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A new “computational” formulation of cross ratio is presented
with a view to applications to computer vision problems by extend-
ing the framework of “computational projective geometry” of
Kanatani (Image Understand. 54, 1991, 333-348). As typical ex-
amples, we construct procedures for computing the 3-D orientation
of a planar shape from its 2-D projection image and the focus of
expansion from an image trajectory of a single point by taking
advantage of the perspective invariance of cross ratio and “projec-
tive coordinates,” and the resulting 3-D interpretation of “har-
monic range.”  © 1994 Academic Press, Inc.

I. INTRODUCTION

Cross ratio is the most essential invariant with respect
to projective transformations, and its perspective invari-
ance has attracted attention of computer vision research-
ers with a view to applications to object recognition from
perspective images (2, 3, 71. Today, interests in algebraic
treatment of projective geometry and the use of algebraic
invariants for object recognition is rapidly increasing [1,
4, 9-12].

However, all existing attempts to make use of the in-
variance of cross ratio have used ‘‘image coordinates’’
for computing cross ratio. This is quite natural since cross
ratio plays the role of associating a metric space equipped
with coordinates with the interpretation as an abstract
projective space [13]. In real computation, however, the
use of image coordinates will cause computational break-
down or deterioration of accuracy if they become too
large (or infinite), although the cross ratio itself has a
small magnitude. In fact, the advantage of using cross
ratio lies in the very fact that its value is kept invariant
however large the magnitude of the individual image coor-
dinates are. How should we take advantage of this fact
in real numerical computation?

In this paper, we give cross ratio an alternative ‘‘compu-
tational’’ form. Following the formulation of Kanatani
[5], which he calls computational projective geometry,
we represent all points and lines on the image plane by

unit vectors called N-vecrors. The use of N-vectors is
equivalent to using (normalized) homogeneous coordi-
nates by regarding the image plane as a projective space.
As a result, points at infinity and the line at infinity can
be treated in completely the same way as finite points and
lines. This paper is a supplement to the computational
projective geometry of Kanatani [5], giving cross ratio a
computational formulation.

The merit of our formulation is not limited to merely
rewriting existing formulas in a computationally favorable
way. Our formulation sheds new light on many other
applications. As typical examples, we write procedures
for computing the 3-D orientation of a planar shape from
its 2-D projection image and the focus of expansion from
an image trajectory of a single point by taking advantage
of the perspective invariance of cross ratio and projective
coordinates, and the resulting 3-D interpretation of har-
monic range.

2. COMPUTATIONAL PROJECTIVE GEOMETRY

2.1

Assume the following camera imaging model. The cam-
era is associated with an XYZ coordinate system with
origin O at the center of the lens and the Z axis along the
optical axis (Fig. 1). The plane Z = fis identified with
the image plane, on which an xy image coordinate system
is defined so that the x and the y axes are parallel to the
X and the Y axes, respectively. Let us call the origin O
the viewpoint and the constant f the focal length.

Any point (x, y) on the image plane is represented by
the unit vector m indicating the orientation of the ray
starting from the viewpoint O and passing through that
point; any line Ax + By + C = 0 on the image plane is
represented by the unit surface normal n to the plane
passing through the viewpoint O and intersecting the im-
age plane along that line (Fig. 1). Their components are
given by

Perspective Transformation and N-Vectors
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X A
m==N||y]|, n==N]|| B ||, (1
f Clf,

where N[-] denotes normalization into a unit vector. Let
us call m and n the N-vectors of the point and the line
(5.

A point (X, Y, Z) in the scene is perspectively projected
onto a point (x, y) on the image plane given by

Y

x=f%(, y=f7 03

We define the N-vector of a point in the scene to be the
N-vector of its projection on the image plane, and the
N-vector of a line in the scene to be the N-vector of its
projection on the image plane.

In order to avoid the confusion as to whether we are
referring to a point in the scene or its projection on the
image plane, we call a point in the scene a space point
and a point on the image plane an image point. Similarly,
we call a line in the scene a space line and a line on the
image plane an image line. We then express the perspec-
tive projection relationship between a space point and its
projection by such expressions as ‘‘a space point and the
corresponding image point’’ and ‘‘an image line and the
corresponding space line.”’

2.2. Incidence Relation

If m and n are the N-vectors of an image point P and
an image line /, respectively, it is immediately seen that
image point P is on image line [, or image line ! passes
through image point P, if and only if

(m, n) =0, 3)

where (-, *) denotes the inner product of vectors. If this
is the case, we also say that image point P and image line
I are incident to each other.

An image point that is on two distinct image lines is
called their intersection; an image line that passes through
two distinct image points is called their join. If n, and n,

/\>

Y y

FIG. 1.

; Camera imaging geometry and N-vectors of a point and a
ine.
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are the N-vectors of two distinct image lines, the N-vector
m of their intersection is given by

m = *N[n; X n,], 4)

because m must satisfy the incidence relation of Eq. (3)
for both image lines: (m, n;) = 0 and (m, n,) = 0. Dually,
if m, and m, are the N-vectors of two distinct image points,
the N-vector n of their join is given by

n = =N[m; X m,], (5)

because n must satisfy the incidence relation of Eq. (3)
for both image points: (m;, n) = 0 and (m,, n) = 0

The use of N-vectors for representing image points and
image lines is equivalent to using the homogeneous coor-
dinates. Although homogeneous coordinates can be multi-
plied by any nonzero number from a mathematical point
of view, this causes computational problems, so it is the
most convenient to normalize them into a unit vector.
Kanatani [5] reformulated projective geometry from this
viewpoint, rewriting relationships of projective geometry
as computational procedures. He called the resulting for-
mulation computational projective geometry. In the fol-
lowing, we adopt his formulation and regard a unit vector
m whose Z component is 0 as the N-vector of an ideal
point (a point at infinity) and n = (0, 0, =1) as the N-vector
of the ideal line (the line at infinity).

2.3.

Points are collinear if they are all on a common line;
lines are concurrent if they all meet at a common point.
A collineation is a one-to-one mapping between image
points (including ideal points) and between image lines
(including the ideal line) such that (i) collinear image
points are mapped to collinear image points, (ii) concur-
rent image lines are mapped to concurrent image lines,
and (iii) the incidence relation is preserved (i.e., if an
image point (or line) is on (or passes through) an image
line (or point), the mapped image point (or line) is on (or
passes through) the mapped image line (or point)). It can
be proved that this mapping is written in terms of
N-vectors as follows: an image point of N-vector m is
mapped to an image point of N-vector m’, and an image
line of N-vector n to an image line of N-vector n’ in the
form

Collineations

’

m' = *N[A™m], n’ = =N[A 'n], (6
where A is a nonsingular matrix, and T denotes transpose
(see [6] for details). Since the matrix A is unique up to
scale, we hereafter adopt the convention that A is scaled
sothat det A = 1. For simplicity, let us call the collineation
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represented by matrix A simply ‘‘collineation A.”’ In
terms of inhomogeneous coordinates (i.e., image coordi-
nates), the first of Eq. (6) for A = (4;),i,j=1,2,3,is
rewritten as

Apx+Ayy+AySf | _ ApxtApy+Ayf .
Apx+Any+Ayf’ Apx+ Apy+Ayf

x'=f )

As can be seen from Eq. (6), the mapping rule for
N-vectors of image points is different from that for
N-vectors of image lines. This is a consequence of the
requirement that the incidence relation be preserved.
Namely, N-vectors m and n such that (m, n) = 0 must
be mapped to N-vectors m’ and n’ such that (m’, n’) = 0.
This fact is expressed by saying that the mapping of image
points and the mapping of image lines are contragradient
to each other. We can also say that a vector mapped as
an N-vector of an image point is a contravariant vector,
while a vector mapped as an N-vector of an image line
is a covariant vector [13].

It is easy to see that the composition of collineation A,
followed by collineation A, coincides with collineation
A A, (and det(A A,) = det A, det A, = 1). It is also
easy to see that the inverse of collineation A is given by
collineation A~! (and det A~! = 1/det A = 1). Evidently,
the identity mapping is a trivial collineation represented
by the unit matrix I (and det I = 1). Thus, the set of
all collineations forms a group, called the group of
2-D projective transformations, which is isomorphic to
SL(3)—the group of three-dimensional matrices of deter-
minant 1 under matrix multiplication. A collineation is
also called a projective transformation or simply projec-
tivity.

2.4. Vanishing Points and Vanishing Lines

As is well known, projections of parallel space lines
meet at a common ‘‘vanishing point’’ on the image plane.
Formally, the vanishing point of a space line is the limit
of the projection of a point that moves along the space
line indefinitely in one direction (both directions define
the same vanishing point). From Fig. 2a, it is easy to
confirm the following theorem:

4
A
e oz
%

FIG. 2. (a) The vanishing point of a space line. (b) The vanishing
line of a planar surface in the scene.

373

THEOREM 1. A space line extending along a unit
vector m has, when projected, a vanishing point of
N-vector £m.

Since the vanishing point is determined by the 3-D ori-
entation of the space line alone irrespective of its location
in the scene, we see that:

COROLLARY 1. Projections of parallel space lines in-
tersect at a common vanishing point.

As is also well known, projections of planar surfaces
that are parallel in the scene define a common *‘vanishing
line.”” Formally, the vanishing line of a planar surface in
the scene is the set of all the vanishing points of space
lines lying on the surface. From Fig. 2b, it is easy to
confirm the following theorem:

THEOREM 2. A planar surface of unit surface normal
n has, when projected, a vanishing line of N-vector =n.

Since the vanishing line is determined by the 3-D orien-
tation of the planar surface alone, irrespective of its loca-
tion in the scene, we see that:

COROLLARY 2. Projections of planar surfaces that are
parallel in the scene define a common vanishing line.

In summary, if a vanishing point is detected on the
image plane, its N-vector indicates the 3-D orientation of
the space line, and if a vanishing line is detected on the
image plane, its N-vector indicates the surface normal to
the planar surface. This 3-D interpretation of vanishing
points and vanishing lines play an essential role in 3-D
scene analysis of machine vision.

If we use Eqs. (4) and (5) for computing intersections
and joins, computation of vanishing points and vanishing
lines causes no computational problems wherever the
vanishing points and vanishing lines appear, even at infin-
ity (see [5, 6] for details of optimal estimation).

3. CROSS RATIO AND PROJECTIVE COORDINATES

3.1.

Let A, B, C, and D be distinct points on line /. Their
cross ratio (or anharmonic ratio) [ABCD] is defined by

Perspective Invariance of Cross Ratio

AC /AD

where AC, BC, etc. are signed distances with respect to
an arbitrarily fixed orientation of the line / (hence, CA =
—AC, etc.; Fig. 3a). From this definition, the following
relationships are obvious:
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(@ (b)

FIG. 3. (a)The cross ratio of four collinear image points. (b) Compu-
tation of cross ratio in terms of N-vectors.

[ABCD] = [BADC] = [CDAB] = [DCBA,
[ABDC]=m, [ACBD] = 1 — [ABCD], ,
[ADCB] = [A_[;CBTC]D—]_I

This is the original definition of cross ratio, but this
form is not convenient for actual computation. Let
la, b, ¢| (= (@ X b, ¢) = (b X ¢, a) = (¢c X a, b)) denote
the scalar triple product of vectors a, b, and ¢. We now
show that the cross ratio of image points can be computed
in terms of their N-vectors as follows:

ProposiTION 1. If m,, mg, mg, and my are the
N-vectors of collinear image points A, B, C, and D, re-
spectively, and if n is the N-vector of the image line | on
which these points lie, the cross ratio [ABCD] is given
by

|m,, my, v|
|mBa my, Vl

|mA?mC:v|
|m B> mC’vl

[ABCD] = (10)

where v is an arbitrary vector such that (v, n) # 0.

Proof. Let h be the distance of the image line / from
the viewpoint O. Consider the triangle AOAC (Fig. 3b).
Its area equals [|OA x OCI/2 and also |AC| - h/2. Simi-
larly, [|OB x OC|/2 = |BC| - hi2, |OA x OD|)2 =
|AD| - h/2, and |OB x OD||/2 = |BD| - h/2. Hence,

|ACl = 1104 x GC, |BC| = 1108 x otl,

(11

|4D] = 1|04 x OD|, [BD| = 10% x OD.

Vectors OA X OC, OB x OC, OA x OD, and OB x OD
are all parallel to the N-vector n of the image line /. Hence,
if (v, n) # 0, the following relation holds:

NOTE

(0A X OC, V) _ (OA x 0D, v)

AC

(OB x OC,v) _
BC
_ (0B x 0D, v)
BD

(12)
Since (OA x OC, v) = |OA, OC, v|, etc., we have

|04, 0C.v| |04, 0D, v|
|OB, 0C,v|/ |0B,0D,v|’

[ABCD] = (13)

Since OA is parallel to m,, we can write OA = C,my
for a nonzero constant c,. Similarly, OB = cpmyg,
ocC = ccmg, and oD = cpmy, for nonzero constants cg,
cc,and cp. If these are substituted into the above expres-
sion, the constants, c,, cg, ¢¢, and ¢ are all canceled
out, resulting in Eq. (10). =

Cross ratio can also be defined for any four collinear
space points by Eq. (8). Since the cross ratio can be
expressed solely in terms of N-vectors, we immediately
obtain the following perspective invariance of cross ratio:

CoROLLARY 3. The cross ratio of four collinear space
points is equal to the cross ratio of their corresponding
image points.

Points on a plane are in general position if no three of
them are collinear; lines on a plane are in general position
if no three of them are concurrent. COROLLARY 3 can be
used to compute the 3-D position and orientation of a
planar surface in the scene from its projection by identify-
ing four space points in general position on it, provided
the exact geometry (i.e., the distance of each pair) is
known on the surface.

Let A, B, C, and D be four space points in general
position on a planar surface with a known geometry. Let
A, B, C, and D be their corresponding image points, and
m,, mg, mc, and my their respective N-vectors. The
unit normal n to the surface and its distance d from the
viewpoint O can be computed by the following procedure:

procedure surface (A, B,C,D;A,B,C,D)

1. Compute the N-vectors nyc = £N/m, X m¢] and
ngp = =N[mg X mp] of the joints AC and BD, respectively
(Eq. 5)).

2. Computer the N-vector m; = =N [n,¢ X ngp] of the
intersection of AC and BD (Eq. (4)).

3. Computer the N-vectors m; and mg of R and S,
respectively, where R is an image point on AC, and § an
image point on BD, such that [RAIC] = AC/AT and
[SBID] = BD/DI.

4. Return the unit surface normal n = £N[my X mg].

S. Return the distance d determined so that a pair of
space points, say space points I and A (or any other pair),
has the prescribed distance.
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Derivation. See Fig. 4. Let I be the space point on
the surface corresponding to image point /. Let R be a
space point on AC, and S a space point on BD . If R and
S are their corresponding image points, the perspective
invariance of cross ration (PROPOSITION 1) implies that

(rarc) =L /RE - (spipy=SL /5D
Al/ AC BI/ AD

(14)
Move R on AC indefinitely away from I (in whichever
direction). Similarly, move § on BD indefinitely away
from I. In the limit, we have RI/RC — | and
SI/SD — 1, and hence
AC

[RAIC] > —, 8D
Al

[SBID]— DT (15)

(Recall that RT, RC, etc. are signed distances.) On the
image plane, the corresponding image points R and §
approach the vanishing points of AC and BD, respec-
tively. Hence, their join RS becomes the vanishing line
of the surface. The N-vector n of the join RS is computed
in terms of the N-vectors m; and mg of image points R
and § by Eq. (5), and it indicates the 3-D orientation of
the surface (THEOREM 1).

This result is obvious in view of the perspective invari-
ance of cross ratio and the 3-D interpretation of vanishing
points and vanishing lines. However, our purpose here
is not to show this fact itself but to construct the computa-
tional procedures of Steps 3 and 5.

Step 3 is computed as follows.

PROPOSITION 2. Let A, B, C, and D be distinct col-
linear image points on image line | of N-vector n, and let
my, Mg, M¢, and my, be their respective N-vectors. If the
cross ratio [ABCD] is specified, the N-vector of one, say
D, is determined from the N-vectors of the rest in the
form

mp = =N[[ABCD]|mg, m¢, nlm, — |m,, m, njmp).
(16)

D \
C
FIG. 4. The position and orientation of a planar surface can be

computed if we can identify four space points in general position that
have a known geometry on the surface.

375

Proof. Since image points A, B, and D are collinear,
vector m,, is expressed as a linear combination of m, and
m; in the form

my = am, + bmg. {7
If we note the relationships
|m,, my, v| = |m,, am, + bmg, v| = bjm,, mg, v|, (18
|mg, my, v| = |mg, am, + bmg, v| = —alm,, mg, v|,
PROPOSITION 1 implies
[ABCD] = ImA , Me, Vl ImA’ mp, Vl
ImB’mC’vl |mB’mD’v| (19)
__alm,, mg,v|
b|mg,mc, v|’
Hence, a = —b[ABCD]|mg, m, v|/|m,, m¢, v|, and
— _p(lmg,me, v _
my b ( m,,me, v [ABCD] mB). (20)

The constant b is determined so that m,, is scaled into a
unit vector. Namely,

m, = £N[[ABCD]|mg, m¢, vlm, — |m,, m¢, vjmg].
2D

Since v is arbitrary as long as (v, n) # 0, it can be taken
to be n itself. =

In this form, no computational problems arise because
all computation is done in terms of unit vectors: even if
point D is at infinity, its N-vector m,, is correctly com-
puted.

Step 5 is computed as follows.

PROPOSITION 3. Let A and B be two distinct space
points on a planar surface in the scene, and let m, and
my be their N-vectors signed so that their Z components
are positive. Let n be the unit surface normal to the sur-
face. If the distance |AB| is known, the distance d to the
surface from the viewpint O is given by

4= [ABI- [, 0 [(my, w)

l(m,, n)my — (my, n)m,||" (22)

Proof, Wecanwrijte OA =|0A|m, and OB = |OB|m,.
Since AB = OB — OA is orthogonal to n, we have

(AB, n) = |OB|(mp, n) — |OA|m,, n) =0, (23)

or |OB| = |OA|(m,, n)/(mg, n). Hence,
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(24)
__loa]" i
(mB s n) ((mA ’ l'I)mB (mB s n)mA)'
Since the distance |AB| is known, we have
04| = 4Bl |(mg, w) 5

l[(m, , m)mg — (mg, m)m,||’

If we note that the distance d is given by d = |(OA, n)| =
|OA| - |(m,, n)|, we obtain Eq. (22). =

We must point out an important fact: the problem
described by the procedure surface (A, B, C, D;
A, B, C, D) is overconstrained. If the true shape
ABCD is known, it cannot be projected onto an arbitrary
shape ABCD. This is easily understood if we note that
the position and orientation of ABCD in the scene is
specified by six parameters (three for position and three
for orientation). Hence, the eight x and y image coordi-
nates of A, B, C, and D cannot assume arbitrary values.
This means that the above procedure is fragile in the
sense that in the presence of noise it may produce different
solutions if the four image points are labeled as A, B, C,
and D differently.

There exists an alternative solution. If the collineation
that maps the true geometry to the observed geometry is
computed by the method given shortly, the 3-D motion
between them is computed analytically [5, 8, 14-16]. This
approach is robust in the sense that the solution is exact
if noise is not present and also expected to be a good
approximation in the presence of noise. However, this
deviates from the main subject of this paper, so we omit
the details (see [6] for the details).

3.2. Projective Invariance of Cross Ratio

Cross ratio is not only invariant to perspective projec-
tion; we can also prove its projective invariance:

THEOREM 3. The cross ratio is invariant under col-

lineations.

Proof. Let A, B, C, and D be four image points on
image line /, and m, mg, m¢, and my, their respective
N-vectors. If collineation A maps these points to A’, B',
C’', and D', respectively, their N-vectors are given by

I

my =y,A'm,, mp= ypATmpg,

(26)
m¢=ycA'mg, mp = ypATmp,

where v,, vs, Yc, and yp are normalization constants.
Let n be the N-vector of image line /. Collineation A maps
it into n’ = cA~'n, where c is a normalization constant.

NOTE

Let v be a vector such that (v, n) # 0. Let v’ = ATv.
Then,

(v, n') = (ATv, cA™'m) = c(v, AA"'n) = c(v, n) # 0.
27

According to PROPOSITION 1, the cross ratio of image
points A’, B', C', and D' is

_lmj,me, v'| fimy, mp, v'|

[A’'B'C'D'] = ——— ———. (28)
Imp, me, v'|/ [mp, mp, v'|
Note the relationships
|m}, m¢, v = YaYclATm,, ATmc, Ay
=yaycdetAT|m,, m¢,v|,
lmp, me, v'| = veYc|lATmy, ATme, ATv|
= ypycdet AT|mg, me, v,
(29)

|mj,mp, v'|= YaYplATm,, ATmy, ATv|
= yaypdet AT|m,, mp, v/,

m'B, m'D,V'l_— ')’B‘yl)lA mB,A mD,A VI
)Byl)detA lmB,mD,Vl,

If these are substituted into Eq. (28), constants vy,, v,
Yc» ¥, and det AT are all canceled out, yielding the
expression of [ABCD]. =

Let P, Py, and P, be three distinct points on line /.
The (one-dimensional) projective coordinate [P] of point
P on line | with P, the supporting point, P, the origin,
and P, the unit point is defined by

[P] = [P.PoP,P) (30)
(Fig. 5a). If P coincides with any of P.., Py, and P,, the
limit is taken. Evidently,

[P.] = x=, [Po]l=0, [P]=1, @31
R
P 00
R 1
R
0

FIG. 5. (a) One-dimensional projective coordinate. (b) Two-dimen-
sional projective coordinates.
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where the sign of [P..] depends on which side the limit is
taken from. For brevity, let us call [P] the coordinate
with respect to {P., Py, P;}.

This projective coordinate reduces to the ordinary coor-
dinate (Euclidean coordinate) if P, is the ideal point of
line  located at infinity. Combining this fact and CoroL-
LARY 3, we observe the following *‘3-D interpretation’’:

PROPOSITION4. Let P and P, be distinct space points
onaspace linel, and P, and P, their corresponding image
points. Let P, be the vanishing point of the space line l.
The coordinate of an image point with respect to {P,,
Py, P;} coincides with the Euclidean coordinate of the
corresponding space point on the space line | with P, as
the origin and |P oP | as unit length.

Let P.., P,., Py, and P, be four coplanar points in
general position. The two-dimensional projective coordi-
nates [P] = (x, y) of point P with P and P,. the support-
ing points, P, the origin, and P, the unit point are defined
as follows. Let P; and P, be the intersections of P,P
with P,..P, and P,..P, respectively (Fig. 5b). The x coordi-
nate is defined by the cross ratio

x = [P PoP Pl (32)
Similarly, let P, and P, be the intersections of P,P,.. with
P.P;and P_P, respectively. The y coordinate is defined
by the cross ratio

y= [PyocPOPyle]- (33)

Evidently,

[P:(‘”] = (IOO’ 0)9 [Pya:] = (Oi IOO)’

(34)
[Po] =(0,0), [P]=(1,1).
For brevity, let us call (x, y) the coordinates with respect
to{Pxocanw’ POv P[}

These projective coordinates reduce to the ordinary
Cartesian coordinates (Euclidean coordinates) if (i) P,
and P, are ideal points located at infinity, (ii) PoP,. and
P,P,. are orthogonal to each other, and (iii) |PoP,,| =
|PoP,|. Thus, we again observe the following 3-D inter-
pretation.

PROPOSITIONS. Let P, P, and P, be distinct space
points on a planar surface in the scene such that P,P ; 1
PoP, and |PoP | = |PoP,|. Let Py, Py, and P, be
their corresponding image points. Let P and P be,
respectively, the intersections of image lines PyP, and
PoP,; with the vanishing line of the surface. The coordi-
nates (x, y) of an image point with respect to {P,., P,
Py, P} coincide with the Euclidean coordinates of the
corresponding space point on the surface with P, as the
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origin, PoP 4 and P Py as the x and the y axes, respec-
tively, and |PoP 4| = |P oP | as unit length.

The definition of two-dimensional projective coordi-
nates and the projective invariance of cross ratio (THEO-
REM 3) imply the following:

PROPOSITION 6. A unique collineation is determined
that maps four arbitrarily given image points in general
position to four arbitrarily given image points in general
position.

Proof. A two-dimensional projective coordinate sys-
tem is defined by the first set of four image points by
arbitrarily choosing them as the supporting points, the
origin, and the unit point. Define the corresponding co-
ordinate system from the second set of points. Due to
the projective invariance of cross ratio (THEOREM 3), the
collineation that maps the first set of image points to the
second set maps an image point of coordinates (x, y) with
respect to the first system to the image point of the same
coordinates (x, y) with respect to the second system. =

PROPOSITION 7. A unique collineation is determined
that maps four arbitrarily given image lines in general
position to four arbitrarily given image lines in general
position.

Proof. Four image lines in general position have six
intersections, among which four image points in general
position can be chosen. They define a two-dimensional
projective coordinate system, and PROPOSITION 6 ap-
plies. =

The above facts are mere restatements of well known
facts in projective geometry [13]. However, our interest
is in actual computations. Let (a, b, ¢) denote the matrix
consisting of columns a, b, and c in this order.

PrOPOSITION 8. Let m,., m,., my, and m; be the
N-vectors of image points P, P,.., Py, and P in general
position, respectively. The collineation that maps image
points (£, 0), (0, =), (0, 0), and (f, f) to image points
P, Py, Py, and Py is given by the matrix

A = k(am,., bm,., cm,)", (35)
where a, b, and ¢ are defined by
a
b = (mxx, my,,;, mo)_lml, (36)
c

and k is a constant that scales A so that det A = 1.

Proof. The N-vectors of image points (*, 0),
(0, £), (0, 0), and (f, f) are, respectively,
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1 0 0 1/V3
i(O),i(l),i—(O ,:(1/\/3T . 37
0 0 1 1/V3

If matrix A is defined by Eqgs. (35) and (36), it is easy to
see that

e
o (3] -om

1/V3 a
-:N[AT(II\/E)] =+N |:(mx,c, m,., mo)(b)] = xm,.
1/V3 c

(39
"

(38)

From this proposition, we can obtain the following pro-
cedure for computing the coordinates (x, y) of image point
P of N-vector m with respect to {P,.., P,.., Py, P;}:

procedure projective-coordinates (P,
P,, P)

1. Compute the collineation A that maps (*, 0),
(0, =), (0, 0), and (f, f) to P,.., Py, Py, and P, respec-
tively, by PROPOSITION 8.

2. Compute p = (py, P, p3) by p = £N[A"m].

3. Return (x, y) = (fp\/ps, fpo/P3)-

Using this, we can obtain the following procedure for
computing the collineation A that maps a set of four image
points {A, B, C, D} in general position to another set of
four image points {A’, B’, C', D'} in general position:

Pxec’ Pya:y

procedure point-collineation (A, B, C, D; A', B’,
D', C")

1. Compute the collineation A, that maps (*, 0),
(0, +), (0,0), and (f, f)to A, B, C, and D, respectively,
by PROPOSITION 8.

2. Compute the collineation A, that maps (o, 0),
0, £), (0, 0), and (f, f)to A’, B', C', and D', respec-
tively, by PROPOSITION 8.

3. Return collineation A = A['A,.

Since the collineation for image lines is contragradient
to the corresponding collineation for image points (Sec-
tion 2.3), we can also obtain a procedure for computing
the collineation that maps a set of four image lines {/,,
l,, I3, 14} in general position to another set of four image
lines {/1, 15, I3, 14} in general position by making use of
the polarity between image points and image lines [5].

NOTE

If image line / has N-vector n, the image point P having
the same N-vector n is called the pole of image line /,
which is also called the polar of image point P (with
respect to the ‘‘absolute conic’’; see [5] for the details).
Thus,

procedure line-collineation (I;, 1, Iy, l3; 1}, 13,
I3, 1)
1. Compute the collineation A that maps the poles of

l,,1,,1;,and I, to the poles of 11, 13, /3, and I}, respectively.
2. Return collineation (A™!)7.

3.3.

A set of collinear points is called a range, and the line
passing through them is called its axis. A range of four
points {A, B, C, D} is called a harmonic range if

Harmonic Range of Points

[ABCD] = —1. (40)
We also say that points A and B harmonically divide points
C and D. From Eq. (9), we see that if {A, B, C, D}is a
harmonic range, then so are {A, B, D, C}, {B, A, C, D},
{B,A,D,C},{C,D,A,B},{C,D,B,A},{D,C, A, B},
and {D, C, B, A}. The following is a direct consequence
of PROPOSITION 2:

PROPOSITION 9. Let{A, B, C, D} be a harmonic range,
and n the N-vector of its axis. If m,, mg, mc, and m,,
are their respective N-vectors, the N-vector of one, say
my, is determined from the N-vectors of the rest in the
Sform

mp = £N[|mg, mc, nlm, + |m,, mc, n|mg). (41)

Harmonic ranges of image points play an important role
in 3-D interpretation of images as the following proposi-
tion suggests (Fig. 6a):

ProPosITION 10. Let A and B be distinct space
points, and let C be their midpoint. If A, B, and C are
their corresponding image points, and if P, is the vanish-
ing point of the space line passing through the space
points A and B, then {P.., C, A, B} is a harmonic range.

(@) (b)

FIG. 6.
rangle.

(a) Harmonic range of image points. (b) Complete quad-



NOTE

Proof. If P is the ideal point of the space line passing
through A and B, then [P,CAB] = -1 from Eq. (8).
The perspective invariance of cross ratio (COROLLARY 3)
implies [P.CAB] = [P.CAB] = -1. =

Let A, B, C, and D be four coplanar points in general
position. Let P be the intersection of AB and CD, and Q
the intersection of BC and DA. Such a set of six points
{A,B,C,D, P, Q}is called a complete quadrangle (Fig.
6b). The following is one of the fundamental theorems of
projective geometry:

THEOREM 4. Let {A, B, C, D, P, Q} is a complete
quadrangle. Let R be the intersection of AC and PQ, and
S the intersection of BD and PQ. Let I be the intersection
of AC and BD. Then the following are all harmonic
ranges:

{R,1,A,C}, {S,1,B,D}, {P,Q,R,S}. (42

Proof. Since any four coplanar points in general posi-
tion can be mapped to any four coplanar points in general
position by some collineation (PROPOSITION 6), the quad-
rangle ABCD can be mapped to a rectangle (Fig. 7a). Then
R and S are mapped to the ideal points of the two diagonals
AD and BC, respectively, and |Al| = |CI|and |BI| = | DI|.
Hence, {R, I, A, C} and {S, I, B, D} are both harmonic
ranges (ProrosITION 10). The projective invariance of
cross ratio (THEOREM 3) implies that [R, I, A, C} and
{S,1, B, D} are both harmonic ranges in any configuration.
On the other hand, the quadrangle ABCD can also be
mapped to an isosceles trapezoid (Fig. 7b). Then |RQ| =
|SQ| and P is the ideal point of line RQS. Hence, {P, Q,
R, S} is a harmonic range and is so in any configuration
due to the projective invariance of cross ratio (THEO-
REM3). =

This theorem itself is well known as a mathematical
fact, but if this is combined with our computational proce-
dure of PROPOSITION 9, we can obtain many useful compu-
tational techniques. For example, the N-vector of R is
computed in terms of the N-vectors of A, C, and /, and
the N-vector of § in terms of the N-vectors of B, D, and
I (see Fig. 6b) by

43)
(44)

h‘\~‘ ",' e B
A g P )
)

(@ (b)

mg = =N[|mc, m;, nyclm, + [m,, m;, n,clmcl,

mg = =N([|mp, m;, ngp|mp + |my, m;, ngp/my],

v

FIG. 7. (a) Rectangle. (b) Isosceles trapezoid.

379

FIG. 8. The N-velocity m of a moving image point and the N-vector
n of its trajectory.

where m,, mg, etc. are the N-vectors of image points A,
B, etc., and n ¢ and ng, are the N-vectors of image lines
AC and BD, respectively.

If ABCD is a projection of a quadrilateral (a rectangle
or a square in particular) in the scene, image points R
and S are the vanishing points of the diagonals, which
indicates the 3-D orientations of the corresponding space
lines (THEOREM 1), whereas image line RS is the vanishing
line of the quadrilateral, which indicates the orientation
of the corresponding surface in the scene (THEOREM 2).

4. 3-D MOTION AND FOCUSES OF EXPANSION

4.1.

Consider a space point of N-vector m moving in the
scene. Let us call the time derivative 1 of m the N-velocity
of the point [5]. Note that N-velocity m is not normalized
into a unit vector. Since the N-vector m is a unit vector,
differentiation of |m||> = (m, m) = 1 yields

PrOPOSITION 11. The N-vector and the N-velocity of
a moving point are orthogonal to each other:

N-Velocities and Trajectories

(m, m) = 0. 45)

Projection of a translating space point defines a straight
trajectory on the image plane. Its N-vector is given as
follows:

PROPOSITION 12. Ifm and th are the N-vector and the
N-velocity, respectively, of a translating space point, the
N-vector of its trajectory on the image plane is

n = =N[m X m]. (46)

Proof. Consider the plane passing through the view-
point O and intersecting the image plane along the trajec-
tory. Since m and m are both contained in this plane (Fig.

8a), the unit surface normal to this plane (i.e., the N-vector
of the trajectory) is given by Eq. (46). =

4.2. Focus of Expansion

Asis well known, projections of translating space points
seem to be moving on the image plane away from or
toward a fixed point, which is known as the focus of
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expansion (Fig. 8b). This fact is obvious from THEOREM
1 and COROLLARY 1, since the focus of expansion is simply
the vanishing point of the trajectories in the scene. Thus,

THEOREM 5. A space point translating in the direction
of unit vector u has, when projected onto the image plane,
a focus of expansion whose N-vector is *u.

COROLLARY 4. Projections of rigidly translating
space points have a common focus of expansion on the
image plane.

The focus of expansion is easily computed in terms of
N-vectors if projections of multiple space points translat-
ing in the scene are observed. The details of the computa-
tional procedures are discussed in [5]. Here, we point out
that the focus of expansion can also be computed from
an image motion of a single space point if its projection
is observed over at least three frames at known times ¢,
t,, and ¢, provided that the space point is translating
with a constant velocity.

PROPOSITION 13.  Ifm, is the N-vector of a space point
translating with a constant velocity at time t,, a = 1, 2,
3, and if n is the N-vector of its trajectory, the N-vector
u of the focus of expansion is given by

t—1t
u= tN[lm;,mz,nlm, - ﬁ]m,, m,, n|m3], 47

provided that the three image points are all distinct.

Proof. Let P(t,) be the image points at times 7,, @ =
1,2, 3, and P, the focus of expansion (Fig. 9). From the
perspective invariance of cross ratio (COROLLARY 3), their
cross ratio is given by

(P.P(t)P(1)P(t;)] =§§%§'. 48)

Hence, P. is computed from the N-vectors of P(¢,), a =
1, 2, 3, by PrROPOSITION 2 in the form of Eq. (47). =

In particular, if ¢, , t,, and ¢, are at equal time intervals,
the set {P,., P(t,), P(t,), P(t;)} is a harmonic range. Hence,

COROLLARY 5. Ifm,, m, and m; are the N-vectors of
a space point translating with a constant velocity at times

PP, py,)

(b)

(@)

FIG. 9. (a) The focus of expansion. (b) The focus of expansion can
be computed from a single point moving over three frames.

NOTE

1, t,, and ty in that order at equal time intervals, and if
n is the N-vector of its trajectory, the N-vector u of the
SJocus of expansion is given by

u= -'—-Nllm}s m,, I'll'nl + Iml » My, n|m3]v (49)

provided that the three image points are all distinct.

Conversely, if distinct projections P(¢;) and P(¢,) of a
translating space point at two different times are ob-
served, and if the focus of expansion P, is known, the
position of the image point at an arbitrarily specified time
t can be located on the trajectory by assuming that the
corresponding space point is translating with a constant
velocity. All we need to do is define on the trajectory the
‘“coordinate’’ [P] with respect to {P.., P(t,,), P(t,)}. Then,
[P] indicates the time of passage scaled so that ¢, = 0 and
t, = 1 (PROPOSITION 4).

The focus of expansion can also be compute from a
single time instance if the N-vector m, the N-velocity m,
and the acceleration m are given.

PROPOSITION 14. Ifmis the N-vector of a space point
translating with a constant velocity, the N-vector u of the
focus of expansion is given by

u = =N([|m(’mh — (i, fm)m]. (50

Proof. See COROLLARY 5. If we put At =1, — t, =

t, — t, and drop subscript 1, we can write

m, = m + mAr + $in(Ar)’ + O(Ar), 51)

m; = m + 2mAs + 2m(Ar)? + O(At),

where O(...)" denotes terms of order » or higherin....
Substituting these into Eq. (49), we obtain

u = =N([(2|m, m, n|m — [m, i, n| m}(AN? + O(A?].  (52)

The operand of the normalization operator N[-] can be
multiplied by any scalar. Dividing the operand by 2(Ar)?
and taking the limit At — 0, we obtain

u = *=N[|m, m, n|m — }|m, M, n|m). (53)
The N-vector m of the trajectory is given by n =
+N[m X m] (ProrosITION 11). Since multiplication by a
constant does not affect the normalization N[-], the N-
vector n in Eq. (53) can be replaced by m X m. If we
note that jm| = 1 and (m, ) = 0 (PROPOSITION 11), we
see that

|m, i, m X m| = (m X 1, m X )

= |m|3m|? — (m, m)? = [ml?, (54



NOTE

 |m, i, m X m| = (m X1/, m X m)
= (m, m)(ria, t) — (m, m)(xi1, m)

= (ia, M)m. (55)
If these are substituted into Eq. (53), we obtain Eq.
50). =

5. CONCLUDING REMARKS

In this paper, we have presented a new computational
formulation of cross ratio with a view to applications to
computer vision problems by extending the framework
of computational projective geometry of Kanatani [5].
Many of the facts shown in this paper are in themselves
well known in projective geometry [13]. However, the
purpose of this paper is not to show these facts. Rather,
our interest is in the computational procedures for them.
In this sense, our formulation is not orthodox mathe-
matics.

The theme of projective geometry as mathematics is
‘‘generality’’ and “‘logical consistency’’, and hence
‘‘computational aspects’’ are not central [13]. To put it
differently, projective geometry can be regarded as a ma-
ture branch of mathematics for the very reason that it is
no longer concerned with the ‘‘real’’ world. In this paper,
the perspective invariance of cross ratio (THEOREM 3)
was first proved by assuming the assertions in Section
2.3, and then ProposITIONS 6 and 7 were derived. This
deviates from the orthodox approach. In fact, THEOREM
3 should be proved directly from axioms of projective
geometry, and then the assertions in Section 3 should be
derived by using PrOPOsITIONS 6 and 7, which can be
obtained from THEOREM 3.

In such an axiomatic construction, one first considers
a mapping between two planes defined in such a way that
one plane is projected onto the other from an external
“light source.”” Such a mapping is called a perspective
transformation, or simply perspectivity. A projective
transformation, or simply projectivity, is a mapping ob-
tained by a finite number of compositions of perspectivi-
ties. In this paper, we did not take such an axiomatic
approach in favor of computational convenience for real
image applications (see [13] for the traditional approach).

As typical examples, we constructed procedures for
computing the 3-D orientation of a planar shape from its
2-D projection image and the focus of expansion from an
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-image trajectory-of a single point by-taking advantage of

the perspective invariance of cross ratio and projective
coordinates, and the resulting 3-D interpretation of har-
monic range. The computational definition of cross ratio
given in this paper is expected to provide a theoretical
foundation to a wide range of computer vision applications
where cross ratio is involved.

REFERENCES

1. E. B. Barrett, P. M. Payton, N. N. Haag, and M. H. Brill, General
methods for determining projective invariants in imagery, CVGIP:
Image Understand. 53, 1991, 46-65.

2. M. H. Brill and E. B. Barret, Closed-form extension of the anhar-
monic ratio to n-space, Comput. Vision Graphics Image Process.
23, 1983, 92-98.

3. S.Chang, L. S. Davis, S. M. Dunn, J.-O. Eklundh and A. Rosenfeld,
Texture discrimination by projective invariants, Pattern Recognit.
5, 1987, 337-342.

4. 0.D. Faugeras and S. Maybank, Motion from point matches: Multi-
plicity of solutions, Int. J. Comput. Vision 4, 1990, 225-246.

5. K. Kanatani, Computational projective geometry, CVGIP: Image
Understand. 54, 1991, 333-348.

6. K. Kanatani, Geometric Computation for Machine Vision, Oxford
Univ. Press, Oxford, UK, 1993.

7. G. Lei, Recognition of planar objects in 3-D space from single
perspective views using cross ratio, IEEE Trans. Rob. Autom. 6,
1990, 432-437.

8. H. C. Longuet-Higgins, Multiple interpretations of a pair of images
of a surface, Proc. R. Soc. London A 418, 1988, 1-15.

9. S. J. Maybank, The projective geometry of ambiguous surface,
Philos. Trans. R. Soc. London A 332, 1990, 1-47.

10. S.J. Maybank, Ambiguity in reconstruction from image correspon-
dences, Image Vision Comput. 9, 1991, 93-99.

11. L. Nielsen, Automated guidance of vehicles using vision and projec-
tive invariant marking, Automatica 24, 1990, 135-148,

12. L. Nielsen and G. Sparr, Projective area-invariants as an extension
of the cross-ratio, CVGIP: Image Understand. 54, 1991, 145-159.

13. J. G. Semple and G. T. Kneebone, Algebraic Projective Geometry,
Clarendon Press, Oxford, UK, 1952 (reprinted 1979).

14. L. Svensson and A. Naeve, Estimating the n-dimensional motion
of a (n — I)-dimensional hyperplane from two matched images of
(n + 1) of its points, Proceedings of the Fifth Scandinavian Confer-
ence on Image Analysis, Stockholm, Sweden, June 1987, pp.
605-621.

15. R. Y. Tsai and T. S. Huang, Estimating three-dimensional motion
parameters of rigid planar patch, IEEE Trans. Acous. Speech Signal
Process. 29, 1981, 1147-1152.

16. R. Y. Tsai, T. S. Huang and W.-L. Zhu, Estimating three-dimen-
sional motion parameters of a rigid planar patch, II: Singular value
decomposition, /EEE Trans. Acous. Speech Signal Process. 30,
1982, 525-534.



