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Computational techniques involving conics are formulated in
the framework of projective geometry, and basic notions of projec-
tive geometry such as poles, polars, and conjugate pairs are re-
formulated as “‘computational procedures” with special emphasis
on computational aspects. It is shown that the 3D geometry of
three orthogonal lines can be interpreted by computing conics. We
then describe an analytical procedure for computing the 3D geom-
etry of a conic of a known shape from its projection. Real image
examples are also given. © 1993 Academic Press, Inc.

1. INTRODUCTION

**Conics’’ provide the most important clues to 3D in-
terpretation of images next to straight lines. One reason
for this is that many man-made objects have circular or
spherical parts, and circles and spheres are projected
onto conics. Another reason is that conics are very easy
to handle because they are the lowest-degree algebraic
curves other than straight lines, and many curves can be
approximated by conics. In addition, conics are invariant
to projective transformations, which include perspective
transformations. Thus, the study of conics is vital to de-
veloping computer vision systems, as has been widely
recognized by many researchers, e.g., [2].

Since the conic is one of the central topics of projective
geometry, its mathematical properties have been well
known, as can be found in any textbook on projective
geometry, e.g., [12]. It appears, therefore that image
analysis of conics is readily done by simply referring to
such textbooks. However, a considerable gap exists be-
tween treating conics as mathematical entities and actu-
ally analyzing images of conics, because the aim of pro-
jective geometry is generalization and abstraction. In
other words, littel attention is paid to ‘‘practical’ (or
‘‘computational’’) issues. Put differently, projective ge-
ometry can be regarded as a mature branch of mathemat-
ics for the very reason that it is no longer concerned with
the “‘real’” world.

This paper attempts to reformulate those properties of
conics which are vital to computer vision systems as
computational procedures. Following Kanatani [9], we

call the resulting theory computational projective geome-
try. We first describe fundamental notions of projective
geometry such as collineations, poles, polars, and conju-
gate pairs as computational procedures. Then, we dis-
cuss the problem of interpreting the 3D geometry of three
orthogonal lines in the scene. This is a very important
issue of computer vision because many man-made ob-
jects have rectangular corners. This problem has already
been solved by several authors [1, 3, 4, 6, 8, 13]. How-
ever, our formulation provides a good example of demon-
strating how otherwise complicated procedures can be
succinctly and elegantly described in the framework of
computational projective geometry.

Then, we analyze the problem of interpreting the 3D
geometry of a conic in the scene. Two cases are consid-
ered: the case where the conic is known to be a projec-
tion of a circle of a known shape, and the case where the
conic is known to be a projection of an ellipse of a known
shape. The solution in the first case has been known and
used in real systems [2]. Our approach is the same in both
cases: we apply a special *‘collineation”’ called the cam-
era rotation transformation [5-8). Real image examples
are also given to observe the accuracy of the computa-
tion. :

2. N-VECTORS AND COLLINEATIONS

Assume the following camera imaging model. The
camera is associated with an X YZ coordinate system with
origin O at the center of the lens and Z-axis along the
optical axis (Fig. 1). The plane Z = f'is identified with the
image plane, on which an xy image coordinate system is
defined so that the x- and y-axes are parallel to the X- and
Y-axes, respectively. Let us call the origin O the view-
point and the constant f the focal length.

A point (x, y) on the image plane is represented by the
unit vector m indicating the orientation of the ray starting
from the viewpoint O and passing through that point; a
line Ax + By + C = 0 on the image plane is represented
by the unit surface normal n to the plane passing through
the viewpoint O and intersecting the image plane along
that line (Fig. 1). Their components are
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X A
m= =N yl|, n= =N B R )
£ CIfy

where N[:] denotes the normalization into a unit vector.
We call m and n the N-vectors of the point and the line
(9]. If m and n are the N-vectors of a point P and a line /,
respectively, point P is on line [, or line ! passes through
point P, if and only if

(m, n) =0, (2)
where (-, ) denotes the inner product of vectors. If this is
satisfied, we also say that point P and line / are incident to
each other and we call Eq. (2) the incidence equation.

The use of N-vectors for representing points and lines
on the image plane is equivalent to using homogeneous
coordinates [12]. Although homogeneous coordinates
can be multiplied by any nonzero number, computational
problems arise if they are too large or too small. So, it is
convenient to normalize the three components into a unit
vector, which is precisely the N-vector as defined above.
Kanatani [9] reformulated projective geometry from this
viewpoint. Rewriting the relationship of projective geom-
etry as computational procedures, he called the resulting
formalism computational projective geometry. In this pa-
per, we adopt his formalism, regarding a unit vector m
whose Z-component is 0 as the N-vector of an ideal point
(a point of infinity) and n = (0, 0, =1) as the N-vector of
the ideal line (the line at infinity).

Points are collinear if they are all on a common line;
lines are concurrent if they all meet at a common point. A
collineation is a one-to-one mapping between points (in-
cluding ideal points) and between lines (including the
ideal line) such that (i) collinear points are mapped to
collinear points, (ii) concurrent lines are mapped to con-
current lines, and (iii) incidence is preserved—if a point
(or line) is on (or passes through) a line (or point), the
mapped point (or line) is on (or passes through) the

FIG. 1. Camera imaging geometry and N-vectors of a point and a
line.
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mapped line (or point). It can be proved that a collinea-
tion maps a point of N-vector m to a point of N-vector
m’, and a line of N-vector n to a line of N-vector n’, in the
form

?

m' = =*N[ATm], n' = =N[A 'n], 3)
where A is a nonsingular matrix and T denotes transpose
(see [10] for details). In order to eliminate the scale inde-
terminacy, we hereafter adopt the scaling det A = 1. For
simplicity, let us call the collineation represented by ma-
trix A simply ‘‘collineation A.”" In inhomogeneous coor-
dinates (i.e., image coordinates), the first of Egs. (3) for

A = (Ay), i, j=1,2,3, is rewritten as
Aux + Ayy + Asif
Apx + Any + Anf’

) fAlzx + Any + Anf
Y Apx + Any + Asf’

x'=f
(4)

As can be seen from Egs. (3), the mapping rule for N-
vectors of points is different from that for N-vectors of
lines. This is a consequence of the requirement that
incidence be preserved: N-vectors m and n such that
(m, n) = 0 must be mapped to N-vectors m’ and n’ such
that (m’, n’) = 0. This fact is expressed by saying that the
mapping of points and the mapping of lines are contra-
gradient to each other: a vector mapped as an N-vector
of a point is called a contravariant vector; a vector
mapped as an N-vector of a line is called a covariant
vector [12). The set of all collineations is the group of 2D
projective transformations, which is isomorphic to
SL(3)—the group of three-dimensional matrices of deter-
minant 1 under matrix multiplication. A collineation is
also called a projective transformation or simply projec-
tivity.

The group of 2D projective transformations contains
many subgroups. Among them, the one which plays a
fundamental role in 3D interpretation of conics is the
group of camera rotation transformations [5-8)]. Con-
sider a point P in the scene. Let m be its N-vector. If the
camera is rotated around the center of the lens, a new
image is observed. Let m’ be the N-vector of the same
point P after the camera rotation (Fig. 2). The mapping
from m to m’ must be a collineation, because (i) collinear
points are mapped to collinear points, (ii) concurrent
lines are mapped to concurrent lines, and (iii) incidence is
preserved. In fact, if the camera rotation is specified by
rotation matrix R, this collineation is given by

m' = *R™"m, n' = £Rn, (5)
because rotating the camera relative to the scene by R is
equivalent to rotating the scene relative to the camera by
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FIG. 2. Rotating the camera relative to the scene by R is equivalent
to rotating the scene relative to the camera by R-! (=R7).

R~ (=RT) (rotations do not change the norms of vectors,
so the normalization N[-] is not necessary; also det R =
1). In image coordinates, Eq. (5) forR = (R), i, j =1, 2,
3, is rewritten as

o = fRnx + Ruy + Ry f
Risx + Ruy + Ruf’

y' =fR|2x + Ry + Rnf
Ri3x + Ryy + Ry f’

(6)

The set of all camera rotation transformations is a sub-
group of the group of 2D projective transformations.

Another familiar subgroup is the group of 2D Euclid-
ean motions generated by rotations and translations of
the image plane in the form

x'=xcosf — ysind + aq,

o (7)
y' =xsinf + ycosé + b.
In matrix form,
cosf sind O
A=|-sinf cosf 0 ®)

alf bif 1

3. FUNDAMENTAL PROPERTIES OF CONICS

A quadratic curve on the image plane has the form

Ax2+ 2Bxy + Cy* + 2(Dx + Ey) + F=0. (9)
In terms of N-vector m, this equation is written as
A B DIf
mQm) =0, Q=«x| B C EIf], (10
DIf EIf FIf?

where « is an arbitrary nonzero constant. The set of N-
vectors defined in this form for an arbitrary nonzero real
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symmetric matrix Q is called a conic (it does not always
define a curve on the image plane). For brevity, we call it
simply ‘‘conic Q.”” In order to eliminate the scale indeter-
minacy, we hereafter adopt the scaling det Q = —1 (this
choice is natural for real conics, as we will see shortly)
whenever det Q # 0.

Conics are always projected onto conics by not only
perspective projections but also general collineations.
The following is the transformation rule of conics under a
collineation [12].

ProprosITION 1. Collineation A maps conic Q to

conic Q' in the form
Q' = A"'QANH. (11
Let us say that a collineation that maps a conic Q to

itself preserves the conic Q. The following are immediate
consequences of Proposition 1.

PROPOSITION 2. A collineation A preserves a conic Q
if and only if

AQAT = Q. (12)

PRrOPOSITION 3. The set of all collineations that pre-
serve a conic is a subgroup of the group of 2D projective
transformations.

It turns out that the group of camera rotation transfor-
mations defined in the preceding section is characterized
as ‘‘the subgroup of the group of 2D projective transfor-
mations that preserves the absolute conic x* + y* + f? =
0 (conic — I).”” Although it does not define a real curve,
this absolute conic plays the fundamental role of inter-
preting orthogonality in the scene [9, 10].

A conic is proper if it does not consist of two (real or
imaginary) lines or one degenerate (real or imaginary)
line (including the ideal line), or equivalently if Eq. (9) is
irreducible in the complex domain. It can be proved [12]
that

PROPOSITION 4. A conic Q is proper if and only if the
corresponding matrix Q is nonsingular.

A proper conic does not necessarily define a real curve
(an ellipse, parabola, or hyperbola) on the image plane. It
can be proved [12] that

PROPOSITION 5. A proper conic Q is a real conic if
and only if its signature is (2, 1).

The signature of a symmetric matrix is a pair (p, q) of
integers, where p is the number of its positive eigen-
values and q is the number of its negative eigenvalues. A
real proper conic can be transformed into its canonical
form by applying an appropriate 2D Euclidean motion
(Egs. (7) and (8)). It is classified as an ellipse, hyperbola,
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or parabola as follows:

THEOREM 1. Let

A B DIf
Q=| B C EIf,
DIf EIf FIif?

(13)

be a proper conic. Let

(A+C) = V(A + C)P?-4AC - BY)
A, A = 3 :

(14)

1. If AC — B% # 0, then \, and \» are both nonzero.
Define

(15)
a= V|[J./}\||, b = Vl#/)\zl (|6)

(@) If uhy < 0 and ph; < 0, then conic Q is imagi-
nary.

(b) If uh; > 0 and phy > 0, then conic Q is an
ellipse. Its canonical form is

(17)

(c) If uhy and pX; have different signs, conic Q is a
hyperbola. Its canonical form is

(18)

where the upper signs correspond to the case of

pA > 0 and uh, < 0 while the lower signs corre-
spond to the case of p\) < 0 and p\, > 0.

2. IfAC — Bt =0, then either \y or A1 is 0, and conic Q
is a parabola:

(@) If A\ # 0 and \; = 0, its canonical form is
y = (A + C)VA’ + B?

2(BD — AE) \ il (19)
(b) If \y = 0 and \, # 0, its canonical form is
_ A+ OVBTF Y 0)
Y= |I"2@BE-cp) |*
COROLLARY 1. Let
A B DIf
Q=1\| B C EIf], 2n

DIf EIf FIf?
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be a proper conic:
1. If AC — B*> 0, then
(@) if A+ C>0,itis an ellipse;
(b) if A + C <0, it is an imaginary conic.
2. If AC — B2 <0, it is a hyperbola.
3. If AC — B =0, it is a parabola.

4. POLARITY OF A CONIC

Let Q be a proper conic. If m is the N-vector of a point
P, the line of N-vector n = =N[Qm] is said to be the
polar of P with respect to conic Q; if n is the N-vector of
a line I, the point P of N-vector m = = N[Q~'n] is said to
be the pole of line ! with respect to conic Q. In the follow-
ing, we omit the proviso ‘‘with respect to conic Q"
whenever the underlying conic is understood. The fol-
lowing facts are well known [12].

PROPOSITION 6.  If a point P is on conic Q, its polar is
tangent to conic Q at P.

COROLLARY 2. A line is tangent to conic Q if and only
if its pole is on conic Q.

PROPOSITION 7. If a collineation maps conic Q to
conic Q', and point P to point P', the polar of P with
respect to Q is mapped to the polar of P' with respect to

!

Q.

ProposITION 8. If a collineation maps conic Q to
conic Q', and line 1 to line I', the pole of | with respect to
Q is mapped to the pole of I’ with respect to Q'.

Propositions 7 and 8 state that the pole—polar relation-
ship, or polarity, is invariant to collineations.

The following fact is easy to observe for an ellipse: If a
point is inside of it, its polar does not have (real) intersec-
tions with the conic, while if it is outside of it, its polar
has two (real) intersections with the conic. This can be
generalized for a general conic: A point P is defined to be
outside (or inside) conic Q if its polar / with respect to Q
has real (or imaginary) intersections. It can be proved
[12] that (see Fig. 3):

PROPOSITION 9. If point P is outside conic Q, and if
P, and Py, are the tangent points of the two tangents to Q
passing through P, the polar of P passes through P, and
P,.

Points P, and P, are said to be conjugate to each other
with respect to conic Q if P, is on the polar of P, and P, is
on the polar of P,. If u and v are their N-vectors, they are
conjugate to each other if and only if

(u, Qv) = 0.

Hence, a point is self-conjugate (conjugate to itself) if
and only if it is on conic Q.

(22)
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Q

FIG. 3. The polar of a point is defined by the two tangents to the
conic.

Lines /; and /, are said to be conjugate to each other
with respect to conic Q if /, passes through the pole of /;
and /; passes through the pole of /,. If s and t are their N-
vectors, they are conjugate to each other if and only if

(s, Q7't) = 0. (23)
From Proposition 6 and Corollary 2, the pole of a line / is
incident to / if and only if / is tangent to conic Q. Hence, a
line is self-conjugate if and only if it is tangent to conic Q.

As before, we omit the proviso ‘‘with respect to conic
Q”’ if the underlying conic is understood.

PropPOSITION 10. Let ! be a line of N-vector n. If point
P, of N-vector uis on l, its conjugateP, on | has N-vector

v = =N[n X Qu] (24)

if N[Qu] # =n. If N[Qu] = *n, then v = *u.

Proof. Since point P, is on line /, the incidence equa-
tion (v, n) = 0 is satisfied. By definition, the N-vector of
the polar of P, is =N[Qu]. Since P, is on this polar, the
incidence equation (v, Qn) = 0 is satisfied. Thus, v is
orthogonal to both n and Qu, and hence we obtain Eq.
(24) if N[Qu] # =n. If N[Qu] = =*n, P, is self-conju-
gate. ®

PROPOSITION 11. Let P be a point of N-vector m. If
line I; of N-vector s passes through P, its conjugate I, that
passes through P has N-vector

t==N[m x Q's] (25)

if N[Q7's] # =m. If N[Q's] = £m, thent = *s,

Proof. Since line [, passes through point P, the inci-
dence equation (m, s) = 0 is satisfied. By definition, the
N-vector of the pole of I is £N[Q"'s]. Since /; passes
through this pole, the incidence equation (t, Q7's) = 0 is
satisfied. Thus, t is orthogonal to both m and Q~'s, and
hence we obtain Eq. (24) if N[Q~!s] # =m. If N[Q"'s] =
+m, [ is self-conjugate. ®
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5. INTERSECTION WITH A LINE

Let Q be a proper conic. Computing the intersections
of a given line [ with a given conic Q is one of the most
basic operations. The N-vectors of the intersections are
easily given in terms of a ‘‘conjugate pair’’ of points on /.

PrOPOSITION 12. Let {P,, P,} be a conjugate pair of
distinct points on line |, and w and v their N-vectors. If
line | has real intersections with conic Q, the N-vectors
m; and my, of the intersections are given by

m;, = =N[V|(v, Qv)ju = V](u, Qu)|v],

where the two double signs are independent.

(26)

Proof. Since P, and P, are distinct, the N-vector of
an arbitrary point on [ is expressed in the form

m = agu + bv 27)

for some constants a and b. This point is on conic Q if
and only if (m, Qm) = 0. Since points {P,, P,} is a conju-
gate pair, we have (u, Qv) = 0. Hence,

(m, Qm) = a*(u, Qu) + b¥(v, Qv) = 0. (28)

Thus,

= =V —(v, Qv)/(u, Qu). 29

SR

Since m is a unit vector, we obtain Eq. (26). ®

If P, is self-conjugate, it is on conic Q and its N-vector
u satisfies (u, Qu) = 0. Thus, we obtain

COROLLARY 3. Let {P,, P,} be a conjugate pair on a
line |, and w and v their N-vectors. The line | has real
intersections with conic Q if and only if

(u, Qu)(v, Qv) = 0. (30)
COROLLARY 4. If{P,, P,}is a conjugate pair on a line

[ that has two distinct real intersections with conic Q, one
of them is inside Q and the other is outside Q.

Proof. The conic Q defines image curve (m, Qm) = 0.
Corollary 3 implies that (u, Qu) and (v, Qv) have different
signs. Hence, P, and P, are on opposite sides of it. ®

The choice of the conjugate pair {P,, P,} is arbitrary,
but it is convenient to choose P, at infinity. The N-vector
of the ideal line is =k, where k = (0, 0, 1)T. For a line / of
N-vector n, the N-vector of its ideal point isu = =N[n X
k], since u must be orthogonal to both n and the Z-axis; u
is simply the unit vector along [.

In summary, the procedure that returns the N-vectors
m, and m; of the two real intersections (if they exist) of
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conic Q with a line of N-vector n is given as follows:
PROCEDURE intersection(Q, n).

1. Compute u = N[n X Kk].

2. If N[Qu] = *=n, go to Exception 1. Else, compute v
= N[n X Qu]. If v = *u, go to Exception 2. Else,

3. If (u, Qu)(v, Qv) > 0, there exist no (real) intersec-
tions. Else,

4. Return m;> = N[V/|(v, Qv)|u = V](u, Qu)|v].

Exception 1. This occurs if and only if the conic Q is
a hyperbola and the line / is one of its asymptotes. So, the
returned value is simply u.

Exception 2. This occurs if and only if the conic Q is
a parabola and the line / is parallel to its axis. So, u itself
is one solution. In order to obtain the other solution, let
u < u + en X u for an arbitrary nonzero € and go back to
Step 2.

6. 3D INTERPRETATION OF ORTHOGONAL LINES

Many man-made objects have rectangular corners.
Hence, orthogonality is one of the most important clues
in 3D object recognition. Aside from their frequency of
occurrences, the importance of orthogonality clues lies in
the fact that their 3D geometry can be reconstructed from
a projection. This problem has already been solved by
several authors by different methods based on analytical
expressions in image coordinates [I, 3, 4, 6, 8, 13]. Al-
though nothing new is gained from a *‘practical’’ point of
view, we reformulate this problem in terms of N-vectors
and conics; the purpose is to demonstrate how compli-
cated procedures in image coordinates can be succinctly
and elegantly described in the framework of computa-
tional projective geometry.

Consider three line segments /, /', and /" on the image
plane that are known to be projections of three mutually
orthogonal lines in the scene. They need not have a com-
mon intersection (Fig. 4). The 3D orientation of a line in
the scene is simply the N-vector of its vanishing point [9].
Hence, reconstructiong the 3D geometry reduces to lo-
cating the vanishing points of the three lines.

THEOREM 2. Let I, l', and l" be projections of mutu-
ally orthogonal lines in the scene, and n, n', and n" their
respective N-vectors. The vanishing point of | is at its
intersection with the conic

Q = (n’, n”)l — %(nlnllT + I’I"II'T). (31)

Note. This conic is not normalized to det Q = —1: in

fact det Q = —(n’, n"}(1 — (n’, n")»)/4.

Proof. Let m, m’, and m" be the N-vectors of the
vanishing points of lines /, /', and /", respectively. Since
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FIG. 4. The 3D geometry of three orthogonal lines in the scene can
be reconstructed from their projections.

the vanishing points are on the corresponding lines, we
have the incidence equations

(m,m =0, (m,n)=0, (m,n")=0 (32)
Since the three lines are mutually orthogonal in the
scene, we have

(m,m’)=0, (m,m") =0, (m,m)=0. (33)
Vector m’ is orthogonal to both n’ and m, and vector m”

is orthogonal to both n” and m. Hence,

m’' = xN[n' X m] = xy'n’ X m,
(34)
=+ N[n"Xm] =%y X m,

where v’ and y” are normalization constants. Since m’
and m” are mutually orthogonal, we have

LN}

*y'y"(M X m, n" X m)

£y'y"((0’, n")(m, m) — (', m)(m, n")) (35)
i'y,'}’”(m, ((nl’ n")l — %(nln"’]‘ + nnnl’]"))m)

0.

(ml’ m!l) =

Thus, vector m satisfies (m, Qm) = 0 if conic Q is defined
by Egs. 31). =

From this, we obtain the following procedure for com-
puting the 3D orientations m, m’, and m" of three orthog-
onal lines in the scene that are projected onto lines of
respective N-vectors n, n’, and n".

PROCEDURE orthogonal(n, n’, n").

1. By applying procedure intersection(Q, n), test if the
line of N-vector n has real intersections with conic
Q of Egs. (31).

2. If it does not have real intersections, the image can-
not be interpreted as a projection of three orthogo-
nal lines in the scene. Else, compute the N-vector m
of the intersection by applying procedure intersec-
tion(Q, n).
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3. Compute m’ = N[n’ X m] and m" = N[n" X m].
4. Return {m, m’, m"},

In deriving intersection(Q. n), we assumed that the
conic Q was proper, but the conic Q of Eq. (31) becomes
improper when (n’, n”) = 0 or n’ = =n". However, the
resulting 3D interpretation is correct as long as the com-
putation does not fail. The only exception in which the
computation fails is when Qu = 0 in Step 2 of intersec-
tion(Q. n). In this case, line [ is contained in conic Q,
thereby yielding infinitely many solutions. This occurs,
for example, when the projection of the three line forms a
special type of **T-junction’ (we omit the details).

Since a line generally intersects a conic at two points,
there exist fwo solutions. This is intuitively evident be-
cause we do not know in which direction each line ap-
proaches the viewpoint. If we can tell this for one line
segment, the 3D geometry of the three lines is uniquely
determined.

ExampLE 1. Figure 5a is a real image (270 x 300
pixels) of a rectangular box. Figure 5b shows detected
edges. The focal length is estimated to be /= 1760 (pix-
els) [11]. Applying the above procedure to the three
edges forming a " Y-junction,” we obtain the following
two sets of 3D interpretations:

A%

FIG. 5.
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0.229 0.303 —0.925
m=|-0760], m' ={0.649 |, m"= 0.025 |,
0.607 0.698 0.379
(36)
—0.204 -0.273 0.940
m = 0.786 |, m' = —-0.618], m"=|—0.009
0.584 0.737 0.341
(37)

Here, the X-axis extends upward, the Y-axis rightward,
and the Z-axis away from the viewer. The true solution is
given by the first set. The second set gives the ““mirror
image’” of the true solution with respect to a plane per-
pendicular to the N-vector of the junction vertex [6, 8].
The spurious solution can be removed if we apply the
same procedure to other junctions and pick out an (al-
most) common solution.

The above procedure is very useful when the number
of orthogonal edges is limited (say three), but if many
orthogonal edges are available as in this example, the 3D
interpretation is more robustly computed by estimating

(a) A real image of a rectangular box. (b) Detected edges.
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vanishing points. Computing the vanishing points of the
three sets of parallel edges as a common intersection by
least-squares (we omit the details), we obtain the follow-
ing 3D interpretation:

0.242 0.297 —-0.920
m=\{-0781], m=[0629], m"=| 0.029
0.573 0.718 0.391

(38)

7. SUPPORTING PLANE AND THE TRUE
SHAPE OF A CONIC

In the rest of this paper, we consider only proper con-
ics. Consider a conic in the scene. We call the planar
surface, on which the conic lies, the supporting plane. If
the projection of the center (of symmetry) of the true
shape is detected, the unit surface normal to the support-
ing plane is easily computed.

PROPOSITION 13. If Q is a projection of a conic in the
scene and if m is the N-vector of its projected center, the
unit surface normal to its supporting plane is given by

n = =N[Qm]. (39)

Proof. Since the unit surface normal n to the support-
ing plane is the N-vector of its vanishing line [9], the
assertion is immediately obtained if we can prove that the
vanishing line /. is the *‘polar’” of the projected center P ¢
(Fig. 6a). This is proved as follows: Suppose the support-
ing plane is parallel to the image plane. Translate the
supporting plane so that the center of the conic is on the
Z-axis, and rotate it around the Z-axis so that the major
and minor axes coincide with the image coordinate axes.
The equation of the conic is then in canonical form, and
the matrix Q representing it is diagonal. Since the N-
vector of the projected center is m = (0, 0, =1)T, the N-
vector of its polar is = N[Qm] = (0, 0, =1)T, which can be
identified with the N-vector of the vanishing line at infin-
ity. If the supporting plane is translated and rotated arbi-
trarily in the scene, the resulting transformation on the
image plane is a ‘‘collineation’’ since (i) collinear points
are mapped to collinear points, (ii) concurrent lines are
mapped to concurrent lines, and (iii) incidence is pre-
served. Since the ‘‘polarity”’ is invariant to collineations
(Propositions 7 and 8), the same relationship must hold
for any projection of the conic. =

COROLLARY 5. If Q is a projection of a conic in the
scene and if n is the unit surface normal to its supporting
plane, the N-vector of the projected center is

m = =N[Q 'n]. (40)
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FIG. 6. (a) The polarity of a conic interpreted as the projected cen-
ter and the vanishing line. (b) The camera is rotated so that the support-
ing plane becomes parallel to the image plane.

If the surface normal to the supporting plane is known,
the true shape of the conic is easily computed from its
projection. All we need to do is apply a ‘‘camera rotation
transformation’’ defined in Section 2 such that the image
plane is effectively parallel to the supporting plane (Fig.
6b).

THEOREM 3. Ifn and d are the unit surface normal
and the distance to the supporting plane of conic Q,
respectively, the true shape is given by

Q = SRTQRS, (41
where
E F n 1
173
R=| F G m| s=() ro
—m —n on3 iy
(42)
pofimtm o mm =) _ niny + ni
niy + nj ny + ns ny + ns
(43)

Proof. Letting k = (0, 0, 1)T, define unit vector 1 and
angle () by

—ny/Vn? + n}

n/vnat+ n3 |,
0

=Nk xXn)= Q) = cos'ny. (44)

If the camera is rotated around I by Q, the Z-axis coin-
cides with the direction of n (Fig. 6b). The matrix R
representing this rotation is given by the first of Egs. (42)
(6, 8]. This camera rotation induces ‘‘collineation R’ on
the image plane, which maps conic Q into conic Q' =
RTQR (Proposition 1). Now that the supporting plane is
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parallel to the image plane, conic Q’ is similar to its true
shape. Since the supporting plane is at distance d from
the viewpoint O, the true shape Q is obtained by expand-
ing it by d/f. This transformation defines ‘‘collineation S*’
as given in Egs. (42) (the multiplier (f/d)"? is due to our
scaling convention that all collineations have determi-
nants 1). If this transformation is added, we obtain Eq.
41). =

The true conic shape Q is then transformed into its
canonical form by an appropriate 2D Euclidean motion
(Theorem 1).

EXAMPLE 2. Suppose we observe on the image plane
a circle

(45)

In matrix form,

(46)

where k = (f/r)¥3. Let

(1 = k2RI + k)
0

Ql
[
x|

—k(1 + r2fDRFVA + K 0

where k = (f2V1 + k%/rh)*3. Hence, the equation of this
conic is

L= R, 2K3 PP

1+ k2 VU + k)
kZ —_ ,.Z/fz .
—(l—mh =0. (52)
According to Theorem 1, we have
=1 — L2,2/f2 h?
M=K(l k*r3(f?) A= R h (53)

1+ o BT -

If |k| < fir, Q is an ellipse and reduces to the canonical
form

N . Y P o

(54)

If |k| > fir, Q is a hyperbola and reduces to the canonical
form
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Z=kX+h, h>0, 47)

be its supporting plane. The unit surface normal n and the
distance d to it are

—kiIV1 + k2
h
n= 0 , d=—. (48)
V1 + k2
V1 + &
The matrices R and S given by Eqgs. (42) are
UVI+ & 0 —kIVI + k?
R = 0 1 0 , 49)
KV1I+Ek 0 1/VI+E
1
S=¢ 1 , (50)
hifV1 + k2

where o = (fV1 + k%/h)'3. The true shape Q given by
Eq. (41) has the form

0 —k(1 + FHfHRVA + k)3
1 0 ,
(k2 = rAfHRA + k2

(5D

¥r y? V1 + k2 flr h
S m=h a=m g b b= s
a> b k* — fr V& = f2?

(55)

If k = £f/r, Q is a parabola and reduces to the canonical
form

, VT

2rh (56)

8. 3D INTERPRETATION OF A CIRCLE

Since many man-made objects have circular shapes,
circles are important features for 3D object recognition.
Also, the 3D orientation of a circle in the scene can be
computed from its projection, and an analytical proce-
dure was given by Forsyth et al. [2]. Here, we reiterate it
as preparation for the case involving ellipses. Recall that
a proper conic Q has signature (2, 1) (Proposition 5): it
has two positive eigenvalues, A; and A», and one negative
eigenvalue, A;.

THEOREM 4. If conic Q is a projection of a circle of
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radius r, let Ny, Ay, and A3 be the eigenvalues of Q (A3 <
0 < Ay = \y), and w» and w3 the unit eigenvectors for
eigenvalues \y and s, respectively. The unit surface nor-
mal n to the supporting plane is given by

n="VQ; — A/ = A3) w2 + V(A = A)/(A; — Ay) s
(57)

Its distance is

d = \"r. (58)

Proof. Suppose conic Q is in the canonical form

xXX+ay!=A, az=1, A>0. (59)

In matrix form,

Q=« a , (60)

_,y/f"l

where k = (f/\/a_'y)3/3. Since a = |, the major axis is
along the X-axis, and the circle is slanted in the direction
of the minor axis. Hence, its surface normal n has the
form n = (0, sin 6, cos ). Due to the symmetry with
respect to the x-axis, if 8 gives a solution, so does —6. So,
assume that 0 = 6 < #/2. Now, we apply the ‘‘camera
rotation transformation’’; we rotate the camera (or the
coordinate system) around the X-axis by angle —# so that
the supporting plane becomes parallel to the image plane
(Fig. 6). The corresponding rotation matrix is

1

cos § sin @ 61)

—sin @ cos 8

After this transformation, we observe on the image plane
a circle in the form

X2+ (y+cy=p% ¢c=0,p>0. (62)
In matrix form,
|
Q =« 1 clf , (63)

clf (¢t — pYif?

where ' = (f/p)**. The camera rotation by R induces
*‘collineation R’’ on the image plane, which maps conic
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Q to conic Q' = RTQR (Proposition 1). Hence, conic Q'
also has the form

Q =« cos § —sin 6 a
sinf cos @ —ylf?
1
cos @ sin @ (64)
—sinf cos 6

Comparing the (1, 1) elements, we immediately find that

p = Vay. (65)
The remaining submatrices satisfy
(a ) ( cos § sin 0)
—ylf? —sin & cos 6
( 1 clf ) (cosa —sin 0)
) . (66)
clf (¢* — pdif? sin® cosé
This means that matrix
1
(67)
clf (2 - p)if?

has eigenvalues a (=1) and —vy/f? (<0) with correspond-
ing eigenvectors (cos 0, sin 8)T and (—sin 8, cos 8)7, re-
spectively. Since the trace and the determinant are invar-
iant, we have

y 2 - p? ay 2-p* ¢
a-m=lt—7F— ——m=—Fzs—-7, (68
I FoTeTTE T ®
from which we again obtain Eq. (65) and
c=V(a- I)y+f3. (69)

Since 0 is the orientation of the eigenvector for eigen-
value a, we have

tan § = = Via — D/(1 + yIf?). (70)

a—1
clf

Since 0 = g = 7/2 we obtain

sin @ = V(a — D(a + vif?),
cos 0 = V(1 + vIf)l(a + yIf?).

)
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The distance d is given by

Jr fr
d=2L = )
P Vay 72

If the original conic Q is not in the canonical form of Eq.
(59), we can find an orthogonal matrix U such that

A
UrQU = )\2 N
A3
A < 0 <A = A3, AN = -1 (73)
This can be interpreted as a (generalized) ‘‘camera rota-
tion transformation’’ defined by a camera rotation (and a
reflection) by U. If the camera (or the coordinate system)

is rotated (and reflected) around the viewpoint O by U,
the conic on the image plane becomes

)Y A3
2 4 22 = —fF22
X N y f n (74)
Hence, if we define
we=2, A= -2 (), (75)
Ay A

Eq. (74) has the form of Eq. (59). The unit vectors along
the Y- and Z-axes in this position are the second and third
columns of matrix U, which are the eigenvectors u, and
u; of Q for eigenvalues A, and A3, respectively. Hence,
the unit surface normal to the supporting plane is given
by

n=usinf + u;coso. (76)

Substituting Egs. (75) into Egs. (71) and (72), we obtain
Eqgs. (57) and (58). u

Note that the signs of the eigenvectors u,, uz, and u; are
arbitrary. Since n and —n indicate the same surface ori-
entation, the number of 3D interpretations is as follows:

1. If Ay # A, two interpretations exist.
2. If A\; = X5, only one interpretation exists.

EXAMPLE 3.
given by

Suppose we are viewing an ellipse Q

4x* + 16y* = 1. )

In matrix form,

Q=« 16 , (78)
—1/f?

where « = (f/8)?3. This is in canonical form. Hence, u, =
(x1,0, 0T, u, = (0, =1, 0)T, and w3 = (0, 0, =1)T. The
corresponding eigenvalues are A = 4k, A, = 16«, and A;
= —k/f2. If this ellipse is a projection of a circle of radius
r, the unit normal to the supporting plane and the dis-
tance to it are determined from Eqs. (57) and (58) in the
form

0

1
n=—— +2V3
V16 + 1/f2 '
4 +V4 + 1/f?

where the two double signs are independent. This means
that the circle is slanted relative to the image plane in the
y-direction by angle

6 = sin™! V12/(16 + 1/f?). (80)

d=fr, (79

According to Corollary 5, the N-vector of the projected
center is
0
+V/3/8 )
* V4 + 1/f?

m=*N[Q 'n] =N

The corresponding image coordinates are

+\V/3
0, —7/7—=). (82)
8FVT1 + 4f?
In the limit as f— =, the slant angle approaches 6 = 7/3
and the projected center approaches the image origin.

ExaMpLE 4. Figure 7a is a real image (512 X 512
pixels) of three coplanar circles of known radii. The focal
length is estimated to be f = 630 (pixels) [11]. The sup-
porting plane is manually placed so that supposedly n =
(0.600, 0.707, 0.707)" and d = 25 (cm). Since the three
circles share a common supporting plane, Theorem 4
should ideally predict an identical supporting plane for all
the three circles, but this is not expected due to inaccu-
racy of camera calibration and image processing. Table 1
shows the computed unit surface normal n and the dis-
tance d (cm) to the supporting plane of each circle. The
pairwise discrepancies in the orientations corresponding
to the true solutions are less than 2.2°, while the pairwise
discrepancies in the distances are less than 3%. Figure 7b
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i i A

FIG. 7.

shows the estimated projected centers computed by Cor-
ollary 5.

9. 3D INTERPRETATION OF AN ELLIPSE

Suppose the conic Q we observe on the image plane is
known to be a projection of an ellipse of a known size and
shape. In this case, its 3D geometry cannot be recon-
structed uniquely: it is reconstructed only up to one free
parameter. If the free parameter is identified with the
distance d to the supporting plane, the unit surface nor-
mal n to the supporting plane is computed as follows:

THEOREM 5. If conic Q is a projection of an ellipse of
eccentricity ¢ (0 < e < 1) and area S, and if d is the
distance to its supporting plane, the unit surface normal
n to the supporting plane is computed by the following
procedure:

1. Let hy, Ay, and A3 be the eigenvalues of Q (A; <0 <
M = N), and {uy, wy, w3} the orthonormal set of corre-
sponding eigenvectors. Let

|
e = m (>1). (83)
2. If
S 332 S 32
A _ g =S min (e i) (89
m €3f4 m ()3'1

(a) A real image of three coplanar circles. (b) Estimated projected centers.

is not satisfied, conic Q cannot be interpreted as a per-
spective projection of an ellipse of eccentricity e and area
S. If it is satisfied,

3. Define k and function Ji(x) by

o ] (E_-El_z)lﬂ‘}
A B (3”2?\1 S ’
v = e MV, _ M
Px)=(x—1) (.1 M)(.x }\]). (85)
4. Define function u(x) by
1
X) = , x#=1,¢é, (86
#ix) VAI(x — 1) + Bl(x — &> + | ' % B0
k) _ ek
A~T-np ° (¢ — DY =l
TABLE 1

Computed Unit Surface Normal n and Distance d (cm) to the
Supporting Plane

n d
1 (—0.004, 0.695, 0.719)  (0.218. —0.693. 0.687) 24,93
2 (0.012, 0.710, 0.704)  (—0.201, —0.794, 0.574) 25.67
3 (—0.021, 0.696, 0.718) (—0.419, —0.476, 0.867) 25.44
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and extend the domain of w(x) by defining u(l) =
u(€) = 0.

5. If N\ # Xy, the unit surface normal n to the support-
ing plane is given by

n=u (%) u+ o (k)\—;l) m+p (7?-;7) u;, (88)

If)\l = AZ’

n = VI — g/, + (’133’,) . (89)

Proof. Suppose the conic Q is in the canonical form

xXX+ay=y, a=1,y>0. (90)

In matrix form,

Q=x« a ,
_.y/fz

on

where « = ( f/\/a_y)2’3. Let n = (n;, n2, n3)7 be the surface
normal to the supporting plane.

As in the case of a circle, we apply the ‘‘camera rota-
tion transformation’’: we rotate the camera (or the coor-
dinate system) by R so that the optical axis is aligned
with the surface normal n (Fig. 6). This means that the
third column of R is n. In this new camera position, the
observed conic Q' has a shape similar to the true shape: it
has eccentricity e and area f25/d?. Let (a, b) be the cen-
ter of the conic Q’. The conic has the form

(x — a)? + é(y — b)? = e f2SInd?, 92)
or
X2 + éy? — 2f(ax + éby) + f2c = 0, (93)
where
a=%, 5=%, c=;—:’2+é?—22—é”277§2. (94)
In matrix form,
1 —a
Q =« -éb |, (95)
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where k' = (wd?/§)"3/é"2. The camera rotation by R in-
duces ‘‘collineation R,”’ which maps conic Q to conic
Q’ = RTQR (Proposition 1). Hence,

1 —a 1

é —éb| = % RT a R, (%)
-a —éb ¢ —ylf?
where
e (@) O o
If we define a cubic polynomial {(A) by
PA) = (A = DA = &) + yIf?), (98)

the characteristic polynomial of the right-hand side of
Eq. (96) is yi(k\)/k*, which must be equal to the charac-
teristic polynomial of the left-hand side. Thus, we have

A—1 a
;15 P(kN) = A—¢é éb (99)
a éb A—c
Substituting A = 1 and A = &, we obtain
%f) = —(1 — &)d, 4‘(:38) = —(¢é — 1)é*h%.  (100)

Since é > 1, such an 4 and b exist if and only if

Y(k) =0, Yiék) =0. (1o0n)

From Eq. (98), the first condition is equivalent to 0 < k =
1 or k = a, and the second one is equivalent to 1/é = k <
a/é. Since é = 1, this means that

!« k < min (1,%). (102)
é é
If this condition is satisfied, we obtain
. 4‘(,() =202 _ _!l‘(ék)
d; = ———(e. E_—yYE (=0), é? = ——(e_ —yE (=0). (103)

Assume that o # 1. Then, the three eigenvalues 1/k,
alk, and —y/f?k of the matrix of Eq. (96) are all simple
roots. The unit eigenvector u = (u, uy, u3)" for eigen-
value 1/k is determined by
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1k — 1 a U 0
Vk—-é éb wm =101 109
a éb Ik = ¢ I 0

Since é # 1, the first and second rows of the matrix are
linearly independent unless k¥ = 1, 1/é. If k = 1, then
Y(k) = 0 from Eq (98), so @ = 0 due to Eqs. (103). Hence,
the first row is identically 0. However, since 1/k is a
simple root, the second and third rows must be linearly
independent. It follows that the normalized eigenvector
isu=(x1,0,0)T. If k = 1/¢, we obtainu = (0, =1, 0)T by
the same argument. In the remaining cases k # 1, 1/¢, the
first and second rows are linearly independent, so we
obtain

—al(llk = 1)
u==N||-éb(1/k — é) (105)
1
Hence, if we define function
ulx) = 1 , x¥1,¢,
Val(x — 1) + &b (x — &) + |

(106)

the third component 3 is given by
uy = =u(1/k). (107)

The cases k = 1, 1/¢ can be included in Eq. (107) if we
define u(1) = u(é) = 0.

The unit eigenvector v = (v,, vy, v3)" for eigenvalue a/k
is determined by

alk — 1 i v 0
alk — é éb v, | =10]. 108)
a éb alk — ¢ U3 0

Again, the first and second rows are linearly independent
unless k = a, a/é. In both cases, we obtain v; = 0 by the
same argument shown earlier. Otherwise, we obtain

vy = xpulalk). (109)

The exceptional cases are also included by the extension
(1) = w(@) = 0.

The unit eigenvector w = (v, wy, w3)T for eigenvalue
—v{f% is determined by

—viftk — 1 a wy 0
~ylf?k — e éb wa|l=10].

i éb —yIf%k — ¢/ \wy 0
(110)

Since the first and second rows are always linearly inde-
pendent, we obtain

wy = *u(—y/fk). (111)
From Eq. (96), we have RT = (u, v, w) (the matrix having
u, v, and w as its columns in that order). Since the unit
surface normal n is given by the third column of R, we
obtain n = (u3, vy, wy)T.

Consider the remaining case « = 1. In this case, Eq.
(90) is a circle of radius \/-; centered at the image origin.
Due to the circular symmetry, the X- and Y-components
of n = (ny, ny, n3)T are indeterminate. Hence, we obtain

V1 = njcos ¢
V1-nising |, 0=s¢ <27 (112)

n;

n==

The third component n; is given by w; of Eq. (111).
If the original conic Q is not in the canonical form of
Eq. (90), we can find an orthogonal matrix U such that

A
UuT™Qu = A2 ,
A

A <O <A =N, M0 = =10 (113)

This can be interpreted as a (generalized) ‘‘camera rota-
tion transformation’’ defined by U. If the camera (or the

coordinate system) is rotated (and reflected) around the
viewpoint O by U, the conic on the image plane becomes

)\2 )\3
2. M 2 A3
x2 + A -f N (114)
Thus, if we define
a=(zD, y-= —f’%(>0), (115)
1 |

Eq. (114) has the form of Eq. (90). Hence, all we need to
do is replace « and v in all equations by Eqgs. (115). The
unit vectors along the X-, Y- and Z-axes in this position
are the three columns of matrix U, i.e., the unit eigenvec-
tors u, uy, and u; of Q for eigenvalues A, Az, and A;,
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respectively. The case a = | corresponds to the degener-
acy A; = Az, in which case the eigenvectors u, and u; are
arbitrary as long as they are orthogonal to each other and
to u3. Hence, we do not lose generality if we set ¢ = 0 in
Eq. (112). =

Since the signs of the eigenvectors u;, uy, and u3 are
arbitrary, Eq. (88) gives eight solutions. However, de-
generacy occur if u(1/k) = 0 and/or w(x,/kN) = 0. If n and
—n are regarded as indicating the same surface orienta-
tion, the number of 3D interpretations for each d is as
follows:

1. If Ay # Ay,
(@) Ik # 1, 1/&, N\o/éN,, four interpretations exist,
(b) if k = 1, 1/é, A/éN,,
i. if Aa/A) # &, two interpretations exist,
ii. if \o/A; = é, only one interpretation exists.
2. If A\ = Az, one family of infinitely many axially sym-
metric interpretations exist.

Although the solution is not unique, this theorem has
many potential applications. For example, the inequality
(84) determines the possible range of the distance to the
supporting plane. If two projections of coplanar ellipses
of known shapes are observed, the distance to the com-
mon supporting plane can be obtained by searching for
the value of d that yields the same (or in practice the
closest) surface normals for both ellipses.

EXAMPLE 5. Suppose we observe a circle of radius r
centered at the image origin:

x2+ y2=r2 (116)

In matrix form,

Q=« 1 , (117)

_rZ/fZ

where k = (f/r)??. Suppose this circle is a projection of
an ellipse of eccentricity e and area S. Equation (116) is
itself in canonical form. Hence, we can take u; = (=1, 0,
0T, w, = (0, =1, 0)T, and w3 = (0, 0, =1)T. The corre-
sponding eigenvalues are A, = A; = x and A3 = —«r?/f2.
From Eq. (84), the distance d to the supporting plane is
uniquely determined:

d= % \V Simri. (118)

Since A; = \,, the surface normal n to the supporting
plane is determined from Eq. (89) in the form
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e
0 ;

V1 — e+ r2f?

to which an arbitrary rotation around the Z-axis can be
added. Hence, the supporting plane is slanted relative to
the image plane by angle

+1

n=——
V1 + r¥f?

(119)

e

= sin~! (120)

Its tilt orientation is indeterminate. According to Corol-
lary 5, the N-vector of the projected center is

erlf
m= *N[Q 'n] = =N 0 ,
-V1+ (1 - edfr
(121)

to which an arbitrary rotation around the Z-axis can be
added. This means that the projected center is at distance

er

V1+ (- e)fr

(122)

from the image origin. In the limit as ¢ — 0, the surface
normal n approaches (0, 0, =£1). In the limit as f— «, the
slant angle approaches 6 = sin~! e, and the projected
center approaches the image origin.

ExaMPLE 6. Figure 8a is a real image (512 X 512 pixels)
of three coplanar ellipses of known shapes. The common
supporting plane is the same as that in Fig. 7a. If Theo-
rem 5 is applied, inequality (84) restricts the distance d
(cm) to the interval

16.59 < d < 26.41. (123)

TABLE 2
Computed Unit Surface Normal n to the
Supporting Plane

1 (-0.001, 0.701, 0.713)
(0.622, —0.569, 0.538)  (0.182, —0.791, 0.583)
(—0.012, 0.702, 0.712) (0.120, 0.670, 0.733)

(—0.218, —0.761, 0.611) (—0.349, —0.728, 0.530)

3 (0.018, 0.693, 0.721) (0.286, 0.611, 0.738)

(—0.053, —0.472, 0.880) (—0.321, —0.391, 0.863)

(—0.044, 0.479, 0.759)

[ 5]




CONICS AND ORTHOGONALITY

301

FIG. 8. (a) A real image of three coplanar ellipses. (b) Estimated projected centers.

If the average of the distances in Table 1 is used, the unit
surface normal n to the supporting plane for each ellipse
is computed as shown in Table 2. The pairwise discrepan-
cies in the orientations corresponding to the true solution
are less than 1.9°.

10. CONCLUDING REMARKS

We have presented a theory of computation involving
conics by following the formulation of ‘‘computational
projective geometry”’ presented by Kanatani [9]. First,
we showed that the problem of interpreting the 3D geom-
etry of three orthogonal lines can be succinctly described
in the framework of computational projective geometry
involving conics. We also derived computational proce-
dures to interpret the 3D geometry of conics in the scene
from their projections. Real image examples were also
given to observe the accuracy of the computation.
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