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A computational formalism is given to computer vision prob-
lems involving collinearity and concurrency of points and lines on
a 2-D plane from the viewpoint of projective geometry. The image
plane is regarded as a 2-D projective space, and points and lines
are represented by unit vectors consiting of homogeneous coordi-
nates, called N-vectors. Fundamental notions of projective geome-
try such as collineations, correlations, polarities, poles, polars,
and conis are reformulated as “computational” processes in terms
of N-vectors. They are also given 3-D interpretations by regarding
2-D images as perspective projection of 3-D scenes. This N-vector
formalism is further extended to infer 3-D translational motions
from 2-D motion images. Stereo is also viewed as a special type of
translational motion. Three computer vision applications are
briefly discussed—interpretation of a rectangle, interpretation of
aroad, and interpretation of planar surface motion. © 1991 Academic
Press, Inc.

1. INTRODUCTION

One of the basic building blocks of projective geometry
is perspective projection: roughly speaking, a 2-D (or
generally n-D) projective space is a perspectively pro-
jected image of a 3-D (or (n + 1) — D) space. Naturally,
projective geometry is expected to play a central role in
the study of computer vision, which aims to obtain 3-D
interpretations by analyzing 2-D camera images of 3-D
scenes. In fact, there have been many attempts to ana-
lyze perspective projection images by invoking projec-
tive geometry [3, 5, 11, 12, 22, 32]. In doing so, however,
we immediately encounter many computational prob-
lems. For example, if we want to compute the intersec-
tion of nearly parallel lines in the image, the computation
may overflow, or if not, introduce a considerable amount
of error in subsequent computation because computation
by a computer consists of fixed-length numerical opera-
tions.

To mathematicians, projective geometry is a purely ab-
stract mathematics, unifying Euclidean geometry dating
back to ancient Greece and non-Euclidean geometries
developed by such mathematicians as Gauss, Loba-
chevskii, Bolyai, and Riemann. Given rigorous axiomati-
zation by Klein, Hilbert and others, it is one of the most
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elegant constructs of mathematics. As a result, the com-
putational aspect is not central. Indeed, the very motiva-
tion of projective geometry is to pursue logical consisten-
cies by ignoring computational anomalies. It follows that
in order to fully utilize projective geometry for computer
vision problems, we must reformulate the entire struc-
ture of projective geometry from a computational view-
point.

A means to overcome computational breakdown is al-
ready provided by projective geometry itself, namely the
use of homogeneous coordinates, by which points and
lines are represented by three real numbers. Since homo-
geneous coordinates can be multiplied by any nonzero
number, it is computationally most convenient to scale
them so that they constitute a unit vector. We call such a
vector an N-vector. The aim of this paper is to

(i) reformulate basic concepts of projective geometry
as computational processes expressed in terms of N-vec-
tors, and

(ii) relate them to 3-D interpretations of the scene.

The most fundamental concepts of projective geometry
are collinearity of points (i.e., points lying on a common
line) and concurrency of lines (i.e., lines passing through
a common point), from which such notions as collinea-
tions, correlations, polarities, poles, polars, conjugacy,
and conics are defined. Two facts are essential abut these
notions:

» All these concepts do not involve metrics (length,
angle, area, etc.). In fact, projective geometry is regarded
as the most general geometry because, as Klein pointed
out, all known classical geometries—both Euclidean and
non-Euclidean—are obtained by introducing particular
metrics.

* There exists a duality such that for every statement
we have a corresponding statement where the roles of
points and lines are interchanged. This means that the
entire structure of projective geometry is unchanged if
the roles of points and lines are interchanged.

In this paper, we redefine such concepts as mentioned
above as computational processes in terms of N-vectors
in such a way that the inherent duality becomes explicit.
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We then show that the use of N-vectors not only resolves
the computational problems but also provides straightfor-
ward 3-D interpretations to such notions as vanishing
points of lines, vanishing lines of planar surfaces, and
SJocuses of expansion of translational motions. We also
show that 3-D interpretations involving parallelism and
orthogonality in the scene are succinctly expressed in
terms of N-vectors.

Translation of the camera or objects occurs naturally in
many industrial environments. Alternatively, we can
control the camera actively for the purpose of under-
standing 3-D environments, which is known as the active
vision paradigm [1]. Stereo can also be viewed as a spe-
cial kind of translational motion. We present an N-vector
formalism for analyzing translational motion and stereo.

In appendices, we will briefly discuss three applica-
tions of our formalism:

I. The constrains on a projection image of a rectangle
in a scene are expressed in terms of N-vectors. This
result is useful for not only 3-D object recognition but
also camera calibration [2, 4, 14, 18, 19], which is essen-
tial in implementing computer vision techniques.

2. The constraints on a projection image of an ideal
road in a scene are expressed in terms of N-vectors. This
result is useful for autonomously navigating land vehi-
cles, which are currently major national projects across
the world [6, 17, 23, 27, 30, 31].

3. A mathematical analysis, in terms of N-vectors, is
presented for computing the 3-D rigid motion of a planar
surface from two projection images. This problem is one
of the central theoretical issues of computer vision [3, 7,
10, 21, 25, 28, 29].

2. PERSPECTIVE PROJECTION AND N-VECTORS

The image plane is regarded as a 2-D projective space.
This means that a point is designated by a triplet (m,, m,,
m3) of real numbers, not all of them being 0. These three
numbers are called homogeneous coordinates. If my # 0,
point (m,, m,, m;) is identified with the point (fm,/m;,
fmy/ms) on the image plane; x = fm/ms and y = fimy/ms
are called inhomogeneous coordinates (the meaning of
the constant f will be explained shortly). If m; = 0, point
(my, mz, 0) is regarded as located at infinity and called an
ideal point. The set of all points at infinity is called the
line at infinity or the ideal line; its ‘*equation” is m; = 0.

A line in the 2-D projective space is also defined by a
triplet (m,, n;, n3) of real numbers, not all of them being
0. These three numbers are also called homogeneous co-
ordinates. If n; or n, is not zero, the line appears on the
image plane as njx + nyy + n3f = 0. If ny = n, = 0, the
line is interpreted to be the ideal line at infinity.

The homogeneous coordinates can be multiplied by an
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FIG. 1.
the scene.

(a) The camera imaging model, (b) Perspective projection of

arbitrary nonzero number, and the point or line that they
represent is still the same. This means that their magni-
tudes can be kept within a reasonable range by muitiply-
ing them by an appropriate constant whenever they be-
come two large or too small. The most convenient way is
to keep the homogeneous coordinates (1, mz, ms) to be
a ‘‘unit vector’’: We call such a vector an N-vector.

If we use N-vectors, representation of points and lines
is unique except for sign; we hereafter ignore the sign of
N-vectors unless specified, meaning that if m (or n) is an
N-vector —m (or —n) is also an N-vector representing the
same point (or line). According to the above definition.
the N-vector of point (a, b) is!

@2.n

A
2.2)
Clf,

The reason the definition of the N-vector involves con-
stant f comes from the following 3-D interpretation of
perspective projection. Take an XYZ coordinate system
fixed to the camera so that the origin O corresponds to
the center of the lens, which we call the viewpoint, and
the Z-axis corresponds to the optical axis of the camera.
Then the plane Z = f'is identified with the image plane,
where f'is the distance between the center of the lens and
the surface of the film (Fig. 1 (a)). We assume that fis a
known constant, and call it the focal length, although this
may not exactly be the focal length of the lens (it coin-
cides with the focal length of the lens if the camera is
focused at infinity).

A point (X, Y, Z) in the scene is projected onto the

! In this paper, N[u] = u/||u|| denotes the normalization of vector u,
and ||u|| denotes its norm.
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FIG. 2. (a) The N-vector m of a point P on the image plane. (b) The

N-vector n of a line / on the image plane.

intersection of the image plane Z = f with the ray starting
from the viewpoint O and passing through that point.
Take an image xy coordinate system on the image plane
such that the x- and the y-axes are respectively parallel to
the X- and the Y-axes, (0, 0, f) being the image coordinate
origin (Fig. 1(b)). Then the image coordinates (x, y) of
point (X, Y, Z) are given by

X Y
X—fzv )’—st (2.3)
and its homogeneous coordinates are simply (X, Y, Z).
That is, scene coordinates can be identified with homoge-
neous coordinates on the image plane.

Consider a plane AX + BY + CZ = 0 passing through
the viewpoint O. Vector (A, B, C) designates the surface
normal to this plane. This plane intersects the image
plane Z = f along the line Ax + By + Cf = 0, whose
homogeneous coordinates are (A, B, C).

In summary:

+ the N-vector m of a point P can be interpreted as the
unit vector starting from the viewpoint O and pointing
toward P (Fig. 2(a)), and

« the N-vector n of a line / can be interpreted as the
unit vector normal to the plane passing through the view-
point O and intersecting the image plane along / (Fig.
2(b)).

3. VANISHING POINTS AND VANISHING LINES

Let us begin with the well known fact that projections
of parallel lines in the scene meet at a common ‘‘vanish-
ing point.”” Formally, the vanishing point of a line in the
scene is the limit of the projection of a point that moves
along the line indefinitely in one direction (both direc-
tions define the same vanishing point). From Fig. 3(a), it
is easy to confirm the following theorem (the formal proof
is an easy exercise):

THEOREM 1. A line in the scene extending along unit
vector m has, when projected, a vanishing point of N-
vector m.
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Since the vanishing point is determined by the 3-D ori-
entation of the line alone, irrespective of its location in
the scene, we see that

COROLLARY 1. Projections of parallel lines in the
scene intersect at a common vanishing point.

As is well known, projections of planar surfaces mutu-
ally parallel in the scene define a common ‘‘vanishing
line.”” Formally, the vanishing line of a planar surface in
the scene is the set of all the vanishing points of lines
lying in the surface. From Fig. 3(b), we can easily obtain
the following theorem (again the formal proof is easy):

THEOREM I'. A planar surface in the scene whose
unit surface normal is n has, when projected, a vanishing
line of N-vector n.

Since the vanishing line is determined by the 3-D orien-
tation of the planar surface alone, irrespective of its loca-
tion in the scene, we see that

COROLLARY 1'.  Projections of planar surfaces mutu-
ally parallel in the scene define a common vanishing line.

In summary, if a vanishing point is detected on the
image plane, its N-vector indicates the 3-D orientation of
the line, and if a vanishing line is detected on the image
plane, its N-vector indicates the surface normal to the
planar surface.

4. FUNDAMENTAL DUALITY OF N-VECTORS

The following two theorems play an essential role in
the subsequent discussions.

THEOREM 2. The N-vector m of the intersection P of
two lines | and I' whose N-vectors are n and n’, respec-
tively, is given by

m = *=N[n X n’]. 4.1)

Proof. Vector n is normal to the plane passing
through the viewpoint O and intersecting the image plane
along line /. Similarly, vector n’ is normal to the plane

passing through the viewpoint O and intersecting the im-
age plane along line /. The N-vector m of their intersec-

=t

—

~
[

FIG. 3. (a) The vanishing point of a line in the scene. (b) The vanish-
ing line of a planar surface in the scene.
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(a) (b)

FIG. 4.
(b) the N-vector n of the line / passing through two points P and P’.

tion P is perpendicular to both n and n’ (Fig. 4(a)). It
follows that the N-vector m is obtained by normalizing
*nXn'. =B

THEOREM 2°. The N-vector mn of the line | passing
through two points P and P’ whose N-vectors are m and
m’, respectively, is given by

n==xN[m X m’'] 4.2)

Proof. Vector m indicates the 3-D orientation of the
line starting from the viewpoint O and passing through
point P. Similarly, vector m’ indicates the 3-D orientation
of the line starting from the viewpoint O and passing
through point P’. The N-vector n of the line / passing
through them is perpendicular to both m’ and m’ (Fig.
4(b)). It follows that the N-vector n is obtained by nor-
malizing =zm X m’. =

Since Egs. (4.1) and (4.2) do not involve divisions
except for the final normalization, the computation is
always kept within a finite domain. Even if lines / and I
are parallel on the image plane, the N-vector of their
intersection is correctly computed as an ideal point as
lone as [ and /" are distinct. Similarly, wherever two
points P and P’ are located on the image plane (even at
infinity), the N-vector of the line passing through them is
correctly computed as long as P and P’ are distinct.

Comparing Theorems 1 and 1’ or Theorems 2 and 2’,

we immediately notice a striking similarity: The roles of

points and lines are interchangeable. This duality is one
of the most fundamental characteristics of projective ge-
ometry.

5. COLLINEARITY OF POINTS AND
CONCURRENCY OF LINES

Formally, a 2-D projective space is the set of all points
and lines designated by all N-vectors, including points at
infinity (ideal points) and the line at infinity (the ideal
line): a point is regarded as an ideal point if the third
component of its N-vector is 0, while a line is regarded as
the ideal line if the first and the second components of its
N-vector are both 0.

(a) The N-vector m of the intersection P of two lines /and I,
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FIG. 5. (a) Collinearity of points. (b) Concurrency of lines.

A point P of N-vector m and a line / of N-vector n are
said to be incident to each other if?
(myn) =0 5D
When point P and line ! are incident to each other, we
also say that point P is on line /, and line / passes through
point P. Points are said to be collinear if there exists a
line passing through all of them (Fig. 5(a)). Lines are said
to be concurrent if there exists a point that is on all of
them (Fig. 5(b)).

As pointed out earlier, collinearity and concurrency
are the most fundamental concepts of projective geome-
try. However, their definitions are given above do not
suit our computational approach because they are based
on existence of something. There are many possibilities
to redefine them as constructive computational pro-
cesses. For example,

ProrosiTION |.  Points Poa=1,. . ., N, are collin-
ear if and only if the rank of their N-vectors m,, a = 1,
.. ., N, is less than 3.

Proof. Note that the rank is defined as the maximum
number of linearly independent vectors. In three dimen-
sions, three vectors are linearly dependent if and only if
they are coplanar. By definition, points P, of N-vectors
m, are collinear if and only if there exists a unit vector n
such that (m,, n) = 0, = 1, . . ., N. This implies that
vectors m, are all perpendicular to the vector m and hence
all lie on the plane perpendicular to n, which means that
any three of them are linearly dependent. Hence, the
rank is less than three. Conversely, if the rank is less than
three, any three of the vectors m, are coplanar, which
means that they all lie in a common plane. If we let n be
the unit surface normal to it, we have (n,,n) = 0, a = 1,
...,N. =n

THEOREM 3. Points P,,a=1,. . ., N, are collinear
if and only if the smallest eigenvalue of the moment
matrix?

2 In this paper, (a, b) designates the inner product of vectors aand b.
3 In this paper, aT (or AT) designates the transpose of vector a (or
matrix A).
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a=i

(5.2)

is 0. The associated unit eigenvector n is the N-vector of
the line passing through the points P,, where w, are
positive constants.

Proof. The condition that (m,, n) =0, a=1,. . .,
N, is equivalently rewritten as >_,w,(m,, n)> = 0, where
W, are positive constants. In terms of the matrix defined
by Eq. (5.2), this condition is rewritten as

(n, Mn) = 0. (5.3)
Since M is a symmetric and positive semi-definite matrix,

this condition holds if and only if the smallest eigen-
value of M is 0 and n is the associated eigenvector. ®

COROLLARY 3. Points P,,a=1,. . ., N, are collin-
ear if and only if the moment matrix (5.2) is singular.

In view of computational considerations, Theorem 3 is
the most convenient among many alternative forms. For
one thing, it not only provides a means to judge collinear-
ity of points as a computational process but also compu-
tationally defines the N-vector of the line passing through
all the points. Another reason is the robustness to noise.
Suppose, for example, the data are not exactly accurate
due to noise in the image. Then three linearly dependent
vectors generally become linearly independent even if
the noise is infinitesimally small. As a result, Proposition
1 cannot be used as a robust criterion to judge collinear-
ity, since the rank of three or more vectors is almost
always 3.

Consider Theorem 3, on the other hand. If the noise is
small, the eigenvalues of the moment matrix (5.2), which
are all nonnegative, are expected to change by a small
amount. Hence, we can judge collinearity of points by
checking how small the smallest eigenvalue of the mo-
ment matrix (5.2) is. If we check the proof of Theorem 3
carefully, it is easy to see that the associated unit eigen-
vector is the N-vector of the line fitted to point P, by the
least-squares criterion.

N
> wa(m,,n)> — min,

u=1

5.9

where w, is the weight for the ath data. It is also easy to
confirm that the smallest eigenvalue of the moment ma-
trix (5.2) equals the residual >3-, w,(m,, n)? for the re-
sulting best fit.

Now that we have formulated collinearity of points, we
automatically have a formulation of concurrency of lines
thanks to the inherent duality of projective geometry: all
we need to do is interchange the roles of points and lines.
The formal proof runs exactly the same as for points.
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ProposITION 1’.  Linesl,,a=1,. . ., N, are concur-
rent if and only if the rank of their N-vectors n,, a = 1,
..., N,isless than 3.

THEOREM 3’. Lines l,, = 1,. . ., N, are concur-
rent if and only if the smallest eigenvalue of the moment
matrix

N
N =2 w..n}

a=1

(5.5)

is 0. The associated unit eigenvector m is the N-vector of
the common intersection of lines ., where wq are positive
constants.

CorOLLARY 3. Linesl,,a=1,. . ., N, are concur-
rent if and only if the moment matrix (5.5) is singular.

Again, Theorem 3’ is the most convenient: It not only
provides a means to judge concurrency of lines as a com-
putational process but also computationally defines the
N-vector of the common intersection of all the lines. It is
also robust to noise: Theorem 3’ can also be viewed as
estimation of the common intersection of lines /, by the
least-squares criterion

N
>, woln,,m)3 — min,

a=1

(5.6)

where w, is the weight for the ath data.

6. COLLINEATIONS AND CORRELATIONS

A one-to-one mapping that maps the set of all points to
the set of all points and the set of all lines to the set of all
lines is said to be a collineation if

(i) collinear points are mapped to colinear points,

(ii) concurrent lines are mapped to concurrent lines,
and

(iii) the incidence is preserved (i.e., if a point is on a
line, the mapped point is on the mapped line).

It can be proved that a collineation is written as a linear
mapping of N-vectors in the form

m’ = *N[a'm], n’ = £N[A 'n], (6.1)

where A is a three-dimensional nonsingular matrix, and

m and n the N-vectors of the original point and line, while

m’ and n’ are the N-vectors of the point and line after the

mapping (we omit the proof).* Conversely, any three-

4 The proof involves the invariance of the cross ratio (or anharmonic
ratio) and projective coordinates defined in terms of the cross ratio
under collineations. This is in fact one of the most sophisticated theo-
rems of projective geometry.
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dimensional nonsingular matrix A defines a collineation
in the form of Egs. (6.1), which is easily checked. The
matrix A representing a collineation is unique up to a
single scale factor.

In terms of inhomogeneous coordinates (i.e., image co-
ordinates), the first of Eqgs. (6.1) for A = (4y),i,j= 1,2,
3, is rewritten as

X’ =fA||X + Any + Asf
Apx + Any + Anf’

, _ cApx T Any + Anf
Y= Apx + Any + Anf’

6.2)

The set of all collineations of a 2-D projective space
forms a group of transformations—called the group of 2-
D projective transformations.

Since the matrix A has a scale indeterminacy, it has
eight degrees of freedom. Hence, it can be determined if
we find a correspondence of four points in general posi-
tion or four lines in general position over two images.’
Namely, there exists a unique collineation that maps ar-
bitrary four points in general position to arbitrary four
points in general position, or arbitrary four lines in gen-
eral position to arbitrary four lines in general position.
This is one of the most fundamental theorems in projec-
tive geometry.

A one-to-one mapping that maps the set of all points to
the set of all *“lines’’ and the set of all lines to the set of all
*‘points”’ is said to be a correlation if

(i) collinear points are mapped to concurrent lines,

(ii) concurrent lines are mapped to collinear points,
and

(iii) the incidence is preserved (i.e., if a point is on a
line, the mapped line passes through the mapped point).

It can also be proved that a correlation is written as a
linear mapping of N-vectors in the form
n’ = =*N[Q'm], m' = =N[Q 'n], 6.3)
where Q is a three-dimensional nonsingular matrix, and
m and n the N-vectors of the original point and line, while
n’ and m’ are the N-vectors of the line and point after the
mapping (we omit the proof). Conversely, any three-
dimensional nonsingular matrix Q defines a correlation in
the form of Eqgs. (6.3), which is easily checked. The ma-
trix Q representing the correlation is unique up to a single
scale factor.

3 By general position, we mean that no three points are collinear or
no three lines are concurrent.

KENICHI KANATANI

7. POLARITIES, CONJUGACY, AND CONICS

A correlation is a polarity if whenever point P is
mapped to line /, line / is also mapped to point P. In
matrix representation, it is easy to see that a correlation
is a polarity if and only if the matrix Q is symmetric:

Q"=Q. 7.1

If point P is mapped to line !/ and line / is mapped to
point P by a polarity, the point P is said to be the pole of
the line /, and the line [/ the polar of the point P with
respect to the polarity. If three lines /, /', and /" are the
polars of points P, P’, and P", respectively, the triangle
defined by the three lines /, I/, and !” is called the polar
triangle of triangle APP’'P". A triangle that is a polar
triangle of itself is called a self-polar triangle.

Two points P and P’ are mutually conjugate if the
polar of P passes through P’, and the polar of P’ passes
through P. Two lines / and !’ are mutually conjugate if the
pole of / is on /', and the pole of !’ is on I. Hence, the
three vertices (or edges) of a self-polar triangle are conju-
gate to each other. A point that is conjugate to itself is
said to be self-conjugate. For a given polarity, the set of
all self-conjugate points is called the conic of the polarity.
It is easy to see that the conic of a polarity represented by
matrix Q is the set of points whose N-vectors satisfy the
homogeneous quadratic equation

(m, Qm) = 0. (7.2)
In terms of the inhomogeneous coordinates (i.e., image
coordinates), the conic (7.2) for Q = (Qys24), i,/ = 1,2, 3,
is rewritten as

Onx? + 2Qpxy + Ony?

+ 2f(Qux + Ony) + Ouf?=0. (7.3)

Conversely, a conic expressed as a homogeneous qua-
dratic equation in N-vector m in the form of Eq. (7.2), or
equivalently an inhomogeneous quadratic equation in im-
age coordinates (x, y) in the form of Eq. (7.3), uniquely
defines a polarity represented by the coefficient matrix
Q = (Qu)’ 'aJ =1,2,3.

The set of all collineations that map conic (7.2) (or
(7.3)) to itself forms a subgroup of the group of 2D projec-
tive transformations—called the subgroup associated
with this conic (or the corresponding polarity).

8. POLES, POLARS, AND DUALITY THEOREM

Consider the following mapping (Fig. 6(a)):

A point is mapped to a line that has the same N-vector,
and a line is mapped to a point that has the same N-
vector.
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FIG. 6. (a) The standard polarity: Point P is the pole of line /, and
line / is the polar of point P. (b) 2-D interpretation of the standard
polarity.

According to the definition in the preceding section, this
mapping is a correlation. Evidently, this correlation is
also a polarity. Let us call this polarity the standard po-
larity. For the standard polarity, the pole of a line whose
N-vector is n has N-vector n, and the polar of a point
whose N-vector is m has N-vector m. In terms of image
coordinates,

PROPOSITION 2. The pole of line Ax + By + C = 0is
(fPAIC, f*BIC).6

PRrRoOPOSITION 2°.
+f2=07

The standard polarity is also interpreted as the follow-
ing 2-D geometric relationship on the image plane (the
proof is easy; see Fig. 6(b)):

The polar of point (a, b) is ax + by

PROPOSITION 3. Given a point P and a line | on the
image plane, draw a line passing through the image ori-
gin o and the point P. Let H be the intersection of this
line with . Point P is the polar of line I, and line | is the
polar of point P if and only if

(/) line PH is orthogonal to line |,

(i) point P and point H are on the opposite sides of the
image origin o, and

(iii) oP - oH = f2. 8.1

From the definition of polarity, we immediately obtain
the following two theorems, on which the line detection
algorithm known as the Hough transform is based (see
Fig. 5).

THEOREM 4. The poles of concurrent lines are collin-
ear, and the common line passing through them is the
polar of the common intersection.

¢ If C = 0, the pole is understood to be an ideal point.
7If a = b = 0, the polar is also understood to be the ideal line.
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THEOREM 4°.  The polars of collinear points are con-
current, and the common intersection is the pole of the
common line.

Since the matrix representing the standard polarity is
the unit matrix 1, the corresponding conic is (m, m) = 0,
or in terms of image coordinates x2 + y? + f? = 0. This
conic describes an imaginary circle centered at the image
origin o with imaginary radius if. This conic is known as
the absolute conic [3]. It can be proved that the subgroup
of the group of 2-D projective transformations associated
with the absolute conic consists of the image transforma-
tions induced by rotating the camera around the center
of the lines relative to a stationary scene. Such transfor-
mations are called camera rotation transformations, and
their invariance properties play an important role in 3-D
interpretation of objects and scenes [8-10, 12].

9. ORTHOGONALITY CRITERION IN
TERMS OF CONJUGACY

For the standard polarity, points having N-vectors m and
m’ are conjugate to each other if and only if

(m, m’) =0, 9.1

and lines having N-vectors n and n’ are conjugate to each
other if an only if

(n,n’) =0. 9.2)

(Fig. 7). In terms of image coordinates,
PROPOSITION 4.  Points (a, b) and (da’', b') are conju-
gate to each other if and only if

aa' + bb' + f2=0. 9.3)

PrOPOSITION 4°.  Lines Ax + By + C = 0 and A'x +
B'y+ C' = 0 are conjugate to each other if and only if

\‘}‘,;7
/

_/
>~

OKT‘\ ° y i %& T y i

() (b)

FIG. 7. (a) Points Pand P’ are conjugate to each other. (b) Lines /
and !’ are conjugate to each other.
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cc’
AA' + BB' + = = 0.
f?

It is not difficult to obtain the following 2-D interpreta-
tion of the conjugacy relationship on the image plane (we
omit the proof; see Fig. 8):

9.4)

PROPOSITION 5. Let P and P’ be two points on the
image plane, and [ the line passing through them. Let H
be the foot of the perpendicular line drawn from the im-
age origin o to 1. Points P and P' are conjugate to each
other if and only if they are on the opposites sides of
H and

PH - P'H = oH? + f2. 9.5)

PROPOSITION 5°. Let | and ' be two lines on the im-
age plane. Let P be their intersection, and o the image
origin. Lines | and I' are conjugate to each other if and
only if the angles they make with line oP from the oppo-
site sides satisfy

cot LoPl cot LoPl' = 9.6)

L+ ()
7
Combining these results with the 3-D interpretation of
the vanishing point and vanishing line (Theorems 1 and
I"), we obtain the following theorems concerning 3-D in-
terpretation of the scene (we omit the proof; see Fig.

9(a)):

THEOREM 5. Two lines are orthogonal to each other
in the scene if and only if their vanishing points are con-
Jugate to each other on the image plane.

COROLLARY 5. Three lines in the scene are mutually
orthogonal if and only if their vanishing points define a
self-polar triangle on the image plane.

THEOREM 5°. Two planar surfaces are orthogonal to
each other in the scene if and only if their vanishing lines
are conjugate to each other on the image plane.

P’ ] X
\ N
/
H v
9 y ) ¥

(@) ()

FIG. 8. (a) 2-D interpretation of two conjugate points. (b) 2-D inter-
pretation of two conjugate lines.
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(@) (b)

FIG. 9. (a) Interpretation of orthogonality and parallelism in the
scene. (b) The orthocenter of a self-polar triangle.

COROLLARY 5°. Three planar surfaces in the scene
are mutually orthogonal if and only if their vanishing
lines define a self-polar triangle on the image plane.

In summary, once vanishing points and vanishing lines
are detected on the image plane, we can immediately
check the orthogonality of the corresponding lines and
planar surfaces in the scene.

Theoretically, we can also determine the origin o of the
image plane by applying the following proposition (Fig.
9(b)), which is a direct consequence of Proposition 3, but
in practice the computation is very sensitive to image
noise:

PROPOSITION 6.  The orthocenter of any self-polar tri-
angle is at the image origin o.

10. IMAGE SEQUENCE AND N-VECTORS

When observing a sequence of images of points moving
rigidly in the scene, can we compute the 3-D structure of
the points and their 3-D rigid motion from these images?
This problem is known as shape from motion, and many
computational theories have been presented. In the fol-
lowing, we show that the computation of structure and
motion becomes very easy if the motion is limited to
translations only.

Translational motions occur in many application do-
mains, a typical situation being when objects are con-
veyed on a conveyer belt in an industrial environment or
a mobile robot is proceeding along a straight path. In-
stead of ‘‘passively” exploiting such translations, the
camera can also be ‘“*actively’* controlled for the purpose
of 3-D recognition—this paradigm is known as active vi-
sion [1]. Stereo can also be viewed as a motion because
the use of two cameras whose optical axes are parallel is
equivalent to observing a translation of the scene relative
to a single camera.

Consider a point moving in the scene, and let (x(1), y(1))
be its perspective projection. The time derivative of the
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N-vector of this point is given by

x(1)
—]__ '(l)
VFTFTﬁyO

m() =

x(t)

_ X0 + oy [

Nraaeay

(10.1)

This is immediately obtained by differentiating m(s) =
NI(x(@®), y(0), /)T] = (1), y(1), /IT/VXE + y* + f2 Let us
call m(f) the N-velocity of point (x(z), y()). Since
the N-vector m(¢) is a unit vector, differentiation of
(m(®|?* =) (m(z), m()) = 1 yields

ProposITION 7. The N-vector and the N-velocity of a
moving point are orthogonal to each other:
(m(7), rir(1)) = 0. (10.2)

If a point is translating in the scene, its projection de-

fines a straight trajectory in the course of its motion on
the image plane.

ProposiTION 8. Ifm(t) and m(f) are the N-vector and
the N-velocity, respectively, of a projection of a translat-
ing point in the scene, the N-vector of its trajectory on
the image plane is given by

n = =N[m(?) x m()]. (10.3)

Proof. Consider the plane passing through the view-
point O and intersecting the image plane along the trajec-
tory. Since m(t) and m(¢) are both contained in this plane

(Fig. 10), the unit surface normal to this plane (the N-
vector of the trajectory) is given by Eq. (10.3). =

11. FOCUS OF EXPANSION

If we observe a sequence of images of points translat-
ing in the scene, all the image points seem to be moving,
on the image plane, away from or toward a fixed point,
which is known as the focus of expansion (Fig. 11). This

FIG. 10. The N-velocity m(r) of a moving point and the N-vector n
of its trajectory.
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FIG. 11. The focus of expansion (FOE) of a translational motion
and the vanishing point (VP) of a translating line segment.

is obvious from Theorem 1 and Corollary 1, since the
focus of expansion is simply the vanishing point of mutu-
ally parallel trajectories in the scene. Thus,

THEOREM 6. A point translating in the scene in the
direction of unit vector w has, when projected onto the
image plane, a focus of expansion whose N-vector is u.

COROLLARY 6. Projections of points rigidly translat-
ing in the scene have a common focus of expansion on
the image plane.

The focus of expansion is easily computed as follows
(including the case when the focus of expansion is an
ideal point at infinity, which occurs when the lines con-
necting corresponding points are all parallel on the image
plane):

PROPOSITION 9. If two points P\(t) and Py(t) whose
respective N-vectors are m(t) and my(t) in the first image
correspond to points Pi(t') and Py (t') whose respective
N-vectors are m(t') and my(t') in the second image, the
N-vector of the focus of expansion is given by

u = EN[N[m() X m(e')] X Nmy(r) X m(£)]]  (11.1)

provided no two of P\(t), Pt), P\(t"), and Pyt’) coincide.

Proof. The N-vector of the line passing through
points Pi(¢) and P(¢') is =N[m(r) X m(¢')], and the
N-vector of the line passing through points P,(¢) and
Py(t') is =N[my(¢) X my(')] (Theorem 2’). The N-vector
of their intersection is given by Eq. (11.1) (Theo-
rem2). ®

PROPOSITION 9°.  Ifimages of two distinct points P((f)
and P(t) whose N-vectors are m(t) and my(t), respec-
tively, are moving on the image plane with N-velocities
1, (¢) and y(?), respectively, the N-vector of the focus of
expansion is given by

u = N[N[m@#) x ni)(0)] x N[my() X sinx()]]. (11.2)

Proof. The focus of expansion is the intersection of
the trajectories of the points on the image plane. The
N-vectors of the trajectories of points P(t) and P,(1) are
respectively £N[m,(t) X i ()] and =N[my(r) X mmy(9)]
(Proposition 8). The N-vector of the intersection of their
trajectories is given by Eq. (11.2) (Theorem 2). =
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12. STRUCTURES FROM TRANSLATIONAL MOTION

The most important consequence of restricting the mo-
tion to translations is that the 3-D structure of objects can
be computed by a very simple procedure. The following
two propositions are most fundamental.

ProPoSITION 10. Let P,(t)Py(t) be the projection, at
time t, of a line segment translating in the scene, and let
P\(t")Px(t") be the projection of the same line segment at
time t'. Let m(t), my(t), m(t'), and my(t') be the N-vec-
tors of points P\(1), Px(t), P,(t'), and P(t'), respectively.
If no two of these four points coincide, the 3-D orienta-
tion of the line segment in the scene is given by unit
vector

m;z = EN[N[m (1) X myn)] x N[my(s") x my(1)]].
(12.1)

Proof. See Fig. 11. The N-vector of the line / passing
through points P(¢) and Px(t) is n = =N[m(1) X my(1)],
and the N-vector of the line [’ passing through points
Pi(t')and Py(¢') isn’ = =N [m(¢') X my(t’)] (Theorem 2°).
Since / and I’ are projections of parallel lines in the scene,
their intersection on the image plane is their vanishing
point. The N-vector of the vanishing point is m;, =
+N[n X n'] (Theorem 2). Since the N-vector of the van-
ishing point indicates the 3-D orientation of these lines
(Theorem 1), we obtain the assertion. ®

ProPOSITION 10°.  Ifm(t) and my(t) are the N-vectors
of points P\(t) and Pi(t), respectively, and if m(t) and
ix(t) are their respective N-velocities, the 3-D orienta-
tion of the line segment in the scene is®

m; = =N[|m(r), my(?), rin(1)|m(r)

— Jmy(0), mo(o), in@jmo). 122
Proof. If we put At = ' — ¢, and substitute
m(t") = my() + (A7 + O (Ar?),
(12.3)

my(t') = I'I'!z(t) + my(HAt + O (Alz)
into Eq. (12.1), we obtain

my;; = EN[N[m(2) X my(#)] X N[(my(r) + miy(r)A¢
+ O (Ar?) x (my(1) + niny()Ar + O (Ar?))]]
= =N[(m(1) X my(1)) X [m(#) X my(¢) + (xiny(1)
X my(?) + mi(f) X (DAt + O (ArD)]]
= =N[lmy() X my(#)) X (wny(1) X my(e)) + (m(2)
x my(2)) X (my(f) X mx(1)]Ar + O (Af?)),
(12.4)

¥ In this paper, |a, b, ¢| = (a X b, ¢) = (b X ¢, a) = (¢ X a, b) denotes
the scalar triple product of three vectors a, b, and c.
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FIG. 12. Inconsistency can arise in 3-D reconstruction if the image
data are not exact.

where we have removed the inner normalization opera-
tions (the outermost one assures the same result). Since
the operand of the normalization operator N can be mul-
tiplied by any scalar, we can obtain Eq. (12.2) by dividing
the operand of the normalization by A¢, taking the limit of
Ar — 0, and using the identity (a X b) X (a X ¢) =
|]a, by cla. =

In summary, the 3-D configuration of points rigidly
translating in the scene is, in principle, uniquely deter-
mined up to a single scale factor if point-to-point corre-
spondence is known over two images, or if image veloci-
ties are observed in one image. This is because the 3-D
orientation of the line segment connecting any two points
is computed by Proposition 10 or 10’, and its 3-D configu-
ration is reconstructed by placing it in the scene accord-
ing to the computed 3-D orientation in such a way that its
projection coincides with the observed image. Thus, the
entire 3-D configuration is successively reconstructed
once the depth of the initial segment is fixed.

In practice, however, images are often not accurate,
and inconsistencies may arise. For example, the starting
point and the ending point of line segments forming a
closed loop may not coincide (Fig. 12). For a unique and
robust 3-D reconstruction, we need an optimization tech-
nique (see [11, 12, 26] for details).

13. DISPARITY MAPS AND DEPTH MAPS FOR STEREO

Since translation of the scene is equivalent to transla-
tion of the camera relative to the scene, stereo can be
treated in the same way as translation of the scene. Here,
we consider two cameras whose optical axes are parallel
(this condition is not really necessary, as we will discuss
later). Choose one camera as a reference, and define an
XYZ coordinate system based on it with origin O at the
center of its lens and the Z-axis along its optical axis. Let
b be the vector indicating the center of the lens of the
other camera with respect to this coordinate system (Fig.
13(a)). Let us call it the base-line vector.

If the image planes of these two cameras are identified,
the two images can be analyzed in the same way as for a
translational motion. For instance, the lines connecting
corresponding points, called epipolars, meet at a single
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(b)

{a)

FIG. 13. (a) Stereo configuration and the base-line vector b. (b) The
epipole (EP) and epiolars of a stereo system.

point on the image plane, which is called the epipole (Fig.
13(b)). Theorem 6 and Corollary 6 are respectively re-
phrased as follows:

THEOREM 7. For a stereo system of base-line vector
b, a pair of corresponding points on the image plane
define an epipole whose N-vector is u = =NI[b].

CoRrROLLARY 7. All epipolars meet at a common epi-
pole.

Thus, once point-to-point correspondence are de-
tected, we can immediately compute the epipole and
hence the orientation of the base-line vector b. Since the
base-line vector b is usually known from the camera set-
ting geometry, the above fact can also be used as a means
of detecting the point-to-point correspondences over the
two images. Viewed in this way, the above fact is called
the epipolar constraint.

For a given point, the epipolar passing through it is
easily computed. The following proposition is obvious
(see Fig. 13(b)).

PROPOSITION 11. For a stereo system of base-line
vector b, the N-vector n(m) of the epipolar passing
through a point of N-vector m is

n(m) = =N[b X m)]. (13.1)

Since n(m) can also be viewed as a function to give a
point its epipolar, it is called the epipolar map. If a point
of N-vector m in the reference image corresponds to a
point of N-vector m’ in the other image, the angle 8(m) =
cos~!(m, m'’) is called the disparity. Since 6(m) can be
viewed as a function to give a point its disparity, it is also
called the disparity map.

In the following, we assume that N-vectors of points
are assumed to be signed so that their Z-components are
nonnegative. Let r(m) be the distance, from the view-
point O of the reference camera, of the point whose
N-vector is m. Since r(m) can be viewed as a function to
give a point its depth, it is called the depth map. The
depth map r(m) is uniquely computed from the disparity
map 0(m) as follows (we omit the proof):

THEOREM 8. For a stereo system of base-line vector
b, the depth map r(m) is given by

r(m) = (b, m) + ||b X m]|cot 8(m), (13.2)

where 9(m) is the disparity map.

Combining this with Theorem 7, we see that the dep_th
map r(m) is computed up to a scale factor from the dis-
parity map 6(m) without the knowledge of the base-line
vector b. Namely,

COROLLARY 8. If the N-vector u of the epipole is
signed so that it extends in the direction of the base-line
vector b, the depth map r(m) is computed from the dis-
parity map 6(m) by

r(m) = k[(u, m) + [ju x mjlcot 6m)], (13.3)

where k is a positive scale factor.

So far, we have assumed that the optical axes of the
two cameras are parallel, but this condition is not neces-
sary. If the second camera is rotated by R with respect to
the reference camera, a vector m’ with respect to the
second camera equals Rm’ with respect to the reference
camera. Hence, all we need to do is replace N-vector m’
for the second camera by vector Rm’ (this is exactly the
camera rotation transformation [8-10, 12] mentioned
earlier). Thus, as long as the relative rotation R between
the two cameras is known, the orientations of the optical
axes of the two cameras are irrelevant.

14. CONCLUDING REMARKS

We have reformulated projective geometry so that it
can be used as a tool for 3-D analysis of images, empha-
sizing the computational aspects. In projective geome-
try, all concepts such as collineations, correlations, po-
larities, poles, polars, conics, and conjugacy are defined
in abstract terms, while here they are interpreted as com-
putational processes in terms of N-vectors. We also gave
these mathematical concepts their 3-D interpretations by
regarding 2-D images as perspective projection of 3-D
scenes, and presented a mathematical formalism for
analyzing translational motion and stereo in terms of
N-vectors.

As typical applications of our formalism, we give a
brief description of the interpretation of an image of a
rectangle in Appendix A, the 3-D road shape reconstruc-
tion in Appendix B, and the 3-D motion analysis of a
planar surface in Appendix C.

In this paper, we have assumed that all image data are
accurate. If noise is involved, a means of estimating and
testing true configurations becomes necessary. This
problem is studied in detail in [13] in the framework pre-
sented here.
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FIG. A. (a) A projection image of a rectangle. (b) A projection im-

age of a square.

APPENDIX A. INTERPRETATION OF A RECTANGLE

Consider a projection of a rectangle in a scene. Let the
four vertices on the image plane be labeled clockwise as
P] > Pg, P_;, and P4 (Flg A(a)) Let m, my, mj, and my be
their respective N-vectors. If the four edges are labeled
as ly2, bs, Iy, and ly; as shown in the figure, their respec-
tive N-vectors are given by Theorem 2’ as

np = =N[m; X my],

m; = £N[m, X ms],

ny = EN[m3 X my], ny = £N[my X m].

Since lines /; and /34 are projections of parallel lines in
the scene, their intersection P, on the image plane is their
vanishing point. Similarly, the intersection P, of lines b;
and /y; is their vanishing point. Their N-vectors are given
by Theorem 2 as

m, = £N[n; X nyl, m, = =N[ny; X ngl, (A.2)
respectively. It follows that the N-vector of the vanishing
line [, of this rectangle is given by Theorem 2’ as

Ny, = i1’\”.'“(.‘ X mb]' (A3)

The N-vector m,, of the vanishing point P, indicates the
3-D orientation of lines /> and /34, and the N-vector my, of
the vanishing point P, indicates the 3-D orientation of
lines 3 and Iy (Theorem 1). The N-vector n,, of the
vanishing line /,;, indicates the unit surface normal to the
rectangle (Theorem 1°).

Since adjacent edges of a rectangle are perpendicular
to each other, the vanishing points P, and P, are mutually
conjugate (Theorem 5), and their N-vectors are mutually
orthogonal:

(mu: m.'.\) = 0. (A4)

If the rectangle we are viewing is, in addition, known
to be a square in the scene, an additional constraint is
obtained. Let /|3 be the diagonal passing through P, and
P;, and 4 the diagonal passing through P, and P, (Fig.
A(b)). Their NM-vectors are
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N = EN[m X m;], my = =N[m, x my], (A.9)
respectively (Theorem 2).

It follows that the intersection P, of the line /;; with the
vanishing line /., is the vanishing point of /3. Similarly,
the intersection Py of the line /4 with the vanishing line 1,
is the vanishing point of /4. Their N-vectors are

m. = iN[l‘l” X “ub]s my = iN[“Z-‘l X nuh]v (A6)
respectively (Theorem 2).

Since they indicate the 3-D orientations of the diago-
nals /;; and /4 (Theorem 1), and they are orthogonal to
each other, the vanishing points P, and P, are mutually
conjugate (Theorem 5), and their N-vectors are mutually
orthogonal:

(m,, my) = 0. (A.7)

Note that these constraints can be expressed in terms
of the original N-vectors m;, m;, m;, and my irrespective
of the positions of the vanishing points Py, Py, P., and P,
on the image plane. In other words, these vanishing
points need not appear within the original image itself.
These facts can be used as camera calibration of the
focal length f. Namely, the value of fis adjusted to satisfy
these conjugacy constraints. The camera position and
orientation can also be calibrated by using a similar tech-
nique [14]. For various techniques of camera calibration,
see [2, 4, 18, 19].

B. INTERPRETATION OF A ROAD

Today, research on autonomous land vehicles is con-
ducted all across the world [6, 17, 27, 30, 31]. If the
vehicle is to move along an arbitrary road in an uncon-
trolled environment, it requires sophisticated modules in-
cluding an image analysis module, a geometric reason-
ing module, a path planning module, and a navigation
module.

Consider the geometric reasoning module. 3-D data
can be obtained by a direct measurement using stereo or
range sensors for the part near the vehicle. However, if
an appropriate model of the road is available, the 3-D
road shape can be computed over a very long range from
a single image [15, 16, 20, 23].

Suppose the road has a “‘constant width.’” This means
that there exists a one-to-one correspondence between
the two road boundaries in the scene such that every line
segment connecting two corresponding points—let us
call such a line segment a cross segment—meets the two
road boundaries perpendicularly; the width of the road is
defined as the length of the cross segment. Furthermore,
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(@) (b)

FIG. B.
(b) The conjugacy constraint of a road image.

(a) Perspective projection of a road and its cross-segment.

suppose the road is such that all cross segments are hori-
zontal, and the tangents to the road boundary at corre-
sponding points are parallel in the scene (Fig. B(a)). This
local flatness approximation is a very good approxima-
tion for usual well constructed roads [23].

Consider a projection image of a road. We assume that
smooth spline curves have already been fitted to the two
road boundaries. Let P, and P, be the projections of two
corresponding points on the image plane, and m; and m,
their respective N-vectors (Fig. B(b)). Let /; and /, be the
tangents to the road boundary image at P; and
P,, respectively, and n; and n, their respective N-vectors.
Since these two lines are parallel in the scene, their inter-
section P, is their vanishing point; its N-vector is

m, = =N[n X n,] (B.1)
(Theorem 2), which indicates the 3-D orientation of the
tangents in the scene (Theorem 1).

Let I, be the image of the ‘*horizon’’—the vanishing
line of a horizontal surface in the scene. Its N-vector nj,
indicates the vertical orientation in the scene (Theorem
1’). The horizon /; can be computed from the camera
orientation in the scene; the horizon itself need not ap-
pear in the image.

The N-vector of the line /; connecting P; and P, is

n, = =N[m; X m,] (B.2)
(Theorem 2’). Since all cross segments are horizontal, the
intersection P, of [, with the horizon [, is the vanishing
point of [;. Its N-vector is

my = iIvlns X nh] (B-3)
(Theorem 2), which indicates the 3-D orientation of the
cross segment (Theorem 1).

Since the cross segment and the road tangents at its
endpoints are orthogonal in the scene, the vanishing

points P, and P, are mutually conjugate (Theorem 5), and
their N-vectors are mutually orthogonal:

(m,, my) = 0. (B.4)

If Eqs. (B.1)-(B.3) are substituted into this, we have
(my,, m,){my, n;, n,| + (my, m)|m,, n,, 0| = 0. (B.5)

Using this constraint, we can determine the correspon-
dence between the two road boundaries (16, 23]: given a
point P; on one boundary, the corresponding point on the
other boundary is sought in such a way that this con-
straint is satisfied. Once the correspondence is estab-
lished, it is easy to reconstruct the 3-D shape of the road
(see [16] for the details of this procedure).

C. INTERPRETATION OF PLANAR SURFACE MOTION

As mentioned in Section 10, computing 3-D motion
from two images—shape from motion—is one of the cen-
tral problems of computer vision. Among various possi-
ble formulations, motions of a planar surface in the scene
are important both theoretically and practically (7, 10, 21,
25, 28, 29].

Consider the image transformation induced on the im-
age plane by the projection of a motion of a planar sur-
face in the scene. Evidently, collinear points are mapped
to collinear points, concurrent lines are mapped to con-
current lines, and the incidence is preserved. Hence, the
image transformation is a collineation (Section 6; see Fig.
C1(a)). This means that if a point of N-vector m and a line
of N-vector n move, after a motion, to a point of N-
vector m’ and a line of N-vector n’, respectively, there
exists a three-dimensional nonsingular matrix A such
that the transformation is given by

m' = +tN[ATm], n’ = =N[A 'n]. c.n
In terms of image coordinates, the first equation is rewrit-
ten as

(a) (b)

FIG. C1. (a) The collineation induced by the motion of a planar
surface. (b) Camera motion and the motion parameters.
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FIG. C2. Optical flow.

o = pAux F Any + Anf

’ Apx + Any + Anf’
G _ pApx + Any + Anf
! Apx + Apy + Anf’

Since the motion of an object is equivalent to the mo-
tion of the camera relative to the object, consider camera
motion. Suppose the camera is first rotated by matrix R
and then displaced by vector h, where R and h are de-
fined with respect to the initial camera (Fig. CI(b)). Let
us call {R, h} the motion parameters.

Let the equation of the planar surface be n, X + n,Y +
n;Z = d, where ni + n3 + n3 = 1 and d > 0. The unit
vector n = (ny, my, n3)" is the surface normal pointing
away from the viewpoint O, and d is the distance of the
surface from the viewpoint Q. We exclude the case
where d = 0 (the surface passes through the viewpoint O
and hence is invisible). Let us call {n, d} the surface
parameters.

We omit the proof, but it can be proved that the matrix
A of collineation (6.1) is given by

A=%U—ﬁﬂ& (C.3)

where h = h/d, and k is an arbitrary nonzero constant.

Suppose we have determined the matrix A up to a
scale factor. If we multiply it by an appropriate constant
so that det A = [, the motion parameters {R, h} and the
surface parameters {n, d} are computed as follows (the
depth r is indeterminate; this solution is a refinement of
the one given in [28, 29]):

I. Leto?, o}, 0}(0) = 0y = 03) be the eigenvalues of
the symmetric matrix AAT.° Let {u;, u,, us} be an
orthonormal system of corresponding eigenvectors.

? The three values o, o3, and o are called the singular values of
matrix A.
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2. If oy = oy = o3 (= 1), the motion parameters are

h=0, R=A, (C.4)

and the unit surface normal n is indeterminate. Other-
wise:
3. The unit surface normal n is given by

&

n=———[*Vo}- oin + Voi—alul, (C.5
Vol—o1 1T 2~

and the scaled translation vector h is given by

& o+ o3

—— — b 2
—5 +o3Voi — agsu
ol Vo, - 0’3[ 4 ! 271
> l
+ o Vao; — G'ju;],

h =
(C.6)

where the double sign in Eq. (C.6) corresponds to that in
Eq. (C.5). Here, e = +1, and from the two signs, the one
that makes n; > 0 is chosen if n; # 0. If n; = 0, both signs
give the solution.

4. The rotation matrix R is given by

RZLU+U%WM. (C.7)
g

If the motion is instantaneous, we observe an optical

flow (Fig. C2). In terms of the N-velocity (Section 10), it

can be proved (we omit the proof) that the flow has the
form!

Wim — (m, Wim)m,

—Wn + (n, Wn)n,

m

(C.8)

where W is a matrix of trace 0. In terms of image coordi-
nates, the first of Eqgs. (C.8) is rewritten as

X = fWy + (W) — Wa)x + Wyy

- %-(Wm-\' + Waylx,

Y= Wi+ Wpx + (W — W)y

_1

F

Suppose the center of the camera is translating by

translational velocity » and the camera is rotating around

it by angular velocity @ = (w;, s, w3)'. Let us call {v, w}

the (instantaneous) motion parameters. It can be proved
(we omit the proof) that the matrix W is written as

(C.9)

(Wizx + Way)y.

"The second one describes the “*optical flow of lines.”
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0 —w3 [(33]
W=%(n,u)—nif"'+ﬂ, Q=] o 0 -o|,
— w2 ) 0
(C.10)

where ¥ = v/d.

If the matrix W is estimated by fitting Egs. (C.9) to (at
least four) points or (at least four) lines moving on the
image plane, the motion parameters {v, w} and the sur-
face parameters {n, d} can be computed from W. The
following solution is a refinement of the one given in [21]
(for alternative solutions, see [7, 12, 25]).

1. Compute the symmetric matrix W; and the vector
w by

—(Wy — Wn)2
W, = §l(W + W0, w=| (W, - Wp)2|. (ClI)
(Wi — Wy))2

2. IfW,;=0,then »=0and w = w, while the surface
unit normal n is indeterminate. Otherwise:

3. Leto, =0, = o3 be the eigenvalues of the symmet-
ric matrix W, and let {u;, u,, u;} be an orthonormal
system of corresponding eigenvectors.

4. The unit surface normal n is given by

&
n=_——

\/ro_} [i- Vo, — o0 + Vo — 0'3“3],

(C.12)

and the scaled translation velocity ¥ is given by

V= 8\70'1 - 03 [T-\/0'| — ou + Vo, — o3us],
(C.13)

where the double sign in Eq. (C.13) corresponds to that
of Eq. (C.12). Here, ¢ = *1, and from the two signs, the
one that makes n; > 0 is chosen if n; # 0. If n; = 0, both
signs give the solution.

5. The angular velocity is given by
wW—>nXp (C.14)

REFERENCES

1. J. (Y.) Aloimonos, I. Weiss, and A. Bandyopadhyay, Active vision,
Int. J. Compui. Vision 1 (1988), 333-356.

2. B. Caprile and V. Torre, Using vanishing points for camera calibra-
tion, Int. J. Comput. Vision 4 (1990), 127-140.

3. 0. D. Faugeras and S. Maybank, Motion from point matches: Mul-
tiplicity of solutions, Int. J. Comput. Vision 4 (1990), 225-246.

4. W.1. Grosky and L. A. Tamburino, A unified approach to the linear

10.

1.

12.

13,

14.

17.

18.

20.

21,

22.

23.

24.

25.

26.

347

camera calibration problem, IEEE Trans. Pattern Anal. Mach. In-
telligence PAMI-12 (1990), 663-671.

. R. Haralick, Using perspective transformations in scene analysis,

Comput. Graphics Image Process. 13 (1980), 191-221.

. S. Ishikawa, H. Kuwamoto, and S. Ozawa, Visual navigation of an

autonomous vehicle using white line recognition, /EEE Trans. Pat-
tern Anal. Mach. Intelligence PAMI-10 (1988), 743-749.

. K. Kanatani, Structure and motion from optical flow under per-

speclive projection, Comput. Vision Graphics Image Process. 38
(1987), 122-146.

. K. Kanatani, Camera rotation invariance of image characteristics,

Comput. Vision Graphics Image Process. 39 (1987), 328-354.

. K. Kanatani, Constraints on length and angle, Comput. Vision

Graphics Image Process. 41 (1988), 28-42.

K. Kanatani, Transformation of optical flow by camera rotation,
IEEE Trans. Pattern Anal. Mach. Intelligence PAMI-10 (1988),
131-143.

K. Kanatani, Reconstruction of consistent shape from inconsistent
data: Optimization of 23D sketches, Int. J. Comput. Vision 3 (1989),
261-292.

K. Kanatani, Group-Theoretical Methods in Image Understanding,
Springer-Verlag, Berlin, 1990.

K. Kanatani, Hypothesizing and testing geometric properties of
image data, CVGIP: Image Understanding, 54 (1991) 349-357,

K. Kanatani and Y. Onodera, Anatomy of camera calibration using
vanishing points, IEICE Trans. Inf. Syst. 74 (1991), to appear.

. K. Kanatani and K. Watanabe, Reconstruction of 3-D road geome-

try from images for autonomous land vehicles, IEEE Trans.
Robotics Automation RA-S (1990), 127-132.

. K. Kanatani and K. Watanabe, Road shape reconstruction by local

flatness approximation, Advanced Robotics, to appear.

D. Kuan, G. Phipps, and A.-C. Hsueh, Autonomous robotic vehi-
cle road following, IEEE Trans. Pattern Anal. Mach. Intelligence
PAMI-10 (1988), 648-654,

R. K. Lenz and R. Y. Tsai, Techniques for calibration of the scale
factor and image center for high-accuracy 3-D machine vision me-
trology, IEEE Trans. Pattern Anal. Mach. Intelligence PAMI-10
(1988), 713-720.

- R.K. Lenz and R. Y. Tsai, Calibrating a Cartesian robot with eye-

on-hand configuration independent of eye-to-hand relationship,
IEEE Trans. Pattern Anal. Mach. Intelligence PAMI-11 (1989),
916-928.

S.-P. Liou and R. C. Jain, Road following using vanishing points,
Comput. Vision Graphics Image Process 39 (1987), 116-130.

H. C. Longuet-Higgins, The visual ambiguity of a moving plane,
Proc. R. Soc. London B 223 (1984), 165-175.

M. J. Magee and J. K. Aggarwal, Determining vanishing points
from perspective images, Comput. Vision Graphics Image Process
26 (1984), 256-267.

D. G. Morgenthaler, S. Hennessy and D. DeMenthon, Range-video
fusion and comparison of inverse perspective algorithms in static
images, IEEE Trans. Syst. Man Cybernet. SMC-20 (1990), 1301-
1312,

P. G. Mulgaonkar, L. G. Shapiro, and R. M. Haralick, Shape from
perspective: A rule-based approach, Comput. Vision Graphics
Image Process. 36 (1986), 298-320.

M. Subbarao and A. M. Waxman, Closed form solution to image
flow equations for planar surfaces in motion, Comput. Vision
Graphics Image Process. 36 (1986), 208-228.

K. Sugihara, Machine Interpretation of Line Drawings, MIT Press,
Cambridge, MA, 1986,



348

27.

28.

29.

KENICHI KANATANI

C. Thorp, M. H. Hebert, T. Kanade, and S. A. Shafer, Vision and
navigation of the Carnegie-Mellon Navlab, IEEE Trans. Pattern
Anal. Mach. Intelligence PAMI-10 (1988), 362-373.

R. Y. Tsai and T. S. Huang, Estimating three-dimensional motion
parameters of a rigid planar patch, IEEE Trans. Acoust. Speech
Signal Process. ASSP-29 (1981), 1147-1152.

R. Y. Tsai, T. S. Huang, and W.-L. Zhu, Estimating three-dimen-
sional motion parameters of a rigid planar patch. II. Singular value
decomposition, IEEE Trans. Acoust. Speech Signal Process.
ASSP-30 (1982), 525-534.

30. M. A. Turk, D. G. Morgenthaler, K. D. Gremban, and M. Marra,

3L

32.

VITS—A vision system for autonomous land vehicle navigation,
IEEE Trans. Pattern Anal. Mach. Intelligence PAMI-10 (1988),
342-361.

A. M. Waxman, J. LeMoigne, L. S. Davis, B. Srinivasan, T.
Kushner, E. Liang, and T. Siddalingaiah, A visual navigation sys-
tem for autonomous land vehicles, IEEE J. Robotics Automation
RA-13 (1987), 124-141.

R. Weiss, H. Nakatani, and E. M. Riseman, An error analysis for

surface orientation from vanishing points, /EEE Trans. Pattern
Anal. Mach. Intelligence PAMI-12 (1990), 1179-1185.



