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Abstract

The convergence performance of typical numerical schemes for geometric fitting for computer vision applications is com-
pared. First, the problem and the associated KCR lower bound are stated. Then, three well known fitting algorithms are
described: FNS, HEIV, and renormalization. To these, we add a special variant of Gauss-Newton iterations. For initializa-
tion of iterations, random choice, least squares, and Taubin’s method are tested. Simulation is conducted for fundamental
matrix computation and ellipse fitting, which reveals different characteristics of each method.
c©2007 Published by Elsevier B.V. All rights reserved.
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1. Introduction

We consider the following class of problems, which we call geometric fitting: we fit a parameterized geometric
model (a curve, a surface, or a relationship in high dimensions) expressed as an implicit equation

F (x;u) = 0, (1)

to N data xα, α = 1, ..., N , typically points in an image or point correspondences over multiple images (Kanatani,
1996). We use the term “geometric” to mean that the data xα are elements of some “geometric” space, which makes
the problem very different from traditional numerical and statistical treatments (Björck, 1996). For example,
– There are no independent variables (inputs, controls, etc.). All we have is a set of observed data.
– There exists no explicit model which explains observations in terms of deterministic mechanisms and random

noise. All descriptions are implicit.
– The underlying data space is homogeneous and isotropic with no inherent coordinate system.
– The estimation process should be invariant to changes of the coordinate system with respect to which the data

are described.
The function F (x;u), which may be a vector, is parameterized by vector u. Each xα is assumed to be perturbed

by independent noise from its true value x̄α which strictly satisfies (1). By computing the parameter u of the
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fitted equation, one can discern the underlying geometric structure (Kanatani, 1996). In this paper, we focus on
problems for which (1) reduces to a linear form by changing variables. A large class of computer vision problems
fall into this category (Kanatani, 1996).

To solve this problem, various algebraic methods were proposed in the past (Bookstein, 1979; Sampson, 1982;
Taubin, 1991), but Kanatani (1996) pointed out that the problem can be regarded as statistical estimation and
that maximum likelihood (ML) produces an optimal solution. To compute ML, Chojnacki et al. (2000) proposed
a procedure called FNS, and Leedan and Meer (2000) presented a method called HEIV. In this paper, we add
a special variant of Gauss-Newton iterations. These methods attain a theoretical accuracy bound (KCR lower
bound) up to high order terms in noise (Chernov and Lesort, 2004; Kanatani, 1996). Kanatani’s renormalization
(Kanatani, 1993, 1996) also computes a solution nearly equivalent to them (Kanatani, 2007). However, all these
are iterative methods with different convergence properties, which also depend on the choice of initial values. The
purpose of this paper is to experimentally compare their convergence performance.

Sections 2 and 3 state the problem and the KCR lower bound. Section 4 describes the four algorithms: FNS,
HEIV, renormalization, and a new scheme based on Gauss-Newton iterations. In Sect. 5, we list three types
of initialization of the iterations: random choice, least squares, and Taubin’s method. Then, we show numerical
examples of two typical problems: fundamental matrix computation in Sect. 6 and ellipse fitting in Sect. 7. Section
8 concludes this paper.

2. KCR lower bound, least squares, and maximum likelihood

Kanatani (1996, 2007) proved that if noise in each datum xα is an independent Gaussian random variable with
mean 0 and covariance matrix V [xα], the following inequality holds for an arbitrary unbiased estimator û of u:

V [û] Â

(
N∑

α=1

(Pu∇uF̄α)(Pu∇uF̄α)>

(∇xF̄α, V [xα]∇xF̄α)

)−

. (2)

Here, Â means that the left-hand side minus the right is positive semidefinite, and the superscript − denotes
pseudoinverse. The symbols ∇xF̄α and ∇uF̄α denote the gradient of F (x;u) with respect to x and u, respectively,
evaluated at x = x̄α. The symbol Pu denotes projection onto the tangent space Tu(U) to the domain U of the
parameter u, which is generally a manifold in Rn. Throughout this paper, we denote the inner product of vectors
a and b by (a,b). Chernov and Lesort (2004) called the right-hand side of (2) the KCR (Kanatani-Cramer-
Rao) lower bound and showed that it holds except for O(ε4) even if û is not unbiased; it is sufficient that û is
“consistent” in the sense that û converges to the true value u as the noise in the data decreases.

It is a common strategy to define an estimator through minimization or maximization of some cost function,
although this is not always necessary. A widely used method is what is called least-squares estimation (LS) (and
by many other names such as algebraic distance minimization), minimizing

J =
N∑

α=1

F (xα;u)2. (3)

A more sophisticated method is maximum likelihood (ML) (also called by many other names). We regard the
data x1, ..., xN as perturbed from their true values x̄1, ..., x̄N by noise. The domain X of the data is generally
a manifold in Rm. Assuming that the noise is small, we view the noise as occurring in the tangent space Tx̄α(X )
to the domain X at each x̄α. Within that tangent space, the noise is assumed to be independent Gaussian with
mean 0 and covariance matrix V [xα]. Then, the likelihood of observing x1, ..., xN is

C
N∏

α=1

e−(xα−x̄α,V [xα]−(xα−x̄α))/2, (4)

where C is a normalization constant. The true values x̄1, ..., x̄N are constrained by (6). Maximizing (4) is equivalent
to minimizing the negative of its logarithm, which is written up to additive and multiplicative constants in the
form

J =
N∑

α=1

(xα − x̄α, V [xα]−(xα − x̄α)), (5)



1210 K. Kanatani, Y. Sugaya / Computational Statistics & Data Analysis 52 (2007) 1208–1222

called the (square) Mahalanobis distance. This is to be minimized subject to

F (x̄α;u) = 0, α = 1, ..., N. (6)

If x̄α is decomposed into inputs (or controls) and outputs (or observations), and if (6) can be explicitly solved
for the latter in terms of the former, we can eliminate this constraint and express (5) in terms of all unknowns.
The resulting problem is called the generalized least-squares problem (Björck, 1996). In this framework, we need
to regard the inputs, as well as the outputs, as noisy data, and we are minimizing the (Mahalanobis) distance
from the model to both inputs and outputs. This interpretation is known as total least squares with an errors-in-
variables model (Huffel and Lemmerling, 2002). This type of problem covers a large class of statistical problems
in practice. In the present case, however, there are no such distinctions as inputs and outputs, because the data
are points in a homogeneous and isotropic geometric space with no inherent coordinate system. Furthermore, we
cannot express any part of the unknowns in terms of the rest. Most problems for computer vision applications
belong to this type.

This difficulty can be overcome if noise is assumed to be small, which is usually the case in computer vision
applications. On this assumption, we can eliminate the constraint (6) by introducing Lagrange multipliers, doing
Taylor expansion, and ignoring higher order terms in noise. Then, we obtain the following form Kanatani (1996,
2007):

J =
N∑

α=1

F (xα;u)2

(∇xFα, V [xα]∇xFα)
. (7)

It can be shown that the covariance matrix V [û] of the resulting estimator û achieves the KCR lower bound
except for O(ε4) (Chernov and Lesort, 2004; Kanatani, 1996, 2007).

3. Linearized constraint

We concentrate on a special subclass of geometric fitting problems in which (1) reduces to the linear form

(ξ(xα),u) = 0, (8)

by changing variables. Since the data xα are m-dimensional vectors and the unknown parameter u is a p-
dimensional vector, ξ( · ) is a (generally nonlinear) embedding from Rm to Rp. In order to remove scale in-
determinacy of the form of (8), we normalize u to ‖u‖ = 1. The KCR lower bound for the linearized constraint
has the form

VKCR[û] =
( N∑

α=1

ξ̄αξ̄
>
α

(u, V [ξα]u)

)−
, (9)

where ξ̄α is an abbreviation for ξ(x̄α). The covariance matrix V [ξα] of ξ(xα) is given, except for higher order
terms in noise, in the form

V [ξα] = ∇xξ̄
>
α V [xα]∇xξ̄α, (10)

where ∇xξ̄α is the m × p Jacobian matrix

∇xξ =


∂ξ1/∂x1 · · · ∂ξp/∂x1

...
. . .

...

∂ξ1/∂xm · · · ∂ξp/∂xm

 . (11)

evaluated at x = x̄α. Note that in (9) we do not need the projection operator for the normalization constraint ‖u‖
= 1, because ξ̄α is orthogonal to u due to (8); for the moment, we assume that no other internal constraints exist.
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This subclass of geometric fitting problems covers a wide range of computer vision applications. The following
are typical examples:

Example 1. Fundamental matrix computation

Suppose we have N corresponding points in two images of the same scene viewed from different positions.
If point (xα, yα) in the first image corresponds to (x′

α, y′
α) in the second, the following epipolar equation holds

(Hartley and Zisserman, 2000):

(


xα

yα

1

 ,F


x′

α

y′
α

1

) = 0. (12)

Here, F is a matrix, called the fundamental matrix, that depends only on the relative positions and orientations
of the two cameras and their intrinsic parameters (e.g., their focal lengths) but not on the scene or the choice of
the corresponding points. If we define

ξ(x, y, x′, y′) =
(

xx′ xy′ x yx′ yy′ y x′ y′ 1
)>

,

u =
(

F11 F12 F13 F21 F22 F23 F31 F32 F33

)>
, (13)

the constraint (12) is linearized in the form of (8). If independent Gaussian noise of mean 0 and standard deviation
σ is added to each coordinates of (xα, yα) and (x′

α, y′
α), the covariance matrix V [ξα] has the form

V [ξα] = σ2



x̄2
α + x̄′2

α x̄′
αȳ′

α x̄′
α x̄αȳα 0 0 x̄α 0 0

x̄′
αȳ′

α x̄2
α + ȳ′2

α ȳ′
α 0 x̄αȳα 0 0 x̄α 0

x̄′
α ȳ′

α 1 0 0 0 0 0 0

x̄αȳα 0 0 ȳ2
α + x̄′2

α x̄′
αȳ′

α x̄′
α ȳα 0 0

0 x̄αȳα 0 x̄′
αȳ′

α ȳ2
α + ȳ′2

α ȳ′
α 0 ȳα 0

0 0 0 x̄′
α ȳ′

α 1 0 0 0

x̄α 0 0 ȳα 0 0 1 0 0

0 x̄α 0 0 ȳα 0 0 1 0

0 0 0 0 0 0 0 0 0



, (14)

except for O(σ4), where (x̄α, ȳα) and (x̄′
α, ȳ′

α), are the true positions of (xα, yα) and (x′
α, y′

α), respectively. The
fundamental matrix F should also satisfy the constraint that detF = 0 (Hartley and Zisserman, 2000). If this
constraint is taken into account, the KCR lower bound involves the corresponding projection operation (Kanatani,
1996; Kanatani and Ohta, 2003).

Example 2. Conic fitting

Suppose we want to fit a quadratic curve (circle, ellipse, parabola, hyperbola, or their degeneracy), or a conic,
to N points (xα, yα), α = 1, ..., N , in the plane. The constraint has the form

Ax2
α + 2Bxαyα + Cy2

α + 2(Dxα + Eyα) + F = 0. (15)

If we define

ξ(x, y) =
(

x2 2xy y2 2x 2y 1
)>

, u =
(

A B C D E F
)>

, (16)
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the constraint (15) is linearized in the form of (8). If independent Gaussian noise of mean 0 and standard deviation
σ is added to each coordinates of (xα, yα), the covariance matrix V [ξα] has the form

V [ξα] = 4σ2



x̄2
α x̄αȳα 0 x̄α 0 0

x̄αȳα x̄2
α + ȳ2

α x̄αȳα ȳα x̄α 0

0 x̄αȳα ȳ2
α 0 ȳα 0

x̄α ȳα 0 1 0 0

0 x̄α ȳα 0 1 0

0 0 0 0 0 0


, (17)

except for O(σ4), where (x̄α, ȳα) is the true position of (xα, yα).
In traditional domains of statistics where noise is large with a small number of point samples, the standard

approach is to express the conic in an explicit parametric form and minimize the sum of the square distances of
the sample points to the conic to be fitted by doing nonlinear minimization; see, e.g., Gander et al. (1994). In
image processing and computer vision applications, on the other hand, noise is small (often in the subpixel level)
but a vast number of data are processed. For this reason, the implicit form of (15) as is has been used (Bookstein,
1979; Sampson, 1982; Taubin, 1991), but the statistical characteristics of noise has not been fully incorporated.
The following formulation provides a statistically optimal fitting algorithms based on the implicit form of (15).

4. Numerical computation of ML

As we can see from (17) and (14), the covariance matrix V [ξα] of ξα in many practical problems is factored
into the form

V [ξα] = ε2V0[ξα], (18)

where ε is a constant that characterizes the noise and V0[ξα] is a matrix that depends only on the true data
values. Hereafter, we call ε the noise level and V0[ξα] the normalized covariance matrix.

For the constraint in the form of (8), the function (7) reduces to

J =
1
2

N∑
α=1

(u, ξα)2

(u, V0[ξα]u)
. (19)

The covariance matrix V [ξα] can be replaced by V0[ξα], because multiplication of J by a positive constant does
not affect its minimization. The ML solution is obtained by solving ∇uJ = 0. From (19), we have

∇uJ =
N∑

α=1

(u, ξα)ξα

(u, V0[ξα]u)
−

N∑
α=1

(u, ξα)2V0[ξα]u
(u, V0[ξα]u)2

, (20)

where we define

M =
N∑

α=1

ξαξ>
α

(u, V0[ξα]u)
, L =

N∑
α=1

(u, ξα)2V0[ξα]
(u, V0[ξα]u)2

. (21)

Note that J in (19) is a homogeneous function of degree 0 in u, i.e., multiplication of u by any nonzero number
does not change the value of J . Hence, the convention ‖u‖ = 1, or any other scale normalization, does not affect
the solution that minimizes (19). If we were to minimize

∑N
α=1(u, ξα)2, for instance, the solution would depend

on which scale normalization is used, e.g., the constraint ‖u‖ = 1 and the constraint u1 = 1 would result in
different solutions (Gander et al., 1994). To mend this, Bookstein (1979) introduced a scale constraint that is
invariant to Euclidean coordinate transformations so that the particular solution arising from that constraint
would consistently be obtained after coordinate changes.
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The fact that any scale constraint insures the invariance to coordinate changes in our formulation is a natural
consequence of the definition of J in (19). Since it is based on the likelihood, which has the same value whichever
coordinate system is used, it is invariant to similarity transformations (rotations, translations, and scale changes)
of the coordinate system. In fact, if we switch to a new coordinate system with respect to which ξα is expressed
as ξ̃α, then u is transformed into ũ in such a way that (ũ, ξ̃α) = C(u, ξα) for some nonzero constant C, and the
covariance matrix V0[ξα] is transformed to V0[ξ̃α] in such a way that (ũ, V0[ξ̃α]ũ) = C(u, V0[ξα]u). As a result, the
ML solution is invariant to similarity. This invariance would be lost if we adopted a pure algebraic formulation,
such as Bookstein (1979) and Gander et al. (1994), without introducing the covariance matrix V0[ξα].

4.1. Fundamental numerical scheme (FNS)

The procedure called FNS (fundamental numerical scheme) of Chojnacki et al. (2000) for solving (20) is de-
scribed as follows:

(i) Initialize u.
(ii) Compute the matrices M and L in (21).
(iii) Solve the eigenvalue problem

(M − L)u′ = λu′, (22)

and compute the unit eigenvector u′ for the eigenvalue λ closest to 0.
(iv) If u′ ≈ u except for sign, return u′ and stop. Else, let u ← u′ and go back to Step 2.
Later, Chojnacki et al. (2005) pointed out that convergence performance improves if we choose in Step 3 not

the eigenvalue closest to 0 but the smallest one. We call the above procedure the original FNS and the one using
the smallest eigenvalue the modified FNS. Whichever eigenvalue is chosen for λ, we have λ = 0 after convergence.
In fact, convergence means

(M − L)u = λu (23)

for some u. Computing the inner product with u on both sides, we have

(u,Mu) − (u,Lu) = λ. (24)

On the other hand, the definition (21) implies that (u,Mu) = (u,Lu) identically in u, meaning λ = 0.

4.2. Heteroscedastic errors-in-variables (HEIV)

The relation (20) can be rewritten as

Mu = Lu. (25)

The HEIV (heteroscedastic errors-in-variables) method of Leedan and Meer (2000) is to solve the generalized
eigenvalue problem Mu = λLu iteratively. In many applications, the matrix L is not positive definite, so we
cannot directly solve this generalized eigenvalue problem. For a wide range of problems, however, the vectors ξα

and u and the normalized covariance matrix V0[ξα] have the following form:

ξα =

 zα

C

 , u =

 v

a

 , V0[ξα] =

 V0[zα] 0

0> 0

 . (26)

For example, C = 1 and a = F33 for fundamental matrix computation (see (13) and (14)), and C = 1 and a =
F for conic fitting (see (16) and (17)).

Let us define (p − 1) × (p − 1) matrices M̃ and L̃ by

M̃ =
N∑

α=1

z̃αz̃>α
(v, V0[zα]v)

, L̃ =
N∑

α=1

(v, z̃α)2V0[zα]
(v, V0[zα]v)2

, (27)
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where we put

z̃α = zα − z̄, z̄ =
N∑

α=1

zα

(v, V0[zα]v)

/
N∑

β=1

1
(v, V0[zβ ]v)

. (28)

Then, the equation (25) splits into two (Chojnacki et al., 2005; Leedan and Meer, 2000):

M̃v = L̃v, (v, z̄) + Ca = 0. (29)

If we compute a (p − 1)-dimensional unit vector v that satisfies the first equation, the second gives a. Hence, we
obtain

u = N [

 v

a

], (30)

where N [ · ] denotes normalization to unit norm. The vector u that satisfies the first equation in (29) is computed
by the following iterations (Chojnacki et al., 2005; Leedan and Meer, 2000):

(i) Initialize v.
(ii) Compute the matrices M̃ and L̃ in (27).
(iii) Solve the generalized eigenvalue problem

M̃v′ = λL̃v′, (31)

and compute the unit generalized eigenvector v′ for the generalized eigenvalue λ closest to 1.
(iv) If v′ ≈ v except for sign, return v′ and stop. Else, let v ← v′ and go back to Step 2.
However, Leedan and Meer (2000) pointed out that choosing in Step 3 not the generalized eigenvalue closest

to 1 but the smallest one improves the convergence performance. Here, we call the above procedure the original
HEIV and the one using the smallest generalized eigenvalue the modified HEIV. Whichever generalized eigenvalue
is chosen for λ, we have λ = 1 after convergence. In fact, convergence means

M̃v = λL̃v (32)

for some v. Computing the inner product with v on both sides, we have

(v, M̃v) = λ(v, L̃v). (33)

On the other hand, the definition (27) implies that (v, M̃v) = (v, L̃v) identically in v, meaning λ = 1.

4.3. Renormalization

Kanatani’s renormalization (Kanatani, 1993, 1996) is to approximate the matrix L in (21) in the form

L ≈ cN, N =
N∑

α=1

V0[ξα]
(u, V0[ξα]u)

. (34)

The constant c is determined so that M−cN has eigenvalue 0. This is done by the following iterations (Kanatani,
1996):

(i) Initialize u and let c = 0.
(ii) Compute the matrix M in (21) and the matrix N in (34).
(iii) Solve the eigenvalue problem

(M − cN)u′ = λu′, (35)

and compute the unit eigenvector u′ for the eigenvalue λ closest to 0.
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(iv) If λ ≈ 0, return u′ and stop. Else, let

c ← c +
λ

(u′,Nu′)
, u ← u′ (36)

and go back to Step 2.

4.4. Projective Gauss-Newton iterations

Since the gradient ∇uJ is given by (20), we can minimize the function (19) by Newton iterations. If we evaluate
the Hessian ∇2

uJ , the increment ∆u in u is determined by solving

(∇2
uJ)∆u = −∇uJ. (37)

Since ∇2
uJ is singular (recall that J is constant in the direction of u), the solution is indeterminate. However, if

we use pseudoinverse and compute

∆u = −(∇2
uJ)−∇uJ, (38)

we obtain a solution orthogonal to u. Differentiating (20) and introducing Gauss-Newton approximation (i.e.,
ignoring terms that contain (u, ξα)), we see that the Hessian is nothing but the matrix M in (21). We enforce M
to have eigenvalue 0 for u, using the projection matrix Pu. The iteration procedure goes as follows:

(i) Initialize u.
(ii) Compute the matrices M and L in (21), and let

u′ = N [u − (PuMPu)−(M − L)u], Pu = I − uu>. (39)

(I is the unit matrix.)
(iii) If u′ ≈ u, return u′ and stop. Else, let u ← u′ and go back to Step 2.

5. Initialization

For initialization of the iterations, we test the following three:

5.1. Random choice

We generate nine independent Gaussian random numbers of mean 0 and standard deviation 1 and normalize
the vector consisting of them into unit norm.

5.2. Least squares (LS)

Approximating the denominators in (19) by a constant, we minimize

JLS =
1
2

N∑
α=1

(u, ξα)2 =
1
2
(u,MLSu), MLS =

N∑
α=1

ξαξ>
α . (40)

The function (40) is minimized by the unit eigenvector u of MLS for the smallest eigenvalue. This can be efficiently
computed using singular value decomposition (SVD): u is the left singular vector for the smallest singular value
of the p × N matrix having ξ1, ..., ξN as columns.

5.3. Taubin’s method

Replacing the denominators in (19) by their average, we minimize the following function:

JTB =
1
2

∑N
α=1(u, ξα)2∑N

α=1(u, V0[ξα]u)
=

1
2

(u,MLSu)
(u,NTBu)

, NTB =
N∑

α=1

V0[ξα]. (41)
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This is a modification of the method by Taubin (1991) (he did not take the covariance matrix into account). The
function (41) is minimized by solving the generalized eigenvalue problem

MLSu = λNTBu, (42)

for the smallest generalized eigenvalue. However, the matrix NTB is often not positive definite, so we decompose
ξα, u, and V0[ξα] in the form of (26) and define (p − 1) × (p − 1) matrices M̃LS and ÑTB by

M̃LS =
N∑

α=1

z̃αz̃>α , ÑTB =
N∑

α=1

V0[zα], (43)

where

z̃α = zα − z̄, z̄ =
1
N

N∑
α=1

zα. (44)

Then, the equation (42) splits into two:

M̃LSv = λÑTBv, (v, z̄) + Ca = 0. (45)

If we compute the unit generalized eigenvector v of the first equation for the smallest generalized eigenvalue λ,
the second gives a. Hence, u is given by (30).

6. Fundamental matrix computation

Figure 1(a) shows two simulated images of two planar grid planes joined at angle 60◦. The image size is 600×600
(pixels), and the focal length is 1200 (pixels). We added random Gaussian noise of mean 0 and standard deviation
σ (pixels) to the image coordinates of each grid point independently and estimated the fundamental matrix by
FNS, HEIV, renormalization, and projective Gauss-Newton iterations.

a b
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Fig. 1. (a) Simulated images of planar grid surfaces. (b) RMS error vs. noise level.
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Fig. 2. Average number of iterations vs. noise level. (a) Random initialization. (b) LS initialization. (c) Taubin initialization.

The fundamental matrix F should satisfy the constraint detF = 0 (Hartley and Zisserman, 2000), and Chojnacki
et al. (2004) presented a FNS-like procedure to incorporate this constraint. However, once the solution û of (20)
is obtained, it can be easily corrected so as to satisfy detF = 0 in such a way that the accuracy is equivalent to
the constrained minimization of (19) subject to detF = 0 except for higher order terms in σ (see Appendix A for
the procedure) (Kanatani, 1996; Kanatani and Ohta, 2003). So, we consider here the computation prior to this
correction.

Figure 1(b) plots for each σ the RMS (root-mean-squares) of ‖Puû‖ over 1000 independent trials. We compared
LS, Taubin’s method, and the four iterative methods starting from the Taubin solution and confirmed that for
each method the final solution does not depend on the initial value as long as the iterations converge. The dotted
line indicates the KCR lower bound implied by (9). We can see that Taubin’s method is considerably better than
LS. The four iterative methods indeed improve the Taubin solution, but the improvement is rather small. All
the solutions nearly agree with the KCR lower bound when noise is small and gradually deviate from it as noise
increases. Since FNS, HEIV, and projective Gauss-Newton minimize the same function, the resulting solution is
virtually the same. The renormalization solution is nearly equivalent to them.

Figure 2 shows the average number of iterations of each method for 1000 trials. We stopped when the increment
in u was less than 10−6 in norm (the sign of the eigenvector was chosen so that the orientation aligns with the
previous solution). Figure 2(a) is for random initialization. The original FNS did not converge for about 99% of
the trials after 100 iterations; the original HEIV not for about 40%. We stopped after 100 iterations and set the
iteration count to 100. We can see from Fig. 2(a) that the modified FNS/HEIV converge much more quickly than
the original FNS/HEIV. This can be explained as follows. If the computed u′ is close to the true value u, the
matrix L in (21) and the matrix L̃ in (27) are both close to O. Initially, however, they may be very different from
O when the initial value is randomly chosen. The relations (22) and (31) are written, respectively, as

(M − L − λI)u′ = 0, (M̃ − λL̃)v′ = 0. (46)

Note that L and L̃ are both positive definite. In order to cancel their effects, we need to choose λ to be negative
in the first equation and smaller than 1 in the second.

As predicted from this explanation, the difference between the original FNS/HEIV and the modified FNS/HEIV
shrinks as we use better initial values, as seen from Fig. 2(b), (c). We also see that the (original or modified) FNS is
more efficient than (original or modified) HEIV. Another finding is that, for random initialization, renormalization
is the most efficient. This is because we start solving (35) with c = 0, canceling the effect of N whatever it is,
and the resulting u′ is close to the LS solution. In contrast, FNS and HEIV may produce a solution very different
from the true value when initially the matrices L and L̃ are very different from O.
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As Fig. 2(b), (c) shows, however, the convergence performance of FNS and HEIV improves as we use better
initial values. Naturally, projective Gauss-Newton iterations converge faster when started from better initial values.
In contrast, renormalization behaves almost independently of initialization, confirming the above explanation.
Overall, Taubin-initialized (original or modified) FNS shows the best convergence performance. Here, we focus
only on the number of iterations, because the complexity of one iteration is nearly the same for all methods:
we solve the eigenvalue problem of a 9 × 9 matrix or the generalized eigenvalue problem of an 8 × 8 matrix or
compute the pseudoinverse of a 9 × 9 matrix. These computations take, for example, 1 ∼ 3ms, 2 ∼ 3ms, and
1 ∼ 3, respectively, for 100 corresponding pairs on Pentium 4 3.4GHz.

7. Ellipse fitting

7.1. Fitting to a short arc

Figure 3(a) shows 20 equidistant points (x̄α, ȳα) on an ellipse. We added Gaussian noise of mean 0 and standard
deviation σ to the x and y coordinates of each point independently and fitted an ellipse by different methods.
The equation (15) does not necessarily describe an ellipse. Even if the points are sampled from an ellipse, the
fitted equation may define a hyperbola or other curves in the presence of large noise, and Fitzgibbon et al. (1999)
presented a technique for preventing this. Here, however, we do not impose any constraints to prevent non-ellipses,
assuming that noise is sufficiently small. Recently, Kanatani (2006) showed that a “hyperaccurate” ellipse fitting
method exists. However, this is a correction to the ML solution, so the ML solution must be obtained first. Here,
we focus on the efficiency of ML computation.

Figure 3(b) plots for each σ the RMS of ‖Puû‖ computed over 1000 independent trials starting the Taubin
solution. As in the case of fundamental matrix computation, the final solution does not depend on the initial
value as long as the iterations converge, and the solutions of FNS, FNS, HEIV, and projective Gauss-Newton are
virtually the same. Renormalization also produces solutions very close to them, and their accuracy is close to the
KCR lower bound (dotted line).

For each σ, we computed the average number of iterations over 1000 independent trials (Fig. 4). We stopped
when the increment in u is less than 10−6 in norm as before. As in the case of fundamental matrix computation,
the modified FNS/HEIV always converge faster than the original FNS/HEIV. This is most apparent for random
initialization, for which the original FNS/HEIV did not converge for 16% and 49%, respectively, of the trials. We
can also see that the difference between the original FNS/HEIV and the modified FNS/HEIV shrinks as we use
better initial values. The behavior of renormalization, on the other hand, is almost unchanged, as before. Overall,
the most efficient method is the modified HEIV for whichever initialization. However, there is no difference between
(original or modified) FNS/HEIV if initialized by Taubin’s method.
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Fig. 3. (a) Twenty points on elliptic arcs on a short arc. (b) RMS error of ellipse fitting vs. noise level.
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Fig. 4. Average number of iterations for ellipse fitting vs. noise level. (a) Random initialization. (b) LS initialization. (c) Taubin
initialization.
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Fig. 5. (a) Twenty points on elliptic arcs on a long arc. (b) RMS error of ellipse fitting vs. noise level.

7.2. Fitting to a long arc

The comparative behavior of each method for points distributed over a short elliptic arc in Fig. 3(a) is more
or less similar to the case of fundamental matrix computation. However, the behavior is very different when a
long elliptic arc shown in Fig. 5(a) is used. Figure 5(b) shows the RMS error corresponding to Fig. 3(b). Now,
the LS solution, which is prone to statistical bias, is as accurate as Taubin’s method. This is because bias is less
likely to arise for a long arc (no bias would arise for the entire ellipse due to the symmetry). All solutions have
the accuracy close to the KCR lower bound.

Figure 6 shows the number of iterations corresponding to Fig. 4. This time, all methods converged within 10
iterations when initialized by LS or Taubin’s method, so the vertical axis is restricted over that range. The most
unexpected is the fact that the modified FNS is worse than the original FNS. For random initialization, the
modified FNS did not converge after 100 iterations for all 1000 trials, while the original FNS did not converge for
24% of the trials. This is related to the singularity of ellipse fitting (Chernov, 2007) (see Appendix B): Some of
the terms on the right-hand side of (19) diverge to ±∞. This happens when a data point exists near the center
of the current candidate fit, which is more likely to occur when the data points are distributed over a long arc.
As can be seen from Fig. 6, renormalization is the most stable for whichever initialization. As we noted earlier,
this is because the iterations start from c = 0. Projective Gauss-Newton iterations are also stable.
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Fig. 6. Average number of iterations for ellipse fitting to the points in Fig. 1(b) vs. noise level. (a) Random initialization. (b) LS

initialization. (c) Taubin initialization.

The above observations are based on the number of iterations, but as in the case of fundamental matrix
computation the complexity of each iteration is nearly the same for all methods. For 148 points (short arc)
extracted from a real image, for example, one iteration takes 1 ∼ 2ms for all methods, and for 414 points (long
arc), it takes 3 ∼ 5ms on Pentium 4 3.4GHz.

8. Conclusions

We have compared the convergence performance of different numerical schemes for geometric fitting. First, we
stated the problem and the associated KCR lower bound. Then, we described the algorithms of FNS, HEIV,
and renormalization, to which we added projective Gauss-Newton iterations. For initial values, we tested random
choice, LS, and Taubin’s method. Numerical experiments of fundamental matrix computation and ellipse fitting
revealed different characteristics of each method. Overall, FNS exhibited the best convergence performance if
initialized by Taubin’s method.
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Appendix A. Rank constraint optimization

The computed fundamental matrix F can be optimally corrected so as to satisfy detF = 0 as follows (Kanatani,
1996; Kanatani and Ohta, 2003). Let û be the 9-dimensional vector representation of the ML estimate F̂ of the
fundamental matrix F computed without the constraint detF = 0. Compute

M̃ =
N∑

α=1

(Pûξα)(Pûξα)>

(û, V0[ξα]û)
, (A.1)

where Pû is the projection matrix defined in (39). Let λ1 ≥ λ2 ≥ · · · ≥ λ9 (= 0) be the eigenvalues of M̃, and
u1, u2, ..., u9 (= û) the corresponding orthonormal system of eigenvectors. The covariance matrix V [û] of û is
estimated to be V0[û] up to a positive multiplier in the following form (Kanatani, 1996):

V0[û] =
u1u>

1

λ1
+ · · · + u8u>

8

λ8
. (A.2)
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For numerical computation, we multiply this expression by λ8 to make it O(1) to prevent numerical instability.
We update û and V0[û] iteratively until they converge as follows:

û ← N [û − (detF)V0[û]û†

(û†, V0[û]û†)
], V0[û] ← PûV0[û]Pû. (A.3)

Here, û† denotes the following transformation of the vector û, corresponding to the cofactor F† of F̂:

û† =



û5û9 − û8û6

û6û7 − û9û4

û4û8 − û7û5

û8û3 − û2û6

û9û1 − û3û7

û7û2 − û1û8

û2û6 − û5û3

û3û4 − û6û1

û1û5 − û4û2



. (A.4)

Appendix B. Singularity of ellipse fitting

The error term ∆ξα in (8) is written to a first approximation in the form

∆ξα =
∂ξ

∂x

∣∣∣
x=xα,y=yα

∆xα +
∂ξ

∂y

∣∣∣
x=xα,y=yα

∆yα. (B.1)

By our assumption, we have E[∆x2
α] = E[∆y2

α] = σ2 and E[∆xα∆yα] = E[∆xα]E[∆yα] = 0. Hence the covariance
matrix V [ξα] in (10) is written as

V [ξα] = σ2
(∂ξ

∂x

∂ξ>

∂x
+

∂ξ

∂y

∂ξ>

∂y

)∣∣∣
x=xα,y=yα

(B.2)

The function (19) has a singularity if there is some α for which

(u, V [ξα]u) =
(
(u,

∂ξ

∂x
)2 + (u,

∂ξ

∂y
)2

)∣∣∣
x=xα,y=yα

= 0. (B.3)

This occurs when there is a point (xα, yα) such that

(u,
∂ξ

∂x
) = (u,

∂ξ

∂y
) = 0. (B.4)

Since the vector ξ is a function of x and y in the form of (16), the equation z = (u, ξ(x, y)) defines a convex
surface in the xyz space. The equation (15) describes its cross section with the xy plane. Since this surface takes
its minimum at the center of the ellipse, we have

∂(u, ξ)
∂x

= (u,
∂ξ

∂x
) = 0,

∂(u, ξ)
∂y

= (u,
∂ξ

∂y
) = 0, (B.5)

there. Hence, the function (19) diverges to ±∞ if one of the data points (xα, yα) is at the center of the ellipse
represented by u.
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