of features and is irreducible. As in the case of a point, any triplet
of numbers can be interpreted as a line on the image plane, but it is interpreted as a
line in the scene if and only if it is transformed as a line.

All the invariant properties considered in this paper are invariant with respect to
the “projective transformations” of the form of Egs. (2.2). In traditional “projective
geometry,” all equations are written in terms of “homogeneous coordinates™ defined
in a “projective space” (cf. Naeve and Eklundh [8]). If we regard the xy-image plane
(with the “line at infinity” added) as a two-dimensional projective space and
introduce homogeneous coordinates, Eqgs. (2.2) are rewritten as a linear transforma-
tion. The “point” and “line” defined here are mutually “dual” and expressed
exactly dually in homogeneous coordinates.

However, the purpose of this paper is to deal with applications of the ideas of
projective geometry, and in dealing with real images the xy-Cartesian coordinate
system is most convenient. Therefore, in the following, we express all the invariant
properties in terms of the xy-“inhomogeneous” coordinates of the image plane. The
aim of this paper is to translate the results known in projective geometry into
“managable” forms and to demonstrate the practical use of this type of knowledge.

3. IRREDUCIBLE REDUCTION OF 3D VECTORS AND TENSORS
Consider three quantities a, b, ¢ which are transformed as a 3D vector, i.e.,

[‘é] - RT[Z], (31)



332 KEN-ICHI KANATANI

for camera rotation R. (Note that the rotation matrix R is transposed because we
adopted the convention that R is the amount of “camera rotation”.) This is an
invariant set of features but is not irreducible because

LemMa 1. Ifa, b, c are transformed as a 3D vector, then the length Va? + b* + ¢?
is a scalar.

There are two ways, mutually dual, to interpret a 3D vector a, b, ¢ as irreducible
sets of features. One way is to regard fa/c, fb/c as a point and the length
va® + b* + ¢? asits intensity, which is a scalar. We can easily check from Theorem
1 that

LeEMMA 2. If a, b, ¢ are transformed as a 3D vector, then fa/c, fb/c are trans-
Jormed as a point.

Hence a pair fa/c, fb/c has an interpretation as a point invariant on the image
plane in the sense described above. Here, we allow the case ¢ = 0, regarding it as a
point located at infinity. We also make the convention that the intensity is negative
if ¢ < 0. If we imagine that the 3D vector (a, b, ¢) is emanating from the origin O
(or the camera lens center) of the XYZ-coordinate system, the point ( fa/c, fb/c) is
the intersection of the image plane with the ray defined by the 3D vector (a, b, ¢).

Another way to represent a 3D vector on the image plane is to regard a: b: fc as
a line and the length Va? + b2 + ¢? as its intensity. We can easily check from
Theorem 2 that

LEMMA 3. If a, b, c are transformed as a 3D vector, then a: b: fc is transformed
as a line.

Hence, equation az + by + fc = 0 has an interpretation as a line invariant on the
image plane in the sense described above. If we imagine that the 3D vector (a, b, ¢)
is emanating from the origin O (or the camera lens center) of the XYZ-coordinate
system, the line ax + by + fc = 0 is the intersection of the image plane with the
plane passing through the origin O and perpendicular to (a, b, c). As before, we
allow the case of a = b = 0, regarding the line as located at infinity, and make the
convention that the intensity is negative if ¢ < 0.

The above results are summarized as follows:

THEOREM 3. A 3D wvector is an invariant feature set. It can be irreducibly reduced
into a point and a scalar or into a line and a scalar on the image plane.

Next, consider nine elements A4; j» & J = 1,2, 3, which are transformed by camera
rotation R as a 3D tensor, i.c.,

AL A5, A Ay Ay, Ag
n Aﬁz Aﬁs =RT A?.l Azz Aza R. (3-2)
A3 Ay 3 Ay Anp Ay

By definition, this is an invariant set of features. However, it is reducible. First, it
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can be decomposed into a symmetric part and an antisymmetric part (or skew part)

Ay Ap Ay
Ay Ap Ay
Ay Az Asy
Ay (Aip+43)/2 (43 + A433)/2
= (A12+A21)/2 Ay (Azs +A32)/2
(Ay + A3)/2 (Ap+43)/2 Az
0 (Alz'“Azl)/z _(A3l "‘113)/2
+| —(4,— 45)/2 0 (A —43)/72 |, (3.3)
(A31 _Als)/z _(Azs _Asz)/2 0

and each part is transformed as a 3D tensor by Eq. (3.2) separately. Moreover, it
can be verified that the three independent elements (A,; — 43;)/2,(45 —
A13)/2,(Ay; — Ay )/2 of the antisymmetric part are transformed as a 3D vector.
Hence, they are, from Theorem 3, irreducibly reduced into a point and a scalar or
into a line and a scalar.

Suppose A = (4,;) is already a symmetric 3D tensor. As is well known, such a
tensor is represented by three mutually perpendicular unit vectors e,, e,, e; indicat-
ing the principal axes and the corresponding principal values 6,, 0,, 65 in the form

= T T T
A = gje.e] + 0,e,e7 + 056563 (3.9)

Here, this representation does not change if e, (or e, or e;) is replaced by —e, (or
—e, or —e,). (If two of o), 0,, 0, are identical, the corresponding principal axes are
not unique and can be arbitrarily rotated rigidly around the remaining one. If all of
0,, 0,, 05 are identical, the orientations of e,, e,, e, are completely arbitrary as long
as they are mutually orthogonal.)

The three principal values are scalars, each of which is an invariant irreducible
feature. On the other hand, if we determine the orientations of two of the three
principal axis orientations, say e, and e,, the orientation of the remaining one is
uniquely determined. (e, and —e, indicate the same orientation.) As is shown in
Theorem 3, the orientations of e, and e, are represented by two points on the
image plane. (If we replace e, (or e,) by —e, (or —e,), the corresponding points
are unchanged as desired.) However, since e, and e, are perpendicular, one of the
two points and the line connecting the two points are sufficient; if one point on the
image plane and a line through it are given, the three orientations are determined
(Appendix A). Thus, we obtain

THEOREM 4. A 3D tensor is invariantly reduced to its symmetric part and its
antisymmetric part. The antisymmetric part is irreducibly reduced into a point and a
scalar or a line and a scalar. The symmetric part is irreducibly reduced to three scalars,
a point and a line passing through it.

4. INFINITESIMAL GENERATORS OF THE IMAGE TRANSFORMATION

Let F(x, y) represent an observed image. This may be the intensity of the
gray-level or a vector-valued function corresponding to R, B, and G. Here, the value
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of F(x, y) is assumed to be inherent to the scene and independent of the viewing
orientation. Chromaticity, for example, has this property. Furthermore, F(x, y) is
assumed to be of finite support, i.e., F(x, y) is zero at a sufficiently large distance
from the origin of the image plane.

Let us write the transformation of Eq. (2.2), which is determined by the rotation
matrix R, symbolically as

(x*, y’) = M[R](x, y). (4.1)
Then, we can see the (transposed) homomorphism in the sense that
M[R,]e M[R,] = M[R,R,]. (4.2)
Now, define the rotation operator T, acting on image F(x, y) by
TeF(x, y) = F(M[RT](x, y)). (4.3)

In view of our assumptions of image value constancy and finite support, the
function T, F(x, y) describes the image we observe if the image plane undergoes the
transformation (2.2). Operator T induces a (transposed) representation of the 3D
rotation group SO(3) in the sense that

Ta,z, = Ta,° T, (4.4)

As is well known, this representation is completely determined once its behavior for
infinitesimal rotations (i.e., its Lie algebra) is known, since SO(3) is a compact Lie
group.

A 3D rotation is specified by the rotation axis (n,, n,, n), which is taken to be a
unit vector, and the rotation angle © (rad) screwwise around it. As is well known,
the corresponding rotation matrix is given by

cos® + (1 —cosR)(m)  (1-cosQ)nn, —sinQn, (1 — cosQ)nn, + sinQn,
R=1(1-cosQ)n,n +sin8n; cos® + (1 — cos 9)(n2)2 (1 — cosQ)ny,ny — sinQn, |-

(1 —cosQ)nyn; —sin@n, (1 - cosQ)nyny +s5inQn;  cos @ + (1 — cos SZ)(n:,)2
(4.5)

If the rotation is infinitesimally small, i.e., @ is infinitesimally small, the rotation
matrix takes the form R = I + 6R + o(R?), where I is the unit matrix, 8R is the
matrix given by

8R = 93 0 - Ql N (4.6)
- 92 91 0

and o(R) denotes higher order terms in Q. (We let the context indicate whether
these terms are scalars, vector, or tensors.) Here, we put Q, = Qn,, @, = Qn,, and
Q, = On,.
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If the rotation is infinitesimal, the transformation of Egs. (2.2) becomes x’ = x +
8x + o(R) and y’' =y + 8y + o(Q), where

1
Ox=—fQ, + Qy + —=(—Qx + Q,y)x,
1 / (4.7)
oy =fQ, — Qx + ?(—sz +Q,5)y.

Then, the image F(x, y) also undergoes an infinitesimal change and becomes
F(x - 8x,y—8y)=F(x, y)+8F(x, y) +0o(Q), (4.8)
and 8F(x, y) is given by
dF aF

8F(x, y) = —$8x— a—yb‘y

1 dF

[ Q, - Qx + 1( Q,x + Q,y) ]aF
- - Qx4+ —(—-Q.x _
AN 3 I; 2 1)y 3y
—(9,D, + Q,D, + ©,D;) F(x, y), (4.9)

where the infinitesimal generators are defined by

b xy8+ +y23 b +x23 xy @
S G i G PR
D. 4 4 4.10
3=V % 3y (4.10)
Hence, operator T, becomes, for infinitesimal rotations,
Tp=1-(Q,D,+Q,D, + ,D,) + 0(Q), (4.11)

where I is the identity operator.

It can be checked easily that these infinitesimal generators satisfy the commuta-
tion relations

[Dh Dz] = Dy, [Dz’ D3] =D, [Ds’ D:] = D,, (4-12)

where the commutator is defined by [A4, B] = AB — BA. Hence, a set of functions
can be found which induces a representation of the 3D rotation group SO(3) [3, 4].

As is well known, a set of functions which induces an irreducible representation is
obtained as eigenfunctions of the Casimir operator

H= —(D}+ D} + D}). (4.13)

The eigenvalue is /(/ + 1) and the eigenspace is (2/ + 1) dimensional, where / is an
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integer or half-integer called the weight of the irreducible representation (cf.
Gel’fand, Minlos, and Shapiro [3], Hammermesh [4]). In other words, the differen-
tial equation

HF=1(I1+1)F, or (D}+D}+D})F+I(I+1)F=0, (4.14)

has (2/ + 1) independent solutions, which become the basis of the irreducible
representation D, of weight / (Appendix B).

5. ADJOINT ROTATION AND FEATURE TRANSFORMATION

Let J be a feature of the image. To be precise, a feature is a functional mapping
the image function F(x, y) into a real number J[F(x, y)]. Consider a linear feature
obtained by weighted averaging or filtering

J[F(x, y)] = [m(x, y)F(x, y) dxdy. (5.1)

Here, m(x, y) is the filter weight function and integration is performed over
the entire image plane. (Recall our assumption of finite support of F(x, y).) If the
camera is rotated by R, the image becomes T F(x, y) by Eq. (4.2) and hence the
corresponding feature becomes

I[ToF(x, 9)] = [m(x, y)TF(x, y) dxdy. (5.2)

We define the adjoint rotation operator T by

J[TRF(x, )] = [Tgm(x, y)F(x, y) dxdy. (5-3)

From this definition, we can set that operator T* induces a representation of the
3D rotation group in the sense that

Tie, = Ta o T3 (5.4)

Once we know how this adjoint rotation operator Tz* acts, the transformation of
such features is immediately computed for any given image. This is done by just
considering infinitesimal transformations.

If the image is infinitesimally changed as in Eq. (4.8), feature J also undergoes an
infinitesimally small change J — J + 8J + o(R). Substitution of Eq. (4.9) and
integration by parts yield

8 = [(9,D¢ + 9,0 + QD) m(x, y) F(x, y) dxdy, (5.5)
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where D*, D, and D;* are the adjoint infinitesimal generators defined by

3 xy d 2
D;:TH%F(,HT)E,
D2*=_3_x_(f+x_2.)i_.x_}ii, (56)

/ f]dx [ dy '
3 = V% xay'

In Eq. (5.5), no boundary terms appear due to our assumption of finite support for
F(x, y). Hence, operator Tg* becomes, for infinitesimal rotations,

T = I+ Q,DF + ,D5 + D} + o(R). (5.7)

It can be checked easily that these adjoint infinitesimal generators satisfy the
commutation relations

[Dl*’ Dz*] = D3, [Dz*’ Ds*] = D, [Dz*’ Dl*] = D}, (5~8)

Hence, we can find a set of functions which induces a representation of the 3D
rotation group SO(3). Then, operator Tg* acts as a linear transformation on them
(cf. Gel'fand et al. [3]). As before, a basis of the irreducible representation D, of
weight / is obtained as (2/ + 1) eigenfunctions of the (adjoint) Casimir operator

H*= —(D}* + D}* + D}?), (5.9)
i.e., as (2/ + 1) independent solutions of the differential equation
H*m=1(l+1)m, or (D¥*+ D} +Dy*)m+1(I+1)m=0. (5.10)

From Appendix C, we find that

. f F(x, y) dxdy : (5.11)
(x> +y2+f?)
is an invariant (i.e., it is transformed as a scalar). This implies that
p(x, y) = ! (5.12)
J(x2+ 2+ 2)
is an invariant measure (Appendix D).
We also see from Appendix C that
J, = f xF(x, y) dxdyz, _ f yF(x, y) dxdyz,
(x?+y2+f?) (x*+y*+f?)
5 =/ fF(x, y) dxdy (5.13)

(x2+y2+/2)
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are transformed as a 3D vector. Hence, they are irreducibly reduced to a scalar
V(52 + (1) + (4)? and a point 1, /)y, f1,/J, (or a line J,: J,: fJ,) on the
image plane. This scalar and point (or line) are invariant in the sense that they
describe characteristics inherent to the scene.

Also from Appendix C, we find that

x2F(x,y) dxdy xyF(x, y) dxdy fxF(x, y) dxdy
Ju:f‘/ 2, 2, 2)5 le:f‘/ 2, .2, ;2\ -713=j‘/ 2, 2. (25

(x*+y*+/?) (x> +y*+71%) (x*+y*+ %)

xyF(x, y) dxdy y*F(x, y) dxdy JyF(x, y) dxdy
le=f Jzz=f 123=f

V(x2+ 2417 V(2 +y2 47 RN

JxF(x,y) dxdy fyF(x, y) dxdy [*F(x,y) dxdy
-731=f T -733:/ = Jn = 3

‘/(x2+y2+f2) ‘/(x2+y2+f2) )/(x2+y2+f2)

(5.14)

are transformed as a 3D (symmetric) tensor. Hence, they are irreducibly reduced to
three scalars, a point, and a line passing through it on the image plane. They are
invariant and describe characteristics inherent to the scene.

6. INVARIANT CHARACTERISTICS OF A SHAPE

As an application of the results in the previous sections, let us consider the
characterization of a shape on the image plane. Consider a region S on the image
plane. Its characteristic function

1 if(x,y)es
F(x,y)= 6.1
(x,7) {0 otherwise (61)

is taken as the image function F(x, y).
The simplest characteristics of the region S may be its area

5= fsdxdy(= fF(x, y) dxdy). (6.2)

However, this area is not invariant with respect to camera rotation. Suppose the
region § is located far away from the image origin. If we move it so that it comes to
the center of the image plane by appropriately controlling the camera orientation,
the area of Eq. (6.2) changes. Consequently, Eq. (6.2) is not considered to be a
characteristic inherent to the scene itself. In short, Eq. (6.2) is not a scalar.

On the other hand, if Eq. (6.2) is replaced by

dx dy
= f3
‘ f/sJ(x’+y2+f2)”

this is a scalar as was shown in the previous section. If S is a small region located
around the image origin, i.e., x = 0, y = 0 in S, then C is approximately equal to
this area. We call C the invariant area of region S. It is interpreted as the area the

(6.3)
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region would have if the region were removed to the center of the image plane by

changing the camera orientation. Geometrically speaking, this quantity is nothing

but an expression of the solid angle the object makes with respect to the viewer.
Another simple but important characteristic is the center of gravity of the re-

gion §
x=[sxdxdy/fsdxdy, i=[gydxdy/j;dxdy. (6.4)

Again these quantities do not have invariant meanings. Namely, if region S is
moved to another region by camera rotation and (x’, y’) is its center of gravity,
(X, y) is not mapped into (X', y’) by the same camera rotation. In short, X, y is not

a point.
On the other hand, we know from Section 5 that
4 =f xdxdy _ f ydxdy
Vs (a2 w2 a2y s(x?+y2+ f2)
dx dy
ay=ff T (6.5)

are transformed as a 3D vector. Hence, fa,/a,, fa,/a, are transformed as a point.
If the region S is a small region located around the image origin and x = 0, y = 0
in S, then ( fa,/a,, fa,/a,) is approximately the center of gravity of the region. We
call, (fa,/a;, fa,/a,) the invariant center of gravity of region S. It is interpreted as
the point which would be mapped into the center of gravity if the region were
moved to the center of the image plane by changing the camera orientation.
Geometrically, this point corresponds to the center of the solid angle the object
makes with respect to the viewer.

Another useful characteristics is the moment tensor (M;;), i, j = 1,2, defined by

=j;(x—§)2dxdy, M12=M21=[g(x—)?)(y—)7)dxdy,

My = [(y~5) dxdy. (6.6)
N

Its principal values indicate the amount of elongation of the region S along the
corresponding principal axes. However, as described above, this tensor does not
have invariant properties. Namely, the principal values of (M;;) are not scalars, and
its principal axes are not lines on the image plane.

On the other hand, we know from the previous section that

x* dxdy xy dx dy xdx dy
B“=f 2 2 s Bl’=f 2 2 nS B|3=f 2 2 275
x4y 1) (1) (e r)
xy dx d) Ydxd \dxdv
s (x3+y2+fz) s (x3+_y3+[2) ‘ x2+p? +f

xdxdy f ydxdy dxdy
s

e By ff e B S ———
S (x2+y1+f1) x! +",2 +[2)- S ('\.2 +},1 +f2)

6.7



340 KEN-ICHI KANATANI

are transformed as a 3D (symmetrical) tensor. Since this tensor is positive definite as
long as region § is not empty, it has three positive principal values o,, 6,, 65. Let o,
be the maximum principal value. Let e, e,, e; be the corresponding unit eigenvec-
tors (determined except for sign). Let (g;, g,) be the point corresponding to vector
e;. Let /) be the line passing through (g,, g,) and the point corresponding to vector
e, (or the line representing vector e,). Similarly, let /, be the line passing through
(81> &2) and the point corresponding to vector e, (or the line representing vector
e,). By our method of construction, scalars a,, 6,, point (g,, g,) and lines /,, /, are
all invariant quantities. It can be checked that lines /,, /, are approximately the
principal axes, and o,, 0, are approximately the corresponding principal values if S
is a sufficiently small region around the origin. Hence, scalars ¢, and o, are the
principal values the region would have if it were moved to the center of the image
plane by camera rotation, and /,, /, are lines which would be mapped onto the
principal axes. We call point (g, g,) the invariant center of inertia, lines I,, I, the

invariant principal axes, and ¢, 6, the corresponding invariant principal values.

7. INVARIANTS AND CAMERA ROTATION RECONSTRUCTION

In the previous section, scalar C defined by Eq. (6.3), 3D vector a = (a;) defined
by Eqgs. (6.5) and 3D tensor B = (B, ;) defined by Egs. (6.7) are interpreted as a set
of two dimensional invariant quantities on the image plane. Here, let us consider
their three dimensional aspects.

First, since C, a, and B are transformed as a scalar, a vector, and a tensor,
respectively, by camera rotation, we can extract invariants that do not change their
values when the camera is rotated. Obviously, scalar C itself is an invariant.

Second, since a is a 3D vector, it has, as was discussed in Section 3, only one
invariant, namely its length ||a||, or equivalently a'a.

On the other hand, B is a 3D symmetric tensor, and hence it has, as was
described in Section 3, three invariants, namely the three principal values o,, 0,, 05,
or equivalently any three independent algebraic expressions formed from them such
as the fundamental symmetric forms 6, + 6, + 03, 0,0, + 0,0, + 0;0,, 6,0,0,. In terms
of the components of the original tensor B, they are, respectively,

ButBat By(=TAB). g 5 |*|5, 5y|*|5n 5o
B, B,, By,
By By, By|(=det B). (7.1)
By, By, By

Alternatively, we can use o, + 0, + 03, o} + 67 + 02, 6} + o + oJ. This set is
equal to

Tr(B), Tr(B%), Tr(B%). (7.2)

Finally, there are invariants describing the relationship between 3D vector a and
3D tensor B. As was discussed in Section 3, a 3D vector is geometrically thought of
as a directed axis to which its length is attached and a 3D symmetric tensor as three
mutually perpendicular (undirected) axes to which their respective principal values
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are attached. Now that the length and the principal values have been counted, the
remaining invariants are those specifying the orientation of the vector relative to the
three mutually perpendicular axes. Hence, two invariants exist. We can choose, say,
a"™Ba and a"B%a (Smith [10], Spencer [11], Wang [12-14].) Of course, the choice is
not unique as stated above, and other choices are also possible.

We say that two regions S and S’ on the image plane are equivalent if one region
can be transformed into the other by a camera rotation, i.e., by changing the camera
orientation. If the two regions are equivalent, the above invariants must have
identical values. If they have different values, the two regions cannot be equivalent.
On the other hand, if the two regions are known to be equivalent, the camera
rotation which would take one region into the other can be reconstructed by
observing the invariant center of gravity and the invariant moment tensor alone.
This is done as follows.

Suppose we observe a and B for region S and a’ and B’ for region S’. Assume
that B (hence B’ as well) has three distinct eigenvalues and a # 0. Let e,, e,, and
e, be the associated eigenvectors of B. Since the eigenvectors are determined except
for sign and magnitude, choose one set such that e, e,, e, are mutually perpendicu-
lar unit vectors forming a right-hand system in that order. Construct a matrix R,
having e,, e,, e; as its columns in that order. Let e{, 5, 5 be the corresponding
unit eigenvectors of B’ forming a right-hand system. Since the signs of the
eigenvectors are arbitrary, there are four possibilities to make a right-hand system.
For each case, construct the corresponding matrix R,. Then, the rotation matrix
which transforms B to B’ is given by

R=R,RT. (7.3)

Finally, choose one out of those eight possible R’s that transforms a to a’.

If B (hence B’ as well) has only two distinct eigenvalues (a single root and a pair
of multiple roots), let e, be the eigenvector associated with the single root. Suppose
a is neither parallel nor perpendicular to e,. Since the sign of e, is arbitrary, choose
it so that a and e, make an acute angle. Then, we can construct three mutually
orthogonal vectors forming a right-hand system e, e, = e, X a/|le; X a|, e; = e,
X e,. We can form R, and R, as described above, and the desired rotation is given
by Eq. (7.3). If a is perpendicular to e,, there exist two solutions. If a is parallel to
e,, or if B (hence B’ as well) has one eigenvalue (i.e., B (= B’) is a multiple of I),
R is any rotation that maps a to a’ and we can add any rotation around «’. The
case where a = a’ = 0 is treated similarly. These observations can be summarized
as

THEOREM 5.
C, a'a, Tr(B), Tr(B?), Tr(B?*), a"Ba, a"B%a (7.4)

exhaust all the invariants constructed from C, a, and B. If two regions are equivalent,
the amount of camera rotation which take one region into the other can be reconstructed
from a and B alone.

An important fact is that both the equivalence test and the camera rotation
reconstruction do not require knowledge of point-to-point correspondence, since the
computation is solely based on features (6.3), (6.5), (6.6), which are obtained by
integration over the regions under consideration.
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Theoretically, the camera rotation is exactly reconstructed as described above. In
practice, however, the invariant center of gravity ( fa,/a;, fa,/a;) and the invariant
center of inertia (g,, g,) are usually located very near, and vector a and vector e,
are very close to each other. Therefore, the last step of choosing one out of four
possible R’s by checking Ra may become difficult if much noise is involved. In this
case, the final choice is done by applying the transformation (2.2) to region S in
four ways and choosing the one which make region S sufficiently overlapping S’.
(Since we are focusing on the principal axes, the four possibilities correspond to the
four possible (skewed) “mirror image” (including identity) with respect to the
principal axes.)

ExampLE. Consider the three regions S,, S;, S, on the image plane (Fig. 2a). We
use a scaling such that the focal length f is unity. Computing the integrations of
Egs. (6.5) and (6.7), we find their invariant centers of gravity (Fig. 2b) and principal
axes (Fig. 2¢) as

So 5, S,

(—0.081, —0.202) (0.464,0.076) (—0.470,0.346)
y = —2.814x - 0.431 y = 1.667x — 0.697 y = —0.079x + 0.310
y=0382x - 0171 y= —0476x + 0.297 y= —16.522x — 7.424

z
1

C7| = 7]
1Y ~J

nay
A

-1
(c)

F1G. 2. (a) Three regions S, S, S; to be tested for equivalence. (b) Computed invariant centers of
gravity Gg, Gy, G, of regions §;, S, S;. (¢) Computed invariant principal axes of regions §,, 5, S,.
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The invariants of (7.4) become

S 5, 5,
C 0.1440 0.1440 0.1121
a'a 0.0202 0.0202 0.0123

Tr(B) 0.1440 0.1440 0.1121

Tr( B?) 0.0197 0.0197 0.0121
Tr(B?) 0.0028 0.0028 0.0013
a"Ba 0.0028 0.0028 0.0014
a'Ba 0.0004 0.0004 0.0001

From this result, we can conclude that regions S, and S, can be equivalent but
region S, is not equivalent to either. (Here, the data are exact up to rounding. If the
data are affected by a large amount of error, a statistical method such as hypothesis
testing becomes necessary.) By the procedure described in the previous section, the
camera rotation which could map region S, onto region S, is constructed to be

0.573 -0.761 -0.296
R =10.567 0.631 —0.530].
0.591 0.136 0.795

This is the rotation around the axis of orientation (0.384, —0.512,0.768) by angle
60° screwwise.

8. CONCLUDING REMARKS

In this paper, we have presented invariant properties of an image with respect to
camera rotation, introducing the notions of “invariance” and “irreducibility” and
translating results from projective geometry in terms of the (inhomogeneous) image
coordinate system. We also gave an example, computing the invariant center of
gravity and the invariant principal axes and reconstructing the camera rotation. The
procedure does not required the knowledge of point-to-point correspondence on the
image plane. Many other applications are also possible.

Consider the problem of shape recognition. Suppose we have a reference image
obtained from a certain camera orientation. If a test image is obtained from a
different camera orientation, the two images cannot be compared directly due to
projective distortion. However, Theorem 5 provides an easy test for their equiv-
alence. Namely, as is also shown in the previous example, if the invariants of (7.4)
have different values, the two regions cannot be equivalent and the test shape is
rejected.

If C, a, and B alone are sufficient to characterize the set of test shapes in
question completely, the equivalence is already determined at this stage. Otherwise,
we can move the test shape into the position of the reference shape in such a way
that both have the same @ and B. Then, the rest of the shape characteristics are
compared to test for the equivalence. The necessary camera rotation is reconstructed
as described in Section 7, and the corresponding image transformation is performed
either by actually moving the camera or by numerically computing the image
transformation (2.2).

We say that a region on the image plane is in the standard position, if the
invariant center of inertia center (g,, g,) coincides with the origin of the image
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plane and the invariant principal axes coincide with the x and y axes. Any region
on the image plane can be moved into the standard position by camera rotation R
such that

(i) B is diagonalized in the form

g 0 O
R'BR=|0 o, 0|,
0 0 o
where o5 is the largest principal value and
(ii) if
aj
R"a = a3
a;
then a} > 0.

Evidently, shape recognition becomes easier if the test shapes are always moved
into the standard position (either by actually rotating the camera or by compu-
tation). However, this technique is not restricted to shape recognition. If a camera is
tracking a moving object while the camera position is fixed, or if a camera attached
to a robot or an autonomous vehicle is aiming at a fixed object in the stationary
scene, the technique described above can be used so that the object in question is
always seen in the standard position.

On the other hand, testing the equivalence is also viewed as detecting active
motion. When an object image moves on the image plane, we call the motion passive
if that motion is induced by camera rotation alone and active otherwise. When the
camera orientation is changed, object images move on the image plane, but those
objects may also have moved in the scene independently of the camera. According
to the procedure described above, we can detect active motion even if the angle and
orientation of camera rotation is not known. If the corresponding two object images
are not equivalent, the object must have moved actively. If they are equivalent, the
object has not moved in the scene, although motion is observed on the image plane.
In the previous example, if three regions S, S, S, are images of the same object, we
can conclude that an active motion took place between S, (or ;) and S, while no
such motion took place between S, and S,.

Another possible application is camera orientation registration. Even if the
camera is rotated by an unknown angle around an unknown axis, the camera
orientation can be determined as long as one particular region corresponding to a
stationary object is identified on the image plane before and after the camera
rotation. Thus, the principle we have described has a wide range of applications to
many problems.

APPENDIX A: DUALITY AND CONJUGACY

Consider a line / on the image plane which does not pass through the origin. Let

xcosf + ysind =d (A1)
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1\”

z cosf+y sinf=d

0 A

I*d

P(- jf:coso,— -/d—gsinl?)

F1G. Al. Line #: cos@ + ysin = d and point P(—(f2/d)cos 8, — (f2/d)sin ) are mutually dual
with respect to the origin O.

(d > 0) be its equation. We say that point

2 2

f fe.
P| - dcosé’,— dsm0 (A2)

is dual to line / with respect to the origin. Conversely, line / is said to be dual to
point P with respect to the origin. In other words, if we draw a line passing through
the origin and perpendicular to line /, and if 4 is the distance between the origin
and line /, the dual point P is located on the other side of the perpendicular line
and at distance f2/d from the origin (Fig. Al). If d = 0, point P is interpreted as
located at infinity (at (cos 8, sin 8, 0) in homogeneous coordinates), and similarly the
line at infinity is regarded as the dual line of the origin O.

Consider a line / and a point P on it on the image plane. Let H be the foot of the
perpendicular line drawn from the origin to line /, and let 4 be the distance between
point P and point H. Consider a point Q on the other side of line / at distance
f2/d from point H (Fig. A2). We say that point 4 is conjugate to point P on line /
and conversely point P is conjugate to point Q on line /. If d = 0, Q is regarded as
located at infinity.

As stated in Theorem 3, a 3D vector is represented as a point or as a line on the
image plane. By definition, the point and the line are easily shown to be mutually
dual. Hence, if one is known, the other is obtained immediately.

y

IK
1A

Ui

F16. A2. Points P, Q on line / are mutually conjugate with respect to the foot H of the perpendicular
line drawn from the origin O to line /.
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F1G. A3. Point Py and line /,, point P, and line /,, point Py and line /; are mutually dual, and
points P, and P; on line /;, points P; and P, on line /,, points P, and P, on line /, are mutually
conjugate.

As stated in Theorem 4, a 3D symmetric tensor is represented by three scalars, a
point, and a line passing through it. Let e, e,, e; be the unit vectors of the principal
axes (determined up to sign). Let P,, P,, P; be the points corresponding to them,
and let /; be the line connecting points P, and P;, /, the line connecting points P,
and Py, and /; the line connecting points P, and P, (Fig. A3). Then, it is easy to see
that point P, and line /, are mutually dual, and so are point P, and line /,, and
point P; and line /;. It is also seen that points P, and P;, points P;, P,, and points
P, and P, are conjugate on lines /,, /,, and /,, respectively. Hence, if point P, and
line /, are given, line /; and point P, are obtained as their duals. Point P, is given
as the intersection between lines /, and /;, and line /, is given as the line connecting
points P, and P,. Thus, a point and a line passing through it are sufficient to
represent on the image plane the orientations of the three principal axes of a 3D
symmetric tensor.

APPENDIX B: FUNCTION BASIS OF IRREDUCIBLE REPRESENTATIONS
From Egs. (4.10), the Casimir operator becomes
p:] 2
ay?

o xt+y? x*) 9 2xy 92
=/t f+7)W+Taxay+

y2
f+f

2x(x2 +y?)\ 9 2y(x2+y?)\ @
- f“’"*T)E‘(“”* 72 )5 (B.1)
so that Eq. (4.14) becomes

x? + y? x? 2xy y?
2 22

+(f+x+ixzflz))1?x

2 2
+(f+x+2y(x—f+y))1~“y+1(1+ 1)F=0. (B.2)
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Since representations of half-integer weights are not interesting because the same
image must be obtained after a rotation of 2= (the sign is reversed after a rotation
of 2« if the weight is a half-integer), we consider only irreducible representations of
integer weights.

For [ = 0 (I(1 + 1) = 0), one solution (2/ + 1 = 1) is easily found:

Fl(x,y)=1. (B.3)
Obviously, this is invariant with respect to rotation
D\F} =0, D,F}=0, DF =0, (B.4)
and hence
T Fy = F. (B.5)
For / =1 (I(I + 1) = 2), the following three solutions (2/ + 1 = 3) are found:
x y

Fl(x,y) = =, F(x,y) = ————,
e T T
F(x, y) = S — (B.6)
Vx2 + y2 + f2
Application of the infinitesimal generators D,, D,, D; yields
[ Fll i [ Fll T Fll Fll
D F}|= -4, F|, D|F}|=—-4,|F?|,
i F13 ] ] Fl3 ] F13 Fl3
'le ] 'Fll ]
Dy| F2 | = -4, F2|, (B.7)
| R LR

where

1 -1
A= [ —1], Ay = [ ] Ay = [1 ] (B.8)
1 -1

and the commutation relations are satisfied:
[AI’AZ] = A4, [AZ’A:!] =4, [A3’Al] =A,. (B-9)
Consequently, for infinitesimal rotations, we have
F} F}!
Te| FE| =1+ (4, + 9,4, + Q;34,)| F2 | + 0(2). (B.10)
F F
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This implies that F}, F2, F? are transformed as

Fll Fll
TR F 12 = R F 12 .

(B.11)

For 1 = 2 (I(I + 1) = 6), the following five solutions (2/ + 1 = 5) are found:

2X2 _y2 _f2
le(x’ .V) = 3(x2 +y2 +f2) > Fzz(x, }’) =
xy
F(x,y)= Fr Il F(x,y) =
Ny
F(x,y) =

x2+yr+ Y

3(x2+y2+f2) ’
fx

x2+yr+ ¥

Application of the infinitesimal generators D,, D,, D, yields

Fle' 'le' 'le' 'le'
F22 F22 }:22 1722
Dl F23 = _Al Fz3 s Dz Fz3 = "Az Fz3
Ff F F F
_Fzsj | F | R ] | F |
where
-
-2
A, = -1 , A, =
1 -2
11 2
i -2
2
A3 = 1 _1 )
-1
| 1

and the commutation relations are satisfied,

[AnAzl =4;, [Az,As] =4,,

Fle'
D3 F23 = _A3
F
R
2
1
-1
-1
[AssAll = 4,.

(B.12)

(B.14)

(B.15)
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Consequently, for infinitesimal rotations, we have

F) F}
F? F?
Tl B3 | = 14+ (@4, + 9,4, + ©,4)| B | +0(R).  (B.16)
F} F
| 7] | 7]

This implies that if we put
F, =F, Fp=F, Fy=-F - F,
Fp=F, =F, Fy=F;=F, Fy=F=F, (B.17)

functions F}, F?, FJ, F}', F;’ are transformed as

Fll Flz Fl3 Fll FIZ Fl3
Te| Fu Fn Fu|=R|Fy Fp Fy|=R" (B.18)

Fy Fy, Fy By F, Fy
Solutions for /= 3,4,..., are constructed similarly. In fact, function
F}, F2, ..., F¥*! are just the /th spherical harmonics projected onto the image xy

plane.

APPENDIX C: FEATURE BASIS OF IRREDUCIBLE REPRESENTATIONS
From Egs. (5.6), the Casimir operator becomes

2 2
el

f

X +x2 82+2xy 7 + +y2 82+8 a+8 i
Yo T axay TV e TR YY)

¢ 12(x2% + y?)

7 , (C1)
so that Eq. (5.10) becomes
x? + y? x? 2xy y?
f+ 7 f+7 mxx+7mxy+ f+7 m,, + 8xm, + 8ym,
2, 2
+[1(1+1)+6+ w]m=0. (C.2)

For [ = 0 (I(I + 1) = 0), the solution (2/ + 1 = 1) is found
1

Y2 +y2+ 2

mo(x, y) = (C3)
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Application of the infinitesimal generators D¥, D, D;* yields

D¥mp =0, Dfmy =0, D¥m} =0, (C9)
and consequently m), is invariant for Tg*,
TR*mld = mlb. (C.S)
Feature J of Eq. (5.11) is obtained by
J = [miy(x, y)F(x, y) dxdy. (C6)
From Eq. (C.5), this is a scalar.

For / =1 (I({ + 1) = 2), the three solutions (2/ + 1 = 3) are found:
mi(x’y)=—2a m%(x’Y)z 4 79
mi(x,y) = SR A— 3 (.7

(x> +y*+1?)
Application of the infinitesimal generators D;*, D;*, D yields

[ ! | [ it ] m! ml

D¥| m}|=—-Ar|m?|, D¥\m?|=—-A3|m?|,
| m3 | | m;] | m} m;
_m% _m} :

D¥|m}| = —A¥| m}|, (C3)
| m3 | | m] |

and the commutation relations are satisfied

[4F, A2] =43, [43,4

i

Consequently, for infinitesimal rotations, we have

m) m)

m3 m}

1=4f, [43,4F] =

+ o(R).

], (C.9)

(C.10)

(C.11)
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This implies that m?, m?, m} are transformed as

1 1

m, n
T md|=RT|m?|. (C12)
m} m}
Features J;, i = 1,2, 3, of Eqgs. (5.13) are obtained by
Ji= [mi(x, y)F(x, y) dxdy (C.13)

From Eq. (C.12), they are transformed as a 3D vector.
For I = 2 (I(l + 1) = 6), we can find the five solutions (2/ + 1 = 5),

. 2x2_y2_f2 ) _x2+2y2_f2
mh(x, y) = 3‘/( ” 2+f2)5, mi(x, y) = 3\/( - 2+f2)5’
x‘+y x“+y
Xy fx
m3(x, y) = I . omi(x,y) = =T (C.14)
fy

3 = .
mz(x,y) \/(x2+y2+f2)5

Application of the infinitesimal generators D, D,, D, yields

- _
m), mlﬂ mb m)
2 2 2 2
nm; m; m; my
3| = 3 3| =
D¥|m3 | = —AF| m; |, DX\ my | = —A43 mg s
4 4 4 4
m; m; m, my
] 5 5 5
| 73 ] | M3 | | M3 | | M3 |
FC -
m; n;
2 2
my m;
3| =
4 4
m, n,
5 ]
| M2 [ M3
where
2
-2
A?‘: -1 s A=z'== 11,
1 -2 -1
|1 2 i -1
-2
2
AF=1|1 -1 , (C.16)
-1
. l -
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and the commutation relations are satisfied
[4F, A] =43, [43,43]=4F, [43,4F] =43 (C17)

Consequently, for infinitesimal rotations, we have

m), m}
m3 m3
T | md | = 1= (@47 + 9,43 + ©47)| m3 | +0(R).  (C.18)
m} m
| m3 ] | m |

This implies that if we put
— _ 2 _
my, = my, my = mjy, my3; = —my — mj,
— — .3 _ _ .4 — -
my, = my = my, ms = my3 = m,, msy = My = my, (C.19)

functions m}, m3, m3, m4, m3 are transformed as

my My My nyy myy My
TgF|Mmn Mmp my|=RTImy my my|R, (C.20)

ms M3 My my My My

Features J,, i, j = 1,2,3, of Egs. (6.7) are obtained by

i
Jij= f(mij(x’y) + %m},(x, y)sij)F(x’)’)dXdy’ (C-ZI)

where §;; is the Kronecker delta. From Eqgs. (C.5) and (C.20), they are transformed
as a 3D tensor.

Solutions for /= 3,4,... are constructed similarly. In fact, we can check, by
substitution, that the solution is given by

Ff(x, y)

=, i=12..2+1  (C2)
(x*+y% + f?)

mi(x, y) =
y

APPENDIX D: INVARIANT MEASURE
We say that p(x, y) dxdy is an invariant measure if for any image F(x, y)

JToF(x y)p(x, y) dedy = [Flx, y)o(x, y) dxdy. (D)
In view of Egs. (5.1) and (5.3), this is equivalent to

Tge(x, y) = p(x, y). (D2)
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Hence, p is given by the solution of Eq. (5.10) with /= 0. From Eq. (C.3) of
Appendix C, we obtain

1
Jx2+y2 412y

This result can be interpreted intuitively in terms of fluid dynamics. Suppose the
camera is rotating with rotation velocity (w,, w,, w;), namely rotating around an
axis of orientation (w,, w,, w;) with angular velocity \/ (0,)? + (0,)* + (w,)°
(rad/sec) screwwise. (Here, w,, w,, w; are also interpreted as instantaneous angular
velocities around the x, the y, the z axis, respectively.) The optical flow induced on
the image plane is obtained by dividing both sides of Egs. (4.7) by 8¢

p(x, y) = (D.3)

1 1
u= —fu, + w3y + 7(—w2x + w,y)x, U= fo, — wyx + 7(—w2x + wy)y.
(D.4)

If this flow is regarded as a fluid flow with density p(x, y), the necessary and
sufficient condition that the fluid is neither created or annihilated in the course of
flowing is, as is well known, given by the equation of continuity

3(pu) N 3(pv) _

0. D.5
ax dy (D-5)
If Eqgs. (D.4) are substituted, Eq. (D.5) becomes
(w0, D + 0, DF + w3 DF)p = 0. (D.6)

This equation must be satisfied for arbitrary w;, w,, w;. Hence, the invariant
measure p(Xx, y) is given as a solution of the differential equations

D¥p=0, D=0, Dyp=0. (D.7)
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