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MEASUREMENT OF CRACK DISTRIBUTION IN A ROCK
MASS FROM OBSERVATION OF ITS SURFACES
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ABSTRACT
The anisotropy of the crack distribution in a rock mass is characterized by what is termed

the “fabric tensor,” and its geometrical interpretation is given.

A practical procedure is

presented to determine the internal crack distribution by observing cross-sections of cracks

that appear on plane surfaces of the material by means of the stereological principle.

Only

three types of surfaces are necessary for observation.
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INTRODUCTION

Mechanical properties of a rock is greatly
affected by the distribution of internal cracks.
The crack distribution has two character-
istics. One is the density of the cracks, say
the total crack area per unit volume, and
the other is its anisotropy, i.e., the degree
to which the distribution is deviated from
isotropic distribution. These characteristics
must be expressed by particular quantities,
if we want to incorporate them into constitu-
tive equations which describe mechanical
properties like fracture strength and macro-
scopic elastic moduli. Apparently, the densi-
ty is described by a scalar quantity, while
the anisotropy is described by a tensor quanti-
ty, which Oda (1982, 1983), Oda et al (1984)
and Kanatani (1984a, 1984b) called the
“fabric tensor.” Oda (1982, 1983) and Oda
et al (1984) also investigated the correlation

between the fabric tensor and mechanical
properties like fracture strengthJand macro-
scopic elastic moduli.

When we apply this type of constitutive
equations to real rocks, we must first know
the internal crack distribution, which is very
difficult to measure in practice. =What can
be observed is almost always restricted to
the material surface. Hence, we must esti-
mate the internal crack distribution from
the data observed on the surface. This sort
of study, i.e., estimating the three dimen-
sional structure by two dimensional observa-
tions, has been studied as “integral geome-
try” in mathematics and known as “stereolo-
gy” to people in metallurgy, biology and
medicine (Santalo, 1953, 1976; Kendall and
Moran, 1963; Elias, 1967; DeHoff and
Rhines, 1968; Underwood, 1970; Miles and
Serra, 1979; Weibel, 1979, 1980). In parti-
cular, estimation of the size distribution of
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particles inside a material from the size dis-
tribution of their cross-sections on the sur-
face has been well studied (e.g., Goldsmith,
1967; Nicholson, 1970; Exner, 1972; Cole-
man, 1982, 1983; Cruz-Orive, 1983). The
same principle applies to estimate the size
distribution of internal cracks from the size
distribution of their cross-sections on the
surface (e.g., see Oda, 1983). Various com-
putational schemes for it and numerical
errors involved in them are also studied by
Kanatani and Ishikawa (1985).

The estimation of anisotropy from observa-
tions on the surface has been also studied,
dating back to “Buffon’s needle problem”
(Buffon, 1777). The problem was formu-
lated as estimation of the “distribution den-
sity” by Hilliard (1967) and as estimation
of the “fabric tensor” by Kanatani (1984 b).
The same principle is used in computer
vision and image processing (Kanatani, 1984
¢, 1985a). If we want to apply these results
directly, we must cut the material by a
large number of cutting planes and observe
the resulting surfaces, which is impossible
if the number of material samples are lim-
ited. However, if the anisotropy is known
to be “weak,” estimation schemes requiring
only three types of cross-sections are avail-
able (Kanatani, 1985b). In this paper, we
present such a scheme of estimating the
crack distribution based on the general theory
of Kanatani (1985b).

DISTRIBUTION DENSITY AND FABRIC
TENSORS

In the following, we regard a crack as
a plane surface without thickness. A non-
planar crack is treated as an assembly of
several cracks, each being planar. Attach a
unit normal vector n to each surface. Since
there are two possibilities of opposite direc-
tions, choose one randomly with probability
1/2.  (This is equivalent to dividing a crack
area equally into two and attaching to them
two normals of opposite directions.) Define
the “distribution density” f(n) in such a
way that f(n)dQ(n) is the summed area,

Fig. 1. Thespherical coordinates
associated with an a2yz-coor-
dinate system

per unit volume of the region under con-
sideration, - of those crack surfaces having
normals inside the differential solid angle
dQ along n. (The definition is the same
as that of the distribution density of inter-
particle contacts of a granular material
(Kanatani, 1981, 1983).

If the orientation of n is described by
its spherical coordinates @ and ¢ with respect
to a Cartesian coordinate system fixed in
the material, the distribution density f(n)
is also regarded as a function £(6,¢) of
@ and ¢, 0<0<x, 0<P<2x (see Fig.1.).
By definition.

= f F(n)dQ ()
2T T

=f ff(0,¢)sin0d0d¢ (1)
0 [1]

is the “area density”, i.e., the total area
of cracks per unit volume. Since f(n) or
fC8, ¢) is regarded as a function on a
unit surface, it can be expressed by the
following spherical harmonics expansion (cf.
Kanatani, 1984 a).

£, =7 1433 [ anaPuceos0)

+ é P, (cos ) [@ymcos mP+bynsin m¢]}:|,

(2)
I:a,,,,,:l__Z(Zn+1) (n+m)!
bum | ¢ (n—m)!
w [ m cosme
x [ [T 10, 9P ccost)] Somd
X sinfdfde. (3)

Here, P,(2) is the nth Legendre polynomial,
P,m(2) is the associated Legendre function,
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and >V designates summation with respect
to only even indices. Odd terms do not
appear because f(n) or f(6, ¢) is “symmet-
ric” with respect to the origin, i.e, f(n)=
Sf(=n) or f(6, )=f(x—06, $+=z). In terms
of Cartesian tensors, this expansion is
expressed in the following form (cf. Kana-
tani, 1984 a).

f(n) =ﬁ[1+DZJ”1"J+Dukznw;i1knz+---_].
(4

Throughout this paper, Einstein’s summation
convention over repeated indices is adopted.
Here, D;;, Dy, --+ are symmetric deviator
tensors (see Kanatani, 1984 a) and n=(sing
cosp, sinfsing, cosf). Kanatani (1984 a)
called D,,.;, the nth “fabric tensor” of
the distribution. It is expressed in terms
of the spherical expansion coefficients a,n,
and b,,, m=0, 1, ---, n (Kanatani, 1984a).
In particular, we have for n=2

——41-a20+3a22 3ba %aﬂ

(Dtj) = 3by —%020—3‘122 %’bzx
Eazn g‘bz: ';‘azo
(5)

In terms of f(n), Eq.(3) becomes

Dy, = 2n+1 <2n)Nu,.-.t"}, (6)

2% \n
where Njy,..;, is the nth “moment tensor”
of f(n), i.e,

Nitu= [ mm fm)d00m, (1)

and { } designates the “deviator part” of
a symmetric tensor (Kanatani, 1984a). In
particular, Ny, is related to ¢ and D,y by

c=Ny, (8)
15
Dt;’:WNu—'zs"au, (9)

where & is the Kronecker delta.

Among the fabric tensors, the most impor-
tant one is Dy, which is zero for isotropic
distribution. Hence, it is a measure of
“deviation from isotropy.” Those of higher

ranks Dy, etc. describe higher order fluc-
tuations (Kanatani, 1984 a). If higher order
fluctuations are neglected, the distribution
f(n) represents a smooth orthogonal aniso-
tropy, having the principal axes of Dy as
the symmetry axes. The distribution takes
local maxima or minima along them. The
corresponding eigenvalues of D;; are the
ratios of the distribution to the isotropic
distribution along these axes. Thus, D,
has a clear geometrical meaning. On the
other hand, Oda (1982, 1983) called the
moment tensor of Eq. (7) the “fabric tensor.”
It is related to ours by Eq.(6) or Egs. (8)
and (9). Eq.(7) can be interpreted as fol-
lows. Let V be the volume of the region
in question. Number the cracks in it from
1 though N. Let n, ..., »™ be their
respective unit normals and let SW,...,
S be their respective areas. Then,

N
Ny, = % 2] 7,y @ S@ (10)

If the crack distribution is nearly isotropic
and higher order fluctuations can be neglect-
ed, it is sufficient to know the area density
¢ and the fabric tensor D;; to estimate the
distribution density f(n). Since ¢ and D
are related to N, by Egs.(8) and (9), it
seems that we could compute Ny by Eq. (10).
However, it is very difficult to measure the
orientations of the cracks inside a rock. Of
course, we can measure the orientations of
the cracks near a surface by careful observa-
tion, but the process is tedious. In what
follows, we give a procedure to estimate
¢ and Dy; from observations on surfaces by
means of the stereological principle. This
method would also be applicable to photo-
graphs of material surfaces, and hence it
could lead to the use of computer image
processing techniques in the future.

PRINCIPLE OF STEREOLOGICAL ESTI-
MATION

Imagine the following “stereological mea-
surement,” Place a line of orientation n
randomly in a rock material and count the
number of intersections with the cracks in
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itt. Let N(n), or N, ¢) in terms of
polar coordinates, be the observed data,
namely the number of intersections per unit
length of the probe line. Like the distribu-
tion density f(n) or f(8, ¢), it can be
expressed as the following spherical harmo-
nics expansion

N©,$)=—= [1 +2' {—-A,.oP (cos6)

+ 31 P (c0s0) [Auncosm+ Bunsinmss]} |
an
c= f ” f "N, $)sin0d0dd, (12)
2(2n+1) (n+m)!

Il

(n—m)!
n cosmep
f f N0, $)P, (osﬂ)l:smm qb:l
X sinfdfde. 13)

Odd terms do not appear because of the
“symmetry” with respect to the origin, i.e,
N(n)=N(—n) or N(0, ¢)=N(z—0, ¢+
7). The tensor form is

C
N(n) =an (14 Fynyny+Fyypningngn+---1,
149

and Fy,.;, is related to N(n) in the same
manner as Dy.q, is to f(n) by Eags.(6)
and (7). In particular, F;; is related to
Agy, s By, by the same way as Dy is
related to asy, -+, bs by Eq. (5).

Now, if N(n) or N(#, ¢) are given by
Eq. (14) or (11), the distribution density is
given as follows (Kanatani, 1984 b).

f@, )= C/Z” [1 +f}' An {l ApoPy(cos)
n=2 2

+ Z_‘, P,m(cosO)[Apmcosm®p+ By sinm(b]}],
as
h= (=D =D @+ D (1) a6

The tensor form becomes

Fimy=L2E

[1+4Funtnj
—24Fuu"t7lﬂ'k"t +-]. A an

Hence, once C and F,; are computed from
the observed data N(n) or N(6, ¢), the
area density ¢ and the fabric tensor Dy
are obtained by

C=C/2 T, D“=4FU, (18)

A most straightforward way to compute C
and Fy; is to approximate the integrals of
Eqs. (12) and (13) by appropriate summa-
tions. For details, see Kanatani (1984b).
In order to do so, however, we must cut
the material with planes of various orienta-
tions. This means we must prepare a large
number of material samples and cut them
with planes of various orientations. This
becomes difficult when the amount of the
sample material is limited. Here, we seek
ways of estimation requiring only a small
number of orientations of the cutting planes.
This is possible if high order fluctuations of
the distribution f(n) can be neglected.

PROCEDURE OF STEREOLOGICAL ES-
TIMATION

Suppose high order fluctuations of the
distribution density f(m) can be neglected
and f(n) is described by

f(Ry=——[14+Dinn].  (19)

If this is the case, we say that the aniso-
tropy of the crack distribution is “weak.”
If the anisotropy is weak, the observed data
N(n) becomes by Eq. (15)

Nn)= % [1+Fyynny]. (200

This expression has 6 parameters, 1 for C
and 5 for F; (a symmetric deviator tensor).
Hence, we need, in principle, only 6 data
to determine them. However, since actual
measurement always involves random errors,
the necessary data must have the form of
sums or averages of a large number of ob-
servations in order to cancel out possible
random erros.

Now, consider the following integrations.

M© = f N(n)ds, @D
Cz)
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ds

Fig. 2. Unit circle around the
z-axis on the xy-plane

M, =f nyn;N(n)ds. (22)
C(z>

Here, C(2) is a unit circle on the zy-plane
around the z-axis, and f ds designates

the line integral along C(z) (Fig.2). If we
substitute Eq.(20) in these, noting F=0,
we obtain the following expressions (For a
more general case, see Kanatani, 1985b).

M@ =%(1—%Fsa>o (23).

M, =%FIZ° 24

Consider the same quantities defined on the
yz— and zz-planes as well. Then, as is
easily seen, we can obtain C and Fy; in
terms of them as follows.

C=% (M@ 4 MW 4 M), (25)
2(—2MD + MY+ M)

Fu==Cm@ 3w wary (26)
e ey RO
F12=(Mm f[&l(;f:Mm)(=le)' (29
an=(M(,,1fAAf&‘§(: Fgs (=Fa), (30)
Fu= g apgrgrms(=Fw- @D

These relations can be used for estimation
of C and Fy. Cut the material randomly
with a plane parallel to the zy-plane and
draw on it a line making angle kz/N, k=
0,1,.:-, N—1 from the =zx-axis (Fig.3).

Fig. 3 A probe line drawn at angle
kx/N from the x-axis on a
surface parallel to the xy-plane

Let N,® be the number of intersections
with the cracks per unit length of the line.
Then, approximate M'¥ and M;;,'¥ by

o |
M =273 NN, (32)
k=0

My® =1'S) Ny@sin(2zk/N)/N.  (33)
k=0

Do the same thing for the yz- and the zz-
plane and compute M, My, M% and
M. Then, C and Fy; are given by Egs.
(25)—(31). The area density ¢ and the
fabric tensor D,; are given by Eqs. (18).

Thus, we need to cut the material with
only three different planes and hence to pre-
pare only three material samples. If a
rectangular box-shaped sample is available,
we need to observe only its three faces. Of
course, the accuracy is improved if we cut
the material with equidistant parallel planes
of each orientation and draw on it parallel
lines with the separation equal to that of
the parallel planes. Then, the average over
the observations is taken, the length of each
line being the weight.

CONCLUDING REMARKS

In this paper, we have shown a procedure
to estimate the internal crack distribution
of a rock mass from observations on its
surface planes. An important idea behind
this is the concept of the “distribution den-
sity” f(n) or f(8, ¢) which characterizes
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the distribution of internal cracks. Also
important is the fact that the distribution
density f(n) is described by the “area densi-
ty” ¢ and the “fabric tensors” Dy, D,
etc.. The second rank fabric tensor Dy is
the most important one, because it describes
the degree of deviation from isotropic distri-
bution. Since any constitutive equations of
rock materials must be tensor equations,
it is expected that they incorporate the
effects due to the crack distribution in terms
of ¢ and D;. Our method of stereological
estimation directly determines ¢ and Dy from
observations on surfaces when higher order
effects can be neglected. We employed the
count of intersections between probe lines
and crack cross-sections, and this seems most
practical in actual experiments. However,
we could have also used the length of crack
cross-sections which appear on a plane surface
of a given orientation. For details, see
Kanatani (1985 b).
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