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Abstract

The indeterminacy of conic motion is analyzed in terms of Lie group theory. It is shown that an image motion
of a conic is associated with a group of invisible motions that do not cause a visible change of the conic. All such
groups are isomorphic to the group associated with a special conic called the standard circle, for which the group
of invisible motions is the (three-dimensional) Lorentz group. Similar results are obtained for invisible optical
Jflows. Finally, our analysis is extended to conic stereo: the 3-D position and orientation of a conic in the scene
are computed from two projections. This algorithm also works with one camera if a circular pattern is projected

from a light source.

1 Introduction

“Conics” provide the most important clues to 3-D in-
terpretation of images next to straight lines. This is be-
cause many man-made objects have circular parts, and
circles are perspectively projected onto conics. For ex-
ample, if a robot is to operate in an industrial environ-
ment (say, in a nuclear power station), it must recognize
circular gauges, meters, dials, handles, and other circu-
lar objects by finding conics on the image plane. Detected
conics not only provide clues to object recognition; if
their true shapes are known, their 3-D geometry is also
computed analytically [6, 13, 15, 21, 23, 24].

In this article, we study how much information is
available if a motion of a single conic is observed on
the image plane. This problem originates from *“con-
tour-based optical flow determination” [4, 8, 9, 10,
30, 31, 32]. For this, conics appear to be the best can-
didate. However, Bergholm [1] pointed out that many
types of familiar curves, including conics, are incapable
of determining optical flow; such “ambiguous curves”
were classified in detail by Bergholm and Carlsson [2].

Here, we concentrate on conics and analyze the in-
determinacy by invoking Lie group theory [10]). We first
describe the representation of conics in terms of N-
vectors and discuss fundamental properties of conics.
We then show that an image motion of a conic is asso-

ciated with a group of invisible motions that do not
cause a visible change of the conic. All such groups are
isomorphic to the group associated with a special conic
called standard circle, for which the group of invisible
motions is the (three-dimensional) Lorentz group.
Similar results are obtained for invisible optical flows.

Finally, our theoretical analysis is extended to a
practical method for eliminating the ambiguity. We call
it conic stereo: the 3-D position and orientation of a
conic in the scene are computed from two projections
obtained by two fixed cameras. This algorithm also
works with one camera if a circular pattern is projected
from a light source. Some real image examples are
given.

2 N-Vectors and Collineations

Assume the following camera imaging model. The
camera is associated with an XYZ coordinate system
with origin O at the center of the lens and Z axis along
the optical axis (figure 1). The plane Z = fis iden-
tified with the image plane, on which an xy image coor-
dinate system is defined so that the x and y axes are
parallel to the X and Y axes, respectively. Let us call
the origin O the viewpoint and the constant f the focal
length.
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Fig. 1. Camera imaging geometry and N-vectors of a point and a line.

A point (x, y) on the image plane is represented by
the unit vector m indicating the orientation of the ray
starting from the viewpoint O and passing through that
point; a line Ax + By + C = 0 on the image plane
is represented by the unit surface normal n to the plane
passing through the viewpoint O and intersecting the
image plane along that line (figure 1). Their components
are given by

X A
m=zxN[|y |[] n=2xN[| B |] D
f cif

where N[-] denotes normalization into a unit vector.
We call m and n the N-vectors of the point and the line
[11]. If m and n are the N-vectors of a point P and
a line /, respectively, it is immediately seen that point
P is on line I, or line ! passes through point P, if and
only if

(m,n) =0 2

where (¢, *) denotes the inner product of vectors. If this
equation is satisfied, we also say that point P and line
[ are incident to each other. We call equation (2) the
incidence equation.

The use of N-vectors for representing points and
lines on the image plane is equivalent to using homog-
eneous coordinates [26]. Although homogeneous coor-
dinates can be multiplied by any nonzero number, com-
putational problems arise if they are too large or too
small. So, it is convenient to normalize them into a unit
vector, which is precisely the N-vector as defined above.
Rewriting the relationships of projective geometry as
computational procedures in terms of N-vectors,
Kanatani [11] called the resulting formulation compu-

tational projective geometry. Here, we adopt this formu-
lation, regarding a unit vector m whose Z-component
is 0 as the N-vector of an ideal point (a point at infin-
ity) and n = (0, 0, +1) as the N-vector of the ideal line
(the line at infinity).

Points are collinear if they are all on a common line;
lines are concurrent if they all meet at a common point.
A collineation [26] is a one-to-one mapping between
points (including ideal points) and between lines (in-
cluding the ideal line) such that (i) collinear points are
mapped to collinear points, (ii) concurrent lines are
mapped to concurrent lines, and (iii) incidence is
preserved—if a point (or lin€) is on (or passes through)
a line (or point), the mapped point (or line) is on (or
passes through) the mapped line (or point). It can be
proved that a collineation maps a point of N-vector m
to a point of N-vector m', and a line of N-vector n to
a line of N-vector n’, in the form

m’' = +N[ATm] n’'= +N[A"'n] (3)

where A is a nonsingular matrix and T denotes trans-
pose (see [13] for details). In order to eliminate the
scale indeterminacy, we hereafter adopt the convention
that A is scaled so that det A = 1. For simplicity, let
us call the collineation represented by matrix A simp-
ly “collineation A.” In inhomogeneous coordinates
(i.e., image coordinates), the first of equations (3) for
A =4y i, j=1,2,3, is rewritten as

” =fAnx + Ay + Anf
Apx + Apy + Anf

, =fA12x + Apy + Anf
Y A13x + A23y + A33f

The set of all collineations is the group of 2-D pro-
Jective transformations [26], which is isomorphic to
SL(3)—the group of three-dimensional matrices of
determinant 1 under matrix multiplication: the com-
position of collineation A, followed by collineation A,
coincides with collineation A;A,, and the inverse of
collineation A is given by collineation A~'. A col-
lineation is also called a projective transformation or
simply projectivity [26].

@)

3 Fundamental Properties of Conics

A quadratic curve on the image plane has the form
A2+ 2By + Cy* +2(Dx + Ey) + F=0 (5)

In terms of N-vector m, this equation is written as
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where « is an arbitrary nonzero constant. For brevity,
we hereafter refer to the conic represented by matrix
Q as simply “conic Q. In order to eliminate the scale
indeterminacy, we choose the constant « so that det Q =
—1 (this choice is natural for real conics) whenever
det Q = 0.

Conics are always projected onto conics not only by
perspective projections but also by general collinea-
tions. It is easy to show that the transformation rule
of conics under a collineation is as follows.

A B DIf
mQm=0 Q=«x| B C Ef (6)

Proposition 1. Collineation A maps conic Q to
conic Q' in the form

Q' =A"'QA™Y Q)

Let us say that a collineation that maps a conic Q
to itself preserves the conic Q. The following are im-
mediate consequences of proposition 1.

Proposition 2. A collineation A preserves a conic
Q if and only if

AQAT = Q ®

Proposition 3. The set of all collineations that
preserve a conic is a subgroup of the group of 2-D pro-
jective transformations.

A conic is proper if it does not consist of two (real
or imaginary) lines or one degenerate (real or imagin-
ary) line, or equivalently if equation (5) is irreducible
in the complex domain. The following facts are well
known:

Proposition 4. A conic Q is proper if and only
if the corresponding Q is nonsingular.

Proposition 5. A proper conic Q is a real conic
if and only if the signature of the matrix Q is (2, 1).

Here, the signature of a symmetric matrix is the pair
(p, q), where p is the number of its positive eigenvalues
and ¢ is the number of its negative eigenvalues. In the
following, we only consider proper real conics (with
signature (2, 1) and determinant —1).

4 Group of Invisible Motions

Given two conics Q and Q' on the image plane, the
collineation A that maps conic Q to conic Q' is not

uniquely determined: if L and L’ are collineations that
preserve Q and Q' respectively, the composition of L,
A, and L' in this order is also a collineation that maps
conic Q to conic Q’. Let us call a collineation L an
invisible (image) motion of conic Q if L preserves Q.
From proposition 2, the set JCq of all collineations
that preserve conic Q is given by

3o = {L|detL = 1, LQLT = Q} (9

This is a group of transformations (proposition 3). We
call it the group of invisible motions of Q. The equa-
tion LQLT = Q is a constraint on a symmetric matrix
of determinant —1, providing five independent equa-
tions. Since a general collineation (i.e., a nonsingular
matrix of determinant 1) has eight independent param-
eters, the group JCq has three degrees of freedom.
Hence, the group of invisible motions is a three-
dimensional Lie group [10). It is easy to prove the
following proposition.

Proposition 6. Let A be a particular collineation
that maps conic Q to conic Q' For any collineation
A that maps conic Q to conic Q', there exist L € 3Cq
and L' € JCq- such that

A = LAy = AL’ (10)
and they are uniquely determined by A,.

Corollary 1: All collineations that map conic Q to
conic Q' are exhausted by a particular collineation A,
and either 3Cq or JCq-.

The above statement is summarized by saying that
if Aq is a particular collineation that maps conic Q to
conic Q/, the set of all such collineations is given by

Ao = AgiCq: = JCoAp3Cq: an
The set ICqAy is called the right coset of Ag by 3Cq,
and the set AgJCq: is called the left coset of Ag by
JCq'. The set 3CoAICq: is called to be the double

coset of Ag by 3Cq and JCq-. Define a mapping #,, :
3CQ - JCQt by

taL) = Ag'LAg (12)

It is easy to confirm that £4 (L\L;) = #5 (L))15,(L2)
for L, L, € 3Cq. Hence, £, is a homomorphism from
JCq to 3Cq-. It is also easy to see that 1, is a one-to-
one and onto mapping. This means that

3o = A5 HoAo (13)

If there exists a collineation Ay such that this equation
holds for two groups JCq and 3Cq-, group JCq is said
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to be conjugate to 3Cq.. If two groups are conjugate to
each other, they are isomorphic to each other: JCq =

3Cq-

S Mapping of Conics

Given two conics Q and Q/, a particular collineation
that maps conic Q to conic Q' is easily constructed.
Form proposition 1, what we want is a nonsingular
matrix Ag such that

AA'A] = Q (14)

Since Q and Q' are both symmetric matrices with
signature (2, 1), we can find orthogonal matrices U and
U’ that diagonalize them in the form

UTQU = diag (A, Mg, \3)
UTQ'U’ = diag (\{, M, \9)

for A\, A, > 0, A3 < Oand A, A3 > 0, A3 <0,
where diag (-, ¢, *) denotes the diagonal matrix with
the indicated diagonal elements in that order. Since the
two conics both have signature (2, 1), the orthogonal
matrices U and U’ can be chosen so that correspond-
ing eigenvalues of Q and Q' have the same signs. Let

A, = U diag ((N/A], N, (GADHUT (16)

15

It is easy to confirm that det Ag = 1 and equation (14)
is satisfied. Thus, we have the following.

Proposition 7. For any two real proper conics,
there exists a collineation that maps one to the other.

Example. Consider a particular collineation that maps
ellipse

X Y

S +=5=1 a4b>0 17

P & o
to hyperbola

2 2

%—#=1 a, 8> 0 (18)

Their respective matrix representations are

di 1 1 1
K diag ?, ?, - f—z

o diag [é é, f%] (19)

Q

QI

where « = (abf)*> and k' = (oBf)*>. Matrix Q is in
canonical form as is. Matrix Q' is transformed into
canonical form as follows:

010) (-1/a® 0 0 001
k1001 0 182 o0 100
100 0 0 uf2)lo1o

- 1 1 1
= K d1ag [F, fT, - ?] (20)
Hence, a particular collineation Ag that maps conic Q
to conic Q' is given by

(100) (Bla 0 0 010
A0=’% 010/|0 m o0 |]001
001) Lo o af) UoOO
(0 Bla 0
=,—"7 0 0 fb 1)
“ lafF o o0

In image coordinates (see equations (4)),

ba bBx
x'=— y' =— 22
y y @y (22)

6 Standard Circle

Let J be a circle of radius f centered at the image origin:

x4yt =f (23)
In matrix form,
J =diag (1, 1, —1) (24)

Let us call J the standard circle. Proposition 7 implies
that for any conic Q there exists a collineation that maps
it to the standard circle J. Let us call such a collinea-
tion a standardizing collineation. The group JCj of in-
visible motions of the standard circle J is

¥, = {Lldet L =1,LILT =J} (25

This group is known as the three-dimensional (or
“2+1-dimensional””) proper Lorentz group. Then, as
shown in section 4, the group JCq of invisible motions
of any conic Q is given by

Ko = AQ¥CiAqQ' 26)
where A is an arbitrary standardizing collineation of

conic Q. Hence, the group 3Cq of invisible motions of
any conic Q is isomorphic to the Lorentz group 3Cy.
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It follows that the set of all collineations that map Q
to Q' is given by
AqTeAG! @n
where Ag and A are arbitrary standardizing colline-
ations of conic Q and Q/', repectively.
The Lorentz group JCj has many subgroups. The

following three are one-parameter subgroups that gener-
ate JCy:

L) = 0 1 0

((cosht O sinh¢
_sinh¢t O cosh?

(1 0 0
Ly(t) = 0O cosht sinh¢
0O sinhz cosht
cost sint O
—sintz cost O (28)
0 0 1
In image coordinates (see equations (4)),

..+ _ gxcosht + fsinh ¢
L) x _fxsinht+fcosht

~
~

L) =

~

' o Sy
Y = Xsinh 7 + fcosh ¢ 29)
et = x
L@ : x " ysinh ¢t + fcosh ¢
, _ cycosht + fsinh ¢
y _fysinht-i-fcosht (30)
Li(?) : x’ = xcost — ysint
y' =xsint + ycost (31)

The collineation L;(¢) rotates the image plane around
its origin by angle 7. The standard circle J is evidently
kept invariant. It is easy to confirm that L,(#) and
L,(¢) also map the standard circle J to itself.

7 Representation of Invisible Flows

‘We now consider infinitesimal image motion. It can be

shown [11, 13] that the optical flow induced by an infin-

itesimal collineation has the form
m=Wm-m W mm (32)

where W is a matrix of trace (. Let us call the time
derivative m of N-vector m the N-velocity, and matrix

W the flow matrix. For simplicity, we identify an opti-
cal flow with its flow matrix W and call it simply “opti-
cal flow W.” There is no ambiguity in talking about
addition of two flows, since componentwise addition
of N-velocities or image velocities is equivalent to ad-
dition of the corresponding flow matrices.

We call an optical flow that does not cause any vis-
ible change of conic Q an invisible flow of conic Q.
Let L =1 + W At + O(Ar?) be a small invisible
collineation of conic Q. Substituting this into the invis-
ibility condition LQLT = Q (equation (9)) and taking
the limit as Az — 0, we obtain the next proposition.

Proposition 8 An optical flow W is an invisible
flow of conic Q if and only if

wWQ + QW' =0 (33)
The set
hg = {WIWQ + QW' = 0} (34

of all invisible flows of conic Q is the Lie algebra of
the group JCq of invisible motions of conic Q. Since
3JCq is a three-dimensional Lie group, its Lie algebra
hq is a three-dimensional linear space with respect to
matrix addition and scalar multiplication. Its basis is
easily constructed as follows:

Proposition 9. Any invisible flow W of conic Q
is uniquely expressed in the form

W = C]K] + Csz + 03K3 (35)

for some c,, ¢,, and c;, where

(-05' -0n' -0%')

Kl = 0 0 0
L o' o oF
(0 0 0 )

K2 = —Q3-lll —Q:;;Zl _ 3?]
L 0% 0% 0%
(o' 0% 0n' )

K, = | -0 -0n -0On (36)
L O 0 0o

and Q' is the (i, j) element of the inverse Q.

Proof: Since Q is a symmetric matrix, the condition
WQ + QW™ = O is rewritten as (WQ)' = — WQ.
This means that matrix WQ is an antisymmetric matrix.
Hence, we can write
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0 ¢ —C
wQ = - 0 —q (37
Cy Cy 0

for some ¢y, ¢;, and c3. Thus,

00 -1 00 0
W=1c,|00 0 |+ |00 -1
10 0 01 0

0 10
+¢c | -1 00 Q! (38
0 00

from which follow equations (35) and (36). Evidently,
matrixes K,, K;, and Kj; are linearly independent.
Hence, the expression of equation (35) is unique. M

Example. Consider an ellipse in the form of

2 2
% %:1 a>0, b>0 (39
In matrix form,
) 11 1
Q = « diag [?, Y f—z]
1.,
Q' = diag @, ¥, —f% (40)

where x = (abf)?". If we define {K,, K;, K;} by
equations (36) multiplied by «/f?, the general form of
invisible flow is given by

0 00 0 0 O
W = ¢ 0 00|+ |0 0 1
2l 00 0 P2 0o

0 bHUfP o0
+c | =d¥4?* 0 0 41)
0 0 0

\
SISO
A

et e e

S

\‘$

§

\\\

RN

LI BV A P PP
d F ¥

This flow is a superposition of the following three
flows:

= —3n @)

.
I

- }(x2 - a),

.=_l =_l 2_2
x P f(y b) @3)

: @ .Y
X= ==Y y=—x (44)
f? f?
These flows are shown in figures 2(a), (b), and (c),

respectively.

The isomorphism between groups of invisible mo-
tions can also be applied to the spaces of invisible flows.
It is easy to prove the next proposition.

Proposition 10. The mapping ¢, : hg = hqo- de-
fined by

tay (W) = Ag' W A @5)

for a particular collineation Ay that maps conic Q to
conic Q' is a nonsingular linear mapping from hg on-
to th.

The mapping 1, is called the adjoint transforma-
tion of the corresponding Lie group isomorphism [10].
This adjoint transformation can also be defined when
Q = Q' Namely,

Corollary 2: The mapping # : hq — hq defined by
W) = Lg' W Lo (46)

for an invisible motion L, of conic Q is a nonsingular
linear mapping from Ag to itself.

LY

a~
- - ——
e e e 7 A4 AR YNMY VY e~
IRy EEREREEER RN
PAVIVEY SRV EVEr I SV S SN W L)
—4 4 AA A A A A4 A A A ll_‘y
RN U ¢ AR A Y] . .
R IR R AR -,
- . v w > % ) A 17 vy v - v
———- < L . .- v
O A A IR TR N 'z
Pl A A A A A (B UE N N N ) /l
I AN tt:\\\\\ /'/

A G NG NCE
AN
NN

S ————
T ece—

[ i
Sl et
[~ EE oLl

{c)

Fig. 2. Invisible flows of an ellipse centered at the image origin.



Interpretation of Conic Motion and Its Applications 73

8 Deformation of a Conic

Consider a smoothly deforming conic Q(z), assuming
that it is always kept to be a real proper conic while
deforming. Define its deformation D at time ¢ by

D = Q0Q(™ = lim AH20 = A0 g
Ar—0
@

The deformation D cannot be an arbitrary matrix. First-
ly, Q(¢) must always be kept symmetric. This require-
ment is written as DQ(r) Q()D'. Secondly, Q is
always scaled so that det Q = —1, so the constraint
tr D = 0 must be assigned.

Define the following set:

Do = {Dlr D =0, DQ = QDT}  (48)

(The condition that the signature should not change
need not be considered—the signature is a pair of “inte-
gers,” so it is not affected by a “‘continuous” motion.)
The set Dy is a linear space: if Dy, D, € Dy, then
Dy + c,D, € Dq for any ¢, and c,. The condition
DQ = QD', which requires DQ to be symmetric,
leaves six degrees of freedom. Together with the con-
dition tr D = 0, there remain five degrees of freedom.
Hence, Dq is a five-dimensional linear space.

Consider a deformation D caused by a planar sur-
face optical flow. Substituting A = 1 + W Ar +
O(Ar?) into Q(t + Ar) = A1 QYA ™) (proposi-
tion 1) and noting that A~ =1 — W Ar + O(Ar?),
we obtain

Q(t + Ar) = Q) — (W Q() + Q)W) Ar
+ 0(Ar?)
=[I-W+QW QA
+ 0D QM) (49
From the definition (47) of the deformation D, we obtain

Proposition 11. The deformation D of conic Q
caused by optical flow W is

D=-(W+QW' Q™) (50)

We now prove that Dgq is exactly the set of all
deformations caused by planar surface optical flows.

Proposition 12. The set Dq consists of all defor-
mations of conic Q caused by optical flows.

Proof: LetDbeadeformation caused by an optical flow
W given by equation (50). Since tr W = 0, we see that

trD = —(tr W + tr QWT Q7))

—-trQ'QWT = —tr W =0 '&)))

Also, since both Q and Q! are symmetric, we see
that
DQ = —~(W + QW' Q™) Q

-QQ'wWQ + W = QD' (52)

I

Hence, D € Dq. Conversely, we can find for any
member D € g a particular optical flow W, that
causes deformation D. Indeed, we can choose

W, = -% D (53)

Evidently, tr Wy = —tr D/2 = 0. Since QDT = DQ,
we see that

~(Wo + QW] Q) = - 2 (-D - QD' Q™)
=%(D+D)=D (54)

This means that the optical flow W, causes deforma-
tion D (proposition 11). |

For a given deformation D, equation (50) is a lin-
ear equation in W. Hence, the general solution is given
by a particular solution Wy plus a solution W of the
homogenous equation —(W + QW' Q) = O,
which is equivalent to WQ + QW' = O. Thus, the
set of all homogeneous solutions coincides with the set
hg of invisible flows (proposition 8), and we obtain
proposition 13.

Proposition 13. For every deformation D € Dq
of conic Q, the general expression of the optical flow
W that causes this deformation is

1
W=—§D+K KEhQ (55)

The set of all flow matrices is the set s/(3) of all
three-dimensional matrixes of trace 0. This is an eight-
dimensional linear space with respect to matrix addi-

tion and scalar multiplication. Hence, we obtain
theorem 1.

Thoerem 1: The five-dimensional linear space Dq
of the deformations of conic Q is isomorphic to the quo-
tient space of the eight-dimensional linear space sl(3)
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of all optical flows modulo the three-dimensional linear
space hq of invisible flows of Q:

Do = slB)hg (56)

Proposition 13 and theorem 1 are a special case of
a more general result obtained by Bergholm and
Carlsson [2].

Example. Consider the following translating circle:
G-UPl+0Go-Vl=r" r>0 (57

The deformation of this conic at + = 0 is given as

follows:
0 0 fum
D= 0 0 fvir? (58)
-Uif =VIf 0

The optical flow that causes this deformation has the
form

) [U Cl"j cyr?
i= o+ —| -2y
2 f f

U C) |4 %)
+ |- x+ | =-2
[[2# ) 22 ¥ y]x

<«

1l
‘qu'
+

(n]
'~,|"~’.
Y

(n}
|8

N
=

U ] V C
+[[;2- 7t 32 7}’]”
(59)

where ¢, ¢;, and c; are arbitrary constants. This flow
includes, as a special case, the translational flow x = U
andy = V for ¢; = —fU/2r%, ¢, = —fV/2r%, and
¢y = 0. |

9 Contour-Based Optical-Flow Determination

Let C be a contour of general shape at one time, and
C' the corresponding contour a short time later. As has
been discussed by many researchers [1, 2, 4, 8, 9, 10,
30, 31, 32] the optical flow can be determined from
the normal flow v, along the contour without know-
ing which point corresponds to which (figure 3). This
is an advantage, since accurate detection of point cor-
respondences is usually a very difficult task, while

C

Fig. 3. Image motion of a contour and its normal flow.

contours are generally easily detected by applying an
edge operator. In our notation, this is formulated as
follows.

Let C be a contour defined by N-vector m(s) param-
eterized by arc length s, and let v,(s) be the normal
flow along it. Let n(s) be the N-vector of the tangent
at the point of N-vector m(s). Let K = (0, 0, ).

Proposition 14. Optical flow field m induces the
normal flow

f(m, n)
= 60
g m, k) /1 — @, k? ©0

Proof: Consider an image point of N-vector m.

From figure 4(a), we see that if its N-velocity is m,

the image velocity has the form u = fin/(m, k) + cm,

where c is a scalar constant. The constant ¢ is deter-

mined from the condition (u, k) = 0, resulting in
= —f(m, k)/(m, k). Hence,

-_f o — (@, K
N - L

From figure 4(b), we see that the unit normal n to
the tangent of N-vector n on the image plane is given
by

n—(mk)k
1 - @, k?
where P, is the orthogonal projection matrix along k
defined by P, = I — kk". The normal flow v, is given

n = N[Pn] = (62)
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(a)

Fig. 4. (a) The N-velocity and the corresponding image velocity. (b) The normal flow along a contour.

by (u, n). If we note the “incidence equation” (m, n)
= 0 (equation (2)), we obtain equation (60) from equa-
tions (61) and (62).

Substituting the flow equation (32) into equation (60)
and noting the incidence equation (m, n) = 0, we ob-
tain the following.

Corollary 3. Optical flow W induces the normal flow
v = f(m, Wn)

" m k1 - m Kk

Let us consider the least-squares optimization

(63)

f(m, Wn) ] 2 ,
J = n — ds —
fC [ ’ (m» k) 1 - (n9 k)z :::;

Let us write a tensor 3 = (Ty) as 3 = A ® Biif it
is defined from matrices A = (4;) and B = (By) in
the form Tj3; = A;By. For a contour C of parameter-
ized N-vector m(s) having n(s) as the N-vector of its
parameterized tangent, define matrix

fm(s)n(s)”
m(s), k) 1 — (n(s), k)?

Proposition 15. The flow matrix W is determined
from a normal flow along a contour C by solving

GW =B tW=0 (66)

65)

Tels) =

where tensor @ and matrix B are defined by

(>/

(b)

Q= f Te(s) ® Tels) ds
C

B = f Va(s) Tels) ds 67
(o

Proof: Note that (m, Wn) = (mn', W), where the
left-hand side is the vector inner product, while the
right-hand side is the matrix inner product defined by

3
(A, B) = D 4;B;

ij=1

For a perturbation W — W + §W, the corresponding
first variation of equation (64) is

£ (m(s), Wn(s)) ]
= -2 n(s) —
fc |:v : (m(s), k) 41 — @(s), k)?

£ (m(s), Wn(s))
(m(s), k) N1 — (n(s), k)
= [w) ____f(m(s), Wn(s)) ]
c (m(s), k) 1 — ((s), k)
£ (m(s) n(s)"
(m(s), k) J1 — (a(s), k)? ®

Since this must vanish for any W such that tr 6W = 0,
we have

X

X ds 6W
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j;[mw)—

X

f(m(s), Wn(s)) ]
(m(s), k) {1 — (s), k)

f(m(s), n(s))"
(m(s), k) 41 — (n(s), k)2

ds = cl

(69)

where ¢ is a constant. Taking the trace of both sides
and noting that tr (m(s)n(s)") = (m(s), n(s)) = 0
(the incidence equation), we obtain ¢ = 0 and thereby
equations (66) and (67). ]

If we note that tr T¢(s) = 0 due to the incidence
equation (m(s), n(s)) = 0 (see equation (65)), we see
that @ = (4;%;) and B = (By) given by (67) satisfy
L), Ayw = O and I, B; = 0, and GW = B gives
only eight independent equations. If the last one is omit-
ted, equations (66) are rearranged in the form of a nine-
dimensional vector equations AW = B by defining
nine-dimensional vector \ZV =W, W, ..., Wss)',
nine-dimensional matrix A = (4, Ay = Aun, -+ -,
Agg = A3233, Ag] =" = Agg = 1, and nine-
dimensional vector B = (By,, ..., B, 0)'.

Now, consider the case where the contour C is a
conic. The existence of the set hq of invisible flows
implies that the optical flow cannot be uniquely deter-
mined from the normal flow v,, because if W is the
optical flow compatible with v,, so is W + K for any
K € hq. This fact was first pointed out by Bergholm
[1]. Thus, if tensor @ is defined by equation (67), any
K € hq satisfies

GK =0 (70)

which is easily confirmed (appendix A). However, the
deformation D is uniquely determined from the nor-
mal flow v, along the conic Q:

Proposition 16. The deformation D of conic Q is
determined from the normal flow v, along Q by solv-
ing the following linear equations.

GD=-2B, twD=0, DQ=QD" (71)
where tensor @ and matrix B are defined by (67).

Proof: If D is the deformation of the conic Q, then W,
= —=D/2 (equation (53)) is a particular optical flow
compatible with the deformation, and hence it must
satisfy equation (66). Thus, the first of equations (71)
is obtained. The second and the third of (71) are the
conditions that D be a deformation of a conic (see (48)).
The first of (71) provides eight equations for a matrix

of trace 0. The null space of them is simply the space
hg of invisible flows, which is three-dimensional (pro-
position 9). This means that exactly five of the eight
equations are linearly independent. Thus, the nine
elements of D are determined uniquely. |

10 3-D Interpretation of Conic Motion

Suppose the conic we are observing is a perspective
projection of a conic in the scene. Let us call the plane
on which the conic lies the supporting plane. Let n be
its unit surface normal signed so that it points away from
the viewpoint O (we do not consider planes passing
through the viewpoint O, which are “invisible™). Let
d (> 0) be its distance from O. The equation of the
plane is (n, r) = d. Define p = n/d, and call it the
Pvector of the plane. Evidently, any plane that does
not pass through the viewpoint is uniquely specified
by its P-vector: the equation of the plane is (P, r) = 1.

Suppose the camera is rotated around the viewpoint
by R (rotation matrix) and translated by h relataive to
a planar surface of P-vector p. Let us call the {R, h}
the motion parameters. By this camera motion, a col-
lineation is induced on the image plane, because (i) col-
linear points are mapped to collinear points, (ii) con-
current lines are mapped to concurrent lines, and (jii)
the incidence relation is preserved. It is easy to show
that the resulting collineation is given by

A=;A-ph"R k=3T-(W (2

and if A is determined, the motion parameters {R, h}
and the P-vector p can be computed up to scale and
sign. This problem has been studied by many resear-
chers [11, 13, 17, 27, 28, 29].

However, if all we observe is an image motion of
a conic Q, the collineation is determined only up to
the group JCq of invisible motions, which is a three-
dimensional Lie group (section 4). Together with the
scale indeterminancy, we need four additional con-
straints to obtain a 3-D interpretation. If we note that
the inverse of the collineation A of equations (72) is

ph’
l—mm] (73)

the problem is stated as follows:

A = kRT [1+

Problem 1. Given two conics Q and Q’ of determi-
nant —1 and signature (2, 1), compute the P-vector
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p, the translation h, and the rotation matrix R that
satisfy

RQ'RT = (1 — (p, )*? [l b J
’ 1 -=(p h)

hpT
Q [I+l—(p, B (74)

The number of unknowns is nine (three for p, three
for h, and three for R). Since (74) is an equality be-
tween two symmetric matrices, it gives six equations.
However, the determinants are identically —1 on both
sides. Hence, only five equations are independent, pro-
viding five constraints.

Let the right-hand side of equation (74) be F(p, h).
Let A\{, N4, and A4 be the eigenvalues of Q". There ex-
ists an orthogonal matrix U’ that transforms Q' into
its canonical form, that is, U7 Q'U’ = A’, where A’
= diag (\{, NJ, A3). Then, (74) is written as

RU'A'RU)T = F(p, h) (75)

Hence, requiring equation (74) is equivalent to requir-
ing matrix F(p, h) to have eigenvalues A[, Az, and A;.
If we let \i(p, h), A\2(p, h), and A\y(p, h) be the eigen-
values of F(p, h), and u,(p, h), ux(p, h), and u3(p, h)
the corresponding unit eigenvectors, equation (75) splits
into three equations

)\l(p’ h) = >‘l" )\2(p’ h) = >‘2,’ 7\3(Pr h) = )‘3'

(76)

Since the products of both sides of these three equa-
tions are identically —1, only two of these provide in-
dependent constraints. Hence, four additional con-
straints are necessary to determine p and h as expected.

Equation (75) also states that the three columns of
RU'’ are the unit eigenvectors of F(p, h). Hence the
rotation matrix R is determined by

R = (“I(P, h) UZ(P: h), “3(P, h))U a (77)

Here, (a, b, ¢) denotes the matrix consisting of three
columns a, b, and ¢ in that order. There are six ways
of ordering the eigenvalues of F(p, h) as \i(p, h),
A (p, h), and Ay(p, h). Hence, there are six sets of
equations, yielding at least six sets of solutions for the
P-vector p and the translation h. For each of them, the
signs of the eigenvectors are arbitrary except that the
determinant of R is 1. This gives four solutions for R,
reflecting the axial symmetry of the conic.

11 3-D Interpretation of Conic Deformation

Suppose an infinitesimal motion of conic Q is observed.
Let D be the observed deformation. We now show that
the mathematical structure of the information provided
by this observation is similar to the case of finite mo-
tion. If the camera rotates around the viewpoint with
rotation velocity « and translates with translation
velocity v relative to a planar surface of P-vector p, it
can be shown [11, 13] that the following optical flow
is induced on the image plane:

W=le+%(p,v)I—va (78)

Here, for matrix T = (t;, t;, t3) and vector a, the
symbol a X T denotes the matrix (a X t;, a X t;,
a X t3) consisting of vector products of a with the col-
umns of T. This flow causes the deformation D of conic
Q as stated in proposition 11. Hence, we have the
following problem to solve:

Problem 2. Given a conic Q of determinant —1 and
signature (2, 1) and its deformation D of it (tr D = 0,
DQ = QD"), compute the P-vector p, the translation
velocity v, and the rotation velocity  that satisfy

©XQ+@xQ +3 @ M

- p@QV" - (Qvp' = - DQ (79)

There exists an orthogonal matrix U that transforms
Q into its canonical form, that is, UTQU = A, where
A = diag (\, A3, \3). If equation (79) is multiplied
by UT from the left and U from the right, we obtain

UT(w x U)UTQU) + (UTQU)(w x U)'U
+ 2, MU'QU - UpAUTQUU™
- UTQUU'WUp)" = — UDUUTQU
(80)

If we define new variables p’ = U'p, v/ = Uy, and
w’ = (det U)UTw, and put D' = uDy, equation (80)
becomes

o XA+ (0 X AT + %(p', vIA

- p'Av)T — (Av)pT = - D'A  (81)

(Note the identity UT(w x U) = UT(w X DU =
det UUTw) X L) In elements,
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0 AN = s (A3 = Aoy
()\, - kz)(l’é 0 ()\2 - )\3)0){
M- Mog R - My Y

2 M
+ 3 @i + pv + pv3) A
A

NPV Mpiv: + Mpavi Mpivs + Mp3v|
= | Mpvi + Mpiv; 28pv1 A3pavs + Mp3vs
Apivi + Mpivi Npivi + Mpivs 2M3pivs

MDiy MDi; MDjs
== MDiyy MDjp MDj
MDDy MDj MDj
(82)
By equating the diagonal elements, we obtain
~2pivi + pivi + pivj = —3 Djs

1,1 12 3 !
Pivi — 2p3v; + p3v's —5 Di

fay? 8% [ 3 !
pPivi + piv; — 2p3v's = ) D3;  (83)

Since tr D’ = tr UTDU) = tr D = 0, the sums of
both sides of the three equations are identically O.
Hence, only two of these are independent, providing
two constraints. This means that four additional con-
straints are necessary to determine p’ and v’ as
expected.

Equations (83) are equivalently rewritten as

14,1 1 [
pvi=5D'n +c
2 ] !
pvs =§Dzz +c
1,1 1 !
pvs = §D33 +c (84)

where c¢ is an arbitrary constant. Equating the off-
diagonal elements of equation (82), we obtain

N2 = M)of = Mp3v; + MNapsvi — MDg3
A3 — Nz = Mpivi + Np3vi — MDj,
A1 = N3 = Mpavi + Napiv; — NDyp (85)

Hence, if the three eigenvalues of Q are distance, vec-
tor w' is uniquely determined in terms of p’ and v".
If p), v, and w' are determined, the original variables
are given by p = Up', v = Uv/, and w = (det U)Uw".

Indeterminancy occurs if any two of Aj, Az, and A3
coincide. If \; = A,, for example, the axial symmetry
around the third axis leaves the angular velocity wj
interdeterminate.

12 Conic Stereo

We have shown that four constraints are necessary to
compute the 3-D structure and motion from conic mo-
tion. We consider a practical method for resolving this
ambiguity. Suppose the motion parameters {R, h} are
known. This situation arises when we view a conic
placed in the scene by two cameras, whose relative posi-
tion is specified by the (known) motion parameters {R,
h} of the second camera relative to the first camera
(figure 5). We call this problem conic stereo.

L Z

Fig. 5. Conic stereo.

In usual stereo, we must first seek point-to-point cor-
respondences between the two images. In conic stereo,
however, the 3-D position and orientation of the conic
can be computed without detecting point-to-point cor-
respondences: all we need is a conic-to-conic corre-
spondence. Of course, if a conic-to-conic correspond-
ence is available, point-to-point correspondences can
be computed by applying the “epipolar constraint”
assigned by the 3-D camera configuration. However,
what can be computed from point-to-point correspond-
ences is the depths of the individual points. In order
to compute the 3-D position and orientation of the
conic, a planar surface must be fitted to the computed
depths. But this can be done directly from the original
conics themselves. Since conics are very prominent
features, it is not difficult to establish a correspond-
ence between conics. Indeed, the subsequent method
itself can be used to establish correct conic-to-conic
correspondences, as will be mentioned shortly. If the
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scene (or the camera) is moving continuously, we can
also make use of the technique called “snake” to follow
a moving conic continuously on the image plane.

Since the motion parameters {R, h} have six degrees
of freedom, the problem is now overspecification.
Equation (74) is rewritten as

@ — phHDRQR'A - hp") = (1 - (p, B))**Q (86)

If ratios of element-wise equations are taken, the fac-
tor (1 — (p, h))*” can be eliminated, and we obtain
polynomials of second degree in p. If three of them
are chosen, the value of p can be determined. However,
it is more realistic to take advantage of this redundancy
to increase robustness by means of optimization. Con-
sider the least-square optimization.

J@ = |ld — phHRQR'A - hp")
- (1 - (p, )*? Q|> = min 87

where ||+|| denotes matrix norm:

3
MQIP= >, G (=wQ) forQ = (Qy.

ij=1

This is nonlinear optimization, so numerical search
is necessary. In doing numerical search, two problems
emerge:

1. In order that the search is not trapped into a local
minimum, a good initial guess must be given in the
vicinity of the true solution. How can we obtain one?

2. In order to use a library routine (e.g., the quasi-
Newton method [20]), the gradient V.J (p) of the cost
junction J (p) must be given, but its analytical form
is difficult to derive.

The first problem can be solved by adopting the “op-
tical flow approximation™ described in the preceding
section. Namely, if the second image is regarded as
obtained after one second, the image motion can be
regarded as a flow with instantaneous motion param-
eters w = Qland v = h, where  and | are, respec-
tively, the angle and axis (unit vector) of rotation R.
Then, the P-vector p satisfies equation (79), where the
term DQ on the right-hand side is approximated by
DQ = Q' — Q. Since (79) is also overspecification
for p, we consider the least-squares optimization

@ = o x Q + @ X Q7 + 3 (6, Q

- pQv) — (Qv)p' + DQ|| = min  (88)

Differentiating J(p) with respect to each component
of p and setting the result to 0, we obtain the following
linear equation:

Tp=b (89)

Here, the matrix T and the vector b are given by
4 4
T=3 lQlI2w™ — 3 Quv' + vu'Q)

+ 2uu’ + |julfl)  (90)

b = 2§ —%(s, Q o1)
where
u=Qv S=DQ+wXQ+ (v X QT (92

and (8, Q) is the matrix inner product of S and Q (see
equation (68)). An initial estimate is given by solving
equation (89). A better approximation is obtained if
@ X Q + (@ X Q)7 in (92) is replaced by RQ — QR.

The problem of computing the gradient can be solved
by using automatic differentiation software [7], which
generates a program for computing VJ(p) from a pro-
gram for computing J(p). In our experiment, we used
a system named ADDS developed by Yoshida [33].

Thus, once a correct conic-to-conic corespondence
is given, the P-vector of the supporting plane can be
robustly determined, and the residual J(p) of equation
(87) should be close to zero. If the assumed correspon-
dence is wrong, it is incompatible with equation (86),
so the residual J(p) should be large. This means that
the residual J(p) can be used as the matching criterion
of conics, as pointed out by Ma et al. [18].

Example. Figures 6(a) and (b) show conics computed
from real images (512 X 512 pixels) taken by two dif-
ferent cameras (of different focal lengths). We applied
the Sobel edge operator and manually chose conic edge
segments, to each of which the matrix representation
Q was computed. Many studies have been done about
conic fitting techniques [3, 5, 14, 19, 22, 25]; here, we
applied the method described in [14]. We must also cali-
brate the focal lengths fand f’ (for (a) and (b), respec-
tively) and the motion parameters {R, h}. They are
computed by using a square grid pattern also shown
in the same pictures—we followed the computational
procedures described in [12, 16]. In this case, f = 1178
(pixels) and f = 1906 (pixels). The angle and axis (unit
vector) of the rotation R are 25.6 ° (—0.831, 0.265, 0.488),
respectively, and the translation is h = (—9.67, —41.67,
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Fig. 6. Conics computed from real images taken by two different
cameras.

—9.95) (in cm), respectively. Then, we computed the
unit surface normal n and the distance d (cm) to the
supporting planes for the seven conics numbered in the
images by manually specifying their correspondences.
Table 1 lists the result.

‘We observe that conics on the same object surface
give approximately the same supporting planes; the
maximum error in the orientation of the surface normal
is about 2.6°. However, errors are large for conics on
coplanar but different object surfaces (about 7-10° er-
rors in orientation). This is probably due to inaccurate
calibration of the two cameras and distortions of the

Table 1. The unit surface normal n and the distance d to the support-
ing plane.

n d
1 (0.350, —0.070, 0.934) 90.0
2 (0.435, —0.145, 0.889) 83.7
3 (0.338, —-0.079, 0.938) 90.3
4 (—0.911, —-0.147, 0.386) 43.7
5 (—0.866, —-0.210, 0.455) 50.4
6 (—0.856, —0.203, 0.475) 52.1
7 (—=0.850, —0.188, 0.492) 53.4

images. As predicted, the use of a partial conic (conic
4 in the figures) gives poorer results than do complete
conics. |

13 Circular Pattern Projection

As another application, we replace the second camera
of conic stereo (figure 5) by a spot light source that
emits a circular light pattern (figure 7(a)). This is equiv-
alent to the second camera in figure 5 observing an
image of a circle Q.

The light source does not have an image plane, but
the representation Q' of the circle is easily obtained
by a prior calibration. If the orientation of the light
source is adjusted relative to a planar surface in the
scene so that a circle is projected onto it, the planar
surface can be regarded as a hypothetical “image plane”
of the light source. Let r| be the radius of the circular
pattern on it, and let r, be the radius of the circular
pattern after the planar surface is translated away from
the camera by d (figure 7(b)). Then, the hypothetical
“focal length™ of the light source is

__nd
feet = 93)
and the circle is represented by matrix
1
Q' =«' 1 %4)

—rilf?

where «' = (f/r;)*”. Note that the representation Q'
is “intrinsic” to the light source independent of the loca-
tion and orientation (or even existence) of the planar
surface.

Example. We made a slide film of a circular pattern
and projected it onto a planar surface in the scene by a
slide projector. Figure 8 shows three images for different
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(a)

N
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(b)

Fig. 7. (a) Circular light pattern projection. (b) Calibration of the light source.

(c)

Fig. 8. Real images of a circular pattern in scene.

orientations of the planar surface. The unit surface nor-
mal n and the distance d (cm) to the surface were com-
puted in each case as shown in table 2. The three planes
were arranged so that those in (a) and (b) made angle
30° and those in (a) and (c) made angle 45° Their com-
puted values are 30° and 48°, respectively.

Table 2. The unit surface normal n and the distance d to the planar
surface.

n d
(a) (—0.023, 0.218, 0.976) 240.1
(b) (0.206, 0.632, 0.747) 204.3
(c) (0.308, 0.801, 0.513) 161.3

The motion parameters {R, h} of the light source
relative to the camera were calibrated beforehand. We
made a slide film of a square grid pattern and projected
it onto a planar surface whose orientation was adjusted
so that an exact square grid pattern was projected onto

it (figure 9(a)). If this planar surface is regarded as a
hypothetical image plane of the light source, the N-
vector m,, of each of the vertices can be computed
with respect to the light source. The hypothetical focal
length is determined by the method described earlier.

From the image taken by the camera (figure 9(b)),
the N-vectors {m,} of corresponding vertices are
computed with respect to the camera. The collineation
A that relates the two (hypothetical and real) “images”
are computed from the N-vectors {m,} and {m.}}
(appendix B). From it, the motion parameters {R, h}
and the P-vector p of the planar surface with respect
to the camera are computed by the analytical procedure
[11, 13]. The absolute scale is easily computed (ap-
pendix C). |

It appears that this calibration can be done away if
the square grid pattern is projected onto an unknown
planar surface from the beginning. However, we then
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Fig. 9. (a) Calibration of the light source by projecting a square grid pattern. (b) A real image of a projected square grid pattern.

have to find correspondences of the vertices between
the original pattern and the camera image. This is dif-
ficult when the 3-D position and orientation of the
planar surface are unknown. Also, the camera image
may not contain all the vertices. If a circular pattern
is used, we need not find point-to-point correspon-
dences. Also, even if a partial conic is observed, its
matrix representation is easily obtained by conic fitting
(although accuracy may decrease). Thus, the use of a
circular pattern provides more flexibility at the cost of
prior calibration.

14 Concluding Remarks

We have presented a complete analysis of the intrinsic
indeterminacy of conic motion by invoking Lie group
theory [10] and defining such concepts as groups of in-
visible motion, their isomorphisms, the standard circle,
the Lorentz group, spaces of invisible optical flows, and
quotient spaces. We also discussed the relationships to
3-D interpretation and presented two practical applica-
tions: computing the 3-D position and orientation of
a conic in the scene by two cameras; computing the
3-D position and orientation of a planar surface by using
one camera and projecting a circular light pattern. From
our real-image experiment, these techniques seem very
promising when used in industrial environments.
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Appendix A: Optical Flow from Contour

Proposition A.1. Let T(s) be the matrix defined
by equation (65) for the contour C of conic Q. An opti-
cal flow W, tr W = 0, satisfies

(Te(s) ® Te(s))W = O 95)
for all s if and only if
WQ + QW' = 0 (96)

Proof: From equation (65), the equation (T¢(s) ®
Tc(s))W = O is equivalent to

(m(s), Wn(s)) = 0 97

A tangent to a conic is the “polar”™ of the tangent point.
It can be proved that the N-vector n(s) of the tangent
to conic Q at the point of N-vector m(s) is given by
n(s) = +N[Qm(s)] [13, 26]. Hence, the above equation
is equivalent to

(m(s), WQm(s)) = 0. (98)

This is a quadratic form in m(s), so only the symmetric
part of WQ is constrained. Hence, the above equation
is equivalent to

(m, (WQ + QW'Hm) =0 (99)

This equation is satisfied by all m such that (m, Qm)
= 0 if and only if there exists a constant ¢ such that
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WQ + QW' = ¢Q (100)
Multiplying this equation by Q! from left, we have
Q 'WQ + W = I (101)

Taking the trace of both sides and noting that tr
(Q'WQ) = tr (QQ™'W) = tr W = 0, we find that
¢ = 0. Hence, the proposition is obtained. ]

Appendix B: Determination of Collineation

Given two sets of points {P,} and {Ps}, =1, ...,
N, on the image plane, the collineation that maps each
P, to P, is computed as follows. Let {m,} and {m.}
be their respective N-vectors. The problem is to find
a matrix A, det A = 1, such that N [ATma] =
a=1...,N.

Let h, be the distance of the end point of vector
A"m,, from the line that passes through the viewpoint
O and extends in the direction of m,. From figure B.1,
we see that

R = ||ATm,|?> - m,, ATm,> (102

Armu

0

Fig. Bl The distance of the end point of ATm, from the line
defined by my.

Hence, A is robustly computed by the least-squares
optimization

N
23 NATm, |2 = (g, ATm,)2] = min  (103)
a=1

Instead of assigning the constraint det A = 1, we com-
pute the solution under the constraint ||A|| = 1 and

then rescale A so that det A = 1. Let M = (M) be
the moment matrix of {m}:

N
=2, m,m] (104)
a=1
Define the correlation tensor I = (M) by
N
My = D Mogmiymagmiay (105)
a=1

where mg;, and mgy; are the ith components of vectors
m, and m/, respectively. Then, define a tensor 3 =

(Tyju) by
T;jkl 6 ukl (106)

which determines a linear mapping from a matrix to
a matrix: JA is the matrix whose (ij ) element is 22.1=|
Tijy Ay. The optimization (103) is written as

3

3
Z TyudyAu = min D, A2 =1 (107)
ijkl=1 ij=1

If a nine-dimensional vector A = (4,) is defined by
renaming indices (i, j) as x = 3( — 1) + j, and a nine-
dimensional matrix T = (7,,) by renaming two pairs
of indices (i, j) and (k, I) as (k, \) = (3G — 1) +j,
3(k — 1) + I), the above minimization now reads

9
TK)‘AKA)\ — min
kA=1

9
DA2=1 (108
x=1

The minimum is attained by the nine-dimensional unit
eigenvector A of matrix T for the smallest t eigenvalue.
The computed nine-dimensional vector A= (A ) is
then rearranged into a three-dimensional matrix A =
(A7) by renaming the index « back to i = (x — 1) div
3+ 1andj = (x — 1) mod 3 + 1, where the operator
“div” means the integer part of the quotient, and the
operator “mod” means the remainder.

Appendix C: Determination of Scale

Let 4 and B be points on a planar surface whose unit
surface normal is n. Let m, and mp be their respec-
tive N-vectors. If the distance between points 4 and B
is w, the distance d to the planar surface from the view-
point O is given by

o]

my, = Img
(n, mA) (n, mB)

(109)
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This is derived as follows. If OA = r,m, and O-I_'i =
rgmg, then d = |(n, O4)| = r,(n, m,). Now, BA =
rym, — rgmg, which is orthogonal to n. Hence,

(n, BA) = ry(m, my) — rg(n, mg) =0 (110)

from which we obtain

- (n, m,)
8 = o (ma = (ot o)
= mp
= r,(n, my) [(n m,) (n, mp) (111)

Hence, d = ||BA||/|lm,/(n, m,) — mg/(n, mg)|.
From ||B4|| = w, we obtain equation (109).

Let p be the P-vector of the planar surface computed
by assuming that the camera translation h is a unit vec-
tor. This means that the distance to the planar surface
is 1/||pl|. If the true distance to the planar surface is
d, the interpretation must be scaled accordingly, and
the true P-vector p and the true translation h are respec-
tively given by

p=zNpl h=dlpll (12)
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