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A B S T R A C T

This work extends the circle fitting method of Rangarajan and Kanatani (2009) to ac-
commodate ellipse fitting. Our method, which we call HyperLS, relies on algebraic distance
minimization with a carefully chosen scale normalization. The normalization is derived using

a rigorous error analysis of least squares (LS) estimators so that statistical bias is eliminated
up to second order noise terms. Numerical evidence suggests that the proposed HyperLS
estimator is far superior to the standard LS and is slightly better than the Taubin estimator.
Although suboptimal in comparison to maximum likelihood (ML), our HyperLS does not

require iterations. Hence, it does not suffer from convergence issues due to poor initializa-
tion, which is inherent in ML estimators. In this sense, the proposed HyperLS is a perfect
candidate for initializing the ML iterations.
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1. Introduction

Detecting circles and ellipses in images and computing their mathematical representation are the first step of many
computer vision applications including industrial robotic operations and autonomous navigation (Hartley and Zisserman,
2004; Kanatani, 1993, 1996). Among many circle/ellipse fitting algorithms presented in the past, those regarded as the
most accurate are methods based on maximum likelihood (ML), and various computational schemes have been proposed
including the FNS (Fundamental Numerical Scheme) of Chojnacki et al. (2000), the HEIV (Heteroscedastic Errors-in-
Variable) of Leedan and Meer (2000) and Matei and Meer (2006), and the projective Gauss-Newton iterations of Kanatani
and Sugaya (2007). Strictly speaking, these schemes do not directly maximize the likelihood but minimize what is known
as the Sampson error (Hartley and Zisserman, 2004), but it can be proved that the ML solution is obtained by running
a few iterations of a Sampson error minimization algorithm (Kanatani and Sugaya, 2010). It has also been observed that
the solution that minimizes the Sampson error agrees with the ML solution up to several significant digits (Kanatani and
Sugaya, 2008). Efforts have also been made to add a posterior correction (Kanatani, 2006), but all ML-based methods
already achieve the theoretical accuracy limit, called the KCR lower bound (Chernov and Lesort, 2004; Kanatani, 1996,
2008), up to high order noise terms. Hence, there is practically no room for further accuracy improvement. However, all
ML-based methods have one drawback: iterations are required for nonlinear optimization, and the computation often fails
to converge in the presence of large noise, depending on the accuracy of the initialization. Therefore, accurate algebraic
methods that do not require iterations are very much desired, even though the solution may not be strictly optimal.

An “algebraic” method refers to minimizing an easy-to-minimize polynomial, called “algebraic distance”. However, all
algebraic methods have an inherent weakness: we need to impose a normalization to remove scale indeterminacy, and
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the solution depends on the choice of the normalization. Al-Sharadqah and Chernov (2009) and Rangarajan and Kanatani
(2009) exploited this freedom for fitting circles (see Al-Sharadqah and Chernov (2009) for comprehensive references of
existing circle fitting algorithms) and optimized the normalization so that the solution has high accuracy. The aim of this
paper is to generalize their approach to include ellipses as well.

In Secion 2, we describe the algebraic approach for circle/ellipse fitting and point out the importance of choosing a
correct normalization. Section 3 presents a rigorous error analysis of algebraic solutions using the perturbation theory of
Kanatani (2008). In Section 4, we derive concrete expressions for the covariance and bias of algebraic solutions in general
and their specific forms for the standard least squares (LS) and the Taubin method, an algebraic method known to be
highly accurate. Section 5 presents our method, which we call hyper least squares, or HyperLS, by deriving a normalization
such that the solution is unbiased up to the second order noise terms. In Section 6, we provide numerical evidence which
suggests that HyperLS performs far better than the standard LS and, although the difference is small, is even superior
to the Taubin method. Thus, it is a best candidate for the initialization of ML iterations. In Section 7, we conclude.

2. Algebraic fitting

A circle is represented by

A(x2 + y2) + 2f0(Dx + Ey) + f2
0 F = 0, (1)

and an ellipse by

Ax2 + 2Bxy + Cy2 + 2f0(Dx + Ey) + f2
0 F = 0, (2)

where f0 is a scale constant that has the order of the x and y coordinates of the data; without it, finite precision numerical
computation would incur serious accuracy loss when x and y are in the order of 100–1000, a typical situation in image
processing applications. Letting f0 be of the order of x and y is equivalent to scaling x and y into the range ±1. For
interested readers, a brief discussion is given in Appendix A on how the solution would change by altering the value of
f0 using a hypothetical computer with infinite precision.

Our task is to compute the coefficients A, ..., F so that the circle of (1) or the ellipse of (2) fits the given points (xα, yα),
α = 1, ..., N , as closely as possible. The least squares (LS) estimator minimizes the algebraic distance

J =
1
N

N∑
α=1

(
A(x2

α + y2
α) + 2f0(Dxα + Eyα) + f2

0 F
)2

(3)

for circles and

J =
1
N

N∑
α=1

(
Ax2

α + 2Bxαyα + Cy2
α + 2f0(Dxα + Eyα) + f2

0 F
)2

(4)

for ellipses. This approach is also known as the direct linear transformation (DLT ) (Hartley and Zisserman, 2004).
Evidently, (3) and (4) are minimized by A = · · · = F = 0 if no restriction is placed on A, ..., F . In an effort to avoid the
trivial solution, many forms of normalization have been proposed for ellipse fitting including

F = 1, (5)

A + C = 1, (6)

A2 + B2 + C2 + D2 + E2 + F 2 = 1, (7)

A2 + B2 + C2 + D2 + E2 = 1, (8)

A2 + 2B2 + C2 = 1, (9)

AC − B2 = 1. (10)

The normalization (5) reduces minimization of (4) to simultaneous linear equations (Albano, 1974; Cooper and Yalabik,
1976; Rosin, 1993). However, the ellipse (2) with (5) cannot pass through the origin (0, 0). The use of (6) remedies this
(Gander et al., 1995; Porrill, 1990; Rosin and West, 1995). The most frequently used is (7) (Paton, 1970) 1 , but some
authors use (8) (Gnanadesikan, 1977). The use of (9) imposes invariance to coordinate transformations in the sense that
the ellipse fitted after the coordinate system is translated and rotated is the same as the originally fitted ellipse translated
and rotated afterwards (Bookstein, 1979). In this respect, (6) and (10) also have that invariance. The use of (10) prevents
(2) from representing a parabola (AC − B2 = 0) or a hyperbola (AC − B2 < 0) (Fitzgibbon et al., 1999). In this paper,
we do not exclude nonellipse solutions but derive a method that computes A, ..., F as closely to their true values as

1 Some authors write an ellipse as Ax2+Bxy+Cy2+Dx+Ey+F = 0. The meaning of (7) changes accordingly, but we ignore such differences;
no significant consequence would result.
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possible. For circles, too, Al-Sharadqah and Chernov (2009) pointed out that many existing methods, including those of
K̊asa (1976), Pratt (1987), and Taubin (1991), each derived rather heuristically, can be characterized by the difference in
scale normalization. The purpose of this paper is to find theoretically the “best” normalization.

If we define ξ and θ by

ξ = (x2 + y2, 2f0x, 2f0y, f2
0 )>, θ = (A, D,E, F )> (11)

for circles and

ξ = (x2, 2xy, y2, 2f0x, 2f0y, f2
0 )>, θ = (A,B,C,D,E, F )> (12)

for ellipses, (1) and (2) can be expressed in the compact form

(ξ, θ) = 0, (13)

where and hereafter we denote the inner product of vectors a an b by (a,b). Let ξα be the value of ξ for (xα, yα). Then,
(3) and (4) can be expressed as

J =
1
N

N∑
α=1

(θ, ξα)2 =
1
N

N∑
α=1

θ>ξαξ>
α θ = (θ,Mθ), (14)

where we define the matrix M as follows:

M =
1
N

N∑
α=1

ξαξ>
α . (15)

As mentioned before, (14) is trivially minimized by θ = 0 unless some scale normalization is imposed on θ. Following
Al-Sharadqah and Chernov (2009) and Rangarajan and Kanatani (2009), we consider the following class of normalizations

(θ,Nθ) = c (16)

with some symmetric matrix N for a nonzero constant c. In (16), θ is the optimization parameter and N is an unknown
matrix to be determined, while c is a constant fixed for the problem. We need not specify the value of c, because N
is unknown. In fact, (16) can be written as (θ, (N/c)θ) = 1, and we may alternatively determine the unknown N′ =
N/c instead of N. However, the form of (16) with the value and its signature of c unspecified is more convenient in our
analysis.

Note that (7), (8), (9), and (10) are in the form of (16) as are, but (5) and (6) can also be included as F 2 = 1 and (A+C)2
= 1. For (5)–(9), the matrix N is positive semidefinite (positive definite for (7)) but not for (10). In the following, we
allow N to be nondefinite (i.e., neither positive nor negative definite), so the constant c in (16) is not necessarily positive.
Given the matrix N, the standard treatment of algebraic fitting goes as follows. As is well known, the solution θ that
minimizes (14) subject to (16), if it exists, is obtained as the solution of the generalized eigenvalue problem

Mθ = λNθ. (17)

If there is no noise in the data, we have (θ, ξα) = 0 for all α. Hence, (15) implies Mθ = 0, so λ = 0. If N is positive
definite or semidefinite, the eigenvalue λ is positive in the presence of noise. The corresponding solution is obtained as the
eigenvector θ for the smallest λ. Let us call the popular method of letting N = I (the use of (7) for ellipses) the standard
LS . In this case, (17) becomes an ordinary eigenvalue problem

Mθ = λθ, (18)

and the solution is the unit eigenvector θ of M for the smallest eigenvalue λ.
This is the traditional treatment of algebraic fitting, but the situation is slightly different in our case. Here, N is not yet

given and can be nondefinite; the eigenvalues may not be all positive. So, we face the problem of which of the eigenvalues
and eigenvectors of (17) to choose as a solution. In the following, we do perturbation analysis of (17) by assuming that λ
≈ 0 (Kanatani, 2008) and choose the solution to be the eigenvector θ for the λ with the smallest absolute value. We also
regard (17) as the definition of our “algebraic method”, rather than (14) and (16). This is because, while (17) always has
a solution, (14) may not be minimized subject to (16) by a finite θ. This can occur, for example, when the contour of
(θ,Mθ), which is a hyperellipsoid in the 9-D space of θ, happens to be elongated in a direction in the null space of N.
Then, the minimum of (θ,Mθ) could be reached in the limit of ‖θ‖ → ∞. Theoretically, such an anomaly can always
occur because M is a random variable defined by noisy data, and if the probability of such an occurrence is nearly 0, it
may still lead to E[‖θ̂‖] = ∞ (Cheng and Kukush, 2006). Once the problem is converted to (17), for which eigenvectors
θ have scale indeterminacy, we can adopt normalization ‖θ‖ = 1 rather than (16). Then, the solution θ is always a unit
vector.

3. Error analysis

Before proceeding to the error analysis of algebraic fitting, we need to introduce a statistical model of observation.
We regard each (xα, yα) as perturbed from its true position (x̄α, ȳα) by (∆xα, ∆yα), where ∆xα and ∆yα are Gaussian
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random variables of mean 0 and standard deviation σ. We do not impose any restrictions on the true positions (x̄α, ȳα)
except that they should lie on a (true) circle/ellipse. This is known as a functional model. We could also introduce some
statistical model according to which the true positions (x̄α, ȳα) are sampled. Then, the model is called structural . This
distinction is crucial when we consider limiting processes in the following sense (see Kanatani (2008) for more detailed
discussions about this). The traditional statistical analysis mainly focuses on the asymptotic behavior as the number of
observations increases to ∞. This is based on the reasoning that the mechanism underlying noisy observations would
better reveal itself as the number of observations increases (the law of large numbers) while the number of available data
is limited in practice. So, the estimation accuracy vs. the number of data is a major concern, and for ellipse fitting, too,
a consistent estimator in the sense that it produces the true solution in the limit N → ∞ of the number N of points
has been sought (Kukush et al., 2004). In image processing applications, however, we observe a single set of image data,
from which we do inference. The accuracy of the inference deteriorates as the noise in the data increases, so the inference
accuracy vs. the noise level is a major concern. Usually, the noise is very small, often subpixel levels. In view of this, it
has been pointed out that the “consistency” of estimators should more appropriately be defined by the behavior in the
limit σ → 0 of the noise level σ (Chernov and Lesort, 2004; Kanatani, 2008).

In this paper, we are interested in image processing applications, focusing on the perturbation analysis in the noise
level σ ≈ 0 for a fixed number N of points on the circle/ellipse. Thus, the functional model suits our purpose. If we
were to analyze the error behavior in the limit of N → ∞, a model that specifies how the data positions increase on
the circle/ellipse, e.g., whether the distribution is uniform or not, would be necessary, and the derivation of consistent
estimators for N → ∞ (e.g., Kukush et al. Kukush et al. (2004)) is based on such an assumption.

Under our setting, the observation vector ξα can be expressed as the sum

ξα = ξ̄α + ∆1ξα + ∆2ξα, (19)

where ξ̄α is the true value of ξα, and ∆1ξα, and ∆2ξα are the noise terms of the first and the second order, respectively.
For circles, we see from (11) that

∆1ξα = (2x̄α∆xα + 2ȳα∆yα, 2f0∆xα, 2f0∆yα, 0)>, ∆2ξα = (∆x2
α + ∆y2

α, 0, 0, 0)>. (20)

For ellipses, we see from (12) that

∆1ξα = (2x̄α∆xα, 2x̄α∆yα + 2ȳα∆xα, 2ȳα∆yα, 2f0∆xα, 2f0∆yα, 0)>,

∆2ξα = (∆x2
α, 2∆xα∆yα,∆y2

α, 0, 0, 0)>. (21)

We define the covariance matrix of ξα by V [ξα] = E[∆1ξα∆1ξ
>
α ], where E[ · ] denotes expectation. We regard ∆xα and

∆yα as independent Gaussian variables of mean 0 and standard deviation σ. Hence, V [ξα] = σ2V0[ξα], where

V0[ξα] =


4(x̄2

α + ȳ2
α) 2f0x̄α 2f0ȳα 0

2f0x̄α f2
0 0 0

2f0ȳα 0 f2
0 0

0 0 0 0

 , V0[ξα] = 4



x̄2
α x̄αȳα 0 f0x̄α 0 0

x̄αȳα x̄2
α + ȳ2

α x̄αȳα f0ȳα f0x̄α 0

0 x̄αȳα ȳ2
α 0 f0ȳα 0

f0x̄α f0ȳα 0 f2
0 0 0

0 f0x̄α f0ȳα 0 f2
0 0

0 0 0 0 0 0


, (22)

for circles and ellipses, respectively. Here, we have noted that E[∆xα] = E[∆yα] = 0, E[∆x2
α] = E[∆y2

α] = σ2, and
E[∆xα∆yα] = 0 according to our assumption. The method of Taubin (1991) is to use as N the matrix

NT =
1
N

N∑
α=1

V0[ξα]. (23)

This matrix contains the true values (x̄α, ȳα), which are replaced by the observations (xα, yα) in actual computation.
Substituting (19) into (15), we have

M =
1
N

N∑
α=1

(ξ̄α + ∆1ξα + ∆2ξα)(ξ̄α + ∆1ξα + ∆2ξα)> = M̄ + ∆1M + ∆2M + · · · , (24)

where · · · denotes noise terms of order three and higher. The matrix M̄ is the noise-free value of M, and ∆1M, and ∆2M
are

∆1M =
1
N

N∑
α=1

(
ξ̄α∆1ξ

>
α + ∆1ξαξ̄

>
α

)
, ∆2M =

1
N

N∑
α=1

(
ξ̄α∆2ξ

>
α + ∆1ξα∆1ξ

>
α + ∆2ξαξ̄

>
α

)
. (25)

We expand the solution θ and λ of (17) in the form

θ = θ̄ + ∆1θ + ∆2θ + · · · , λ = λ̄ + ∆1λ + ∆2λ + · · · , (26)

where the barred terms are the noise-free values, and symbols ∆1 and ∆2 indicate the first and the second order noise
terms, respectively. Substituting (24) and (26) into (17), we obtain

(M̄ + ∆1M + ∆2M + · · ·)(θ̄ + ∆1θ + ∆2θ + · · ·) = (λ̄ + ∆1λ + ∆2λ + · · ·)N(θ̄ + ∆1θ + ∆2θ + · · ·). (27)
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Note that N is a variable to be determined, not a given function of observations, so it is not expanded. Since we consider
perturbations near the true values, the matrix N may turn out to involve them as in (23). In that event, we replace the
true data values by their observations, as in the above Taubin case, and do an a posteriori analysis to see how this affects
the accuracy. For the moment, we regard N as an unknown variable. Equating terms of the same order on both sides of
(27), we obtain

M̄θ̄ = λ̄Nθ̄, (28)

M̄∆1θ + ∆1Mθ̄ = λ̄N∆1θ + ∆1λNθ̄, (29)

M̄∆2θ + ∆1M∆1θ + ∆2Mθ̄ = λ̄N∆2θ + ∆1λN∆1θ + ∆2λNθ̄. (30)

The noise-free values ξ̄α and θ̄ satisfy (ξ̄α, θ̄) = 0, so M̄θ̄ = 0. Hence, (28) implies λ̄ = 0. From the first equation in (25),
we have (θ̄, ∆1Mθ̄) = 0. Computing the inner product of (29) with θ̄ on both sides, we find that ∆1λ = 0. Multiplying
(29) by the pseudoinverse M̄− from left, we have

∆1θ = −M̄−∆1Mθ̄, (31)

where we have noted that because θ̄ is the null vector of M̄ (i.e., M̄θ̄ = 0), the matrix M̄−M̄ (≡ Pθ̄) represents orthogonal
projection along θ̄. We have also noted that equating the first order terms in the expansion of ‖θ̄ + ∆1θ + ∆2θ + · · · ‖2

= 1 results in (θ̄, ∆1θ) = 0 (Kanatani, 2008)，hence Pθ̄∆1θ = ∆1θ. Substituting (31) into (30), we can express ∆2λ in
the form

∆2λ =
(θ̄, ∆2Mθ̄) − (θ̄,∆1MM̄−∆1Mθ̄)

(θ̄,Nθ̄)
=

(θ̄,Tθ̄)
(θ̄,Nθ̄)

, (32)

where

T = ∆2M − ∆1MM̄−∆1M. (33)

Next, we consider the second order error ∆2θ. Since θ̄ is a unit vector and does not change its norm, we are interested in
the error component orthogonal to θ̄ (the first order error ∆1θ in (31) is orthogonal to θ̄ as is). We define the orthogonal
component of ∆2θ by

∆⊥
2 θ = Pθ̄∆2θ (= M̄−M̄∆2θ). (34)

Multiplying (30) by M̄− from left and substituting (31), we obtain

∆⊥
2 θ = ∆2λM̄−Nθ̄ + M̄−∆1MM̄−∆1Mθ̄ − M̄−∆2Mθ̄ =

(θ̄,Tθ̄)
(θ̄,Nθ̄)

M̄−Nθ̄ − M̄−Tθ̄. (35)

4. Covariance and bias

4.1. General algebraic fitting

From (31), we see that the leading term of the covariance matrix of the solution θ is given by

V [θ] = E[∆1θ∆1θ
>] = M̄−E[(∆1Mθ)(∆1Mθ)>]M̄− =

1
N2

M̄−E
[ N∑

α=1

(∆ξα, θ)ξ̄α

N∑
β=1

(∆ξβ , θ)ξ̄>
β

]
M̄−

=
1

N2
M̄−

N∑
α,β=1

(θ, E[∆ξα∆ξ>
β ]θ)ξ̄αξ̄

>
β M̄−=

σ2

N2
M̄−

( N∑
α=1

(θ, V0[ξα]θ)ξ̄αξ̄
>
α

)
M̄−=

σ2

N
M̄−M̄′M̄−, (36)

where we define

M̄′ =
1
N

N∑
α=1

(θ̄, V0[ξα]θ)ξ̄αξ̄
>
α . (37)

In deriving (36), we have noted that ξα is independent for different α and that E[∆1ξα∆1ξ
>
β ] = δαβσ2V0[ξα], where δαβ

is the Kronecker delta. The important observation is that the covariance matrix V [θ], which is O(σ2), does not depend
on N. This means that all algebraic methods have the same the covariance matrix in the leading order , as pointed out
by Al-Sharadqah and Chernov (2009) for circle fitting. Thus, we are unable to reduce the covariance of θ by adjusting
N. This may sound contradictory to the fact that the method of Taubin (1991), an algebraic method using NT in (23),
is known to be far more accurate than the standard LS (Kanatani and Sugaya, 2007). We now show that the accuracy
difference stems from the bias terms and that a better method can be obtained by further reducing the bias.

Since E[∆1θ] = 0, there is no bias in the first order; the leading bias is O(σ2). In order to evaluate the second order
bias E[∆⊥

2 θ], we need to evaluate the expectation of T in (33). To do so, we first consider the term E[∆2M]. From (20)
and (21), we see that
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E[∆2ξα] = σ2e, e ≡

 (2, 0, 0, 0)> for circles

(1, 0, 1, 0, 0, 0)> for ellipses
. (38)

Hence, we see from the second equation in (25) that

E[∆2M] =
1
N

N∑
α=1

(
ξ̄αE[∆2ξα]> + E[∆1ξα∆1ξ

>
α ] + E[∆2ξα]ξ̄>

α

)
= σ2

(
NT + 2S[ξ̄ce

>]
)
, (39)

where we have noted E[∆1ξα∆1ξ
>
α ] = σ2V0[ξα] and used (23). The symbol S[ · ] denotes symmetrization (S[A] ≡ (A +

A>)/2). The vector ξ̄c is defined by

ξ̄c =
1
N

N∑
α=1

ξ̄α. (40)

We next consider the term E[∆1MM̄−∆1M]. It has the form

E[∆1MM̄−∆1M] =
σ2

N2

N∑
α=1

(
tr[M̄−V0[ξα]]ξ̄αξ̄

>
α + (ξ̄α, M̄−ξ̄α)V0[ξα] + 2S[V0[ξα]M̄−ξ̄αξ̄

>
α ]

)
, (41)

where tr[ · ] denotes the trace (see Appendix B for the derivation). From (39) and (41), the matrix T in (33) has the
following expectation:

E[T]=σ2
(
NT+2S[ξ̄ce

>]− 1
N2

N∑
α=1

(
tr[M̄−V0[ξα]]ξ̄αξ̄

>
α +(ξ̄α, M̄−ξ̄α)V0[ξα]+2S[V0[ξα]M̄−ξ̄αξ̄

>
α ]

))
. (42)

Thus, the second order error ∆⊥
2 θ in (35) has the following bias:

E[∆⊥
2 θ] = M̄−

( (θ̄, E[T]θ̄)
(θ̄,Nθ̄)

Nθ̄ − E[T]θ̄
)
. (43)

4.2. Standard LS

From (42), we see that (ξ̄c, θ̄) = 0 and (ξ̄α, θ̄) = 0. Hence, E[T]θ̄ can be written as

E[T]θ̄ = σ2
(
NTθ̄ + (e, θ̄)ξ̄c −

1
N2

N∑
α=1

(
(ξ̄α, M̄−ξ̄α)V0[ξα]θ̄ + (θ̄, V0[ξα]M̄−ξ̄α)ξ̄α

))
. (44)

For standard LS (N = I), we see from (43) that

E[∆⊥
2 θ] = M̄−

(
(θ̄, E[T]θ̄)θ̄ − E[T]θ̄

)
= −M̄−(I − θ̄θ̄

>)E[T]θ̄ = −M̄−E[T]θ̄, (45)

where we have used the following equality:

M̄−(I − θ̄θ̄
>) = M̄−Pθ̄ = M̄−M̄M̄− = M̄−. (46)

From (44), and (45), the leading bias of the standard LS has the following form:

E[∆⊥
2 θ] = −σ2M̄−

(
NTθ̄ + (e, θ̄)ξ̄c −

1
N2

N∑
α=1

(
(ξ̄α, M̄−ξ̄α)V0[ξα]θ̄ + (θ̄, V0[ξα]M̄−ξ̄α)ξ̄α

))
. (47)

4.3. Taubin method

If we note that (ξ̄c, θ̄) = 0 and (ξ̄α, θ̄) = 0, we see from (42) that

(θ̄, E[T]θ̄) = σ2
(
(θ̄,NTθ̄) − 1

N2

N∑
α=1

(ξ̄α, M̄−ξ̄α)(θ̄, V0[ξα]θ̄)
)

= σ2
(
(θ̄,NTθ̄) − 1

N2

N∑
α=1

tr[M̄−ξ̄αξ̄
>
α ](θ̄, V0[ξα]θ̄)

)
= σ2

(
(θ̄,NTθ̄) − 1

N2
tr[M̄−

N∑
α=1

(θ̄, V0[ξα]θ̄)ξ̄αξ̄
>
α ]

)
= σ2(θ̄,NTθ̄) − σ2

N
tr[M̄−M̄′], (48)

where we have used (37). For the Taubin method (N = NT), the leading bias (43) is
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E[∆⊥
2 θ] = −σ2M̄−

(
qNTθ̄ + (e, θ̄)ξ̄c −

1
N2

N∑
α=1

(
(ξ̄α, M̄−ξ̄α)V0[ξα]θ̄ + (θ̄, V0[ξα]M̄−ξ̄α)ξ̄α

))
, (49)

where we put

q =
1
N

tr[M̄−M̄′]
(θ̄,NTθ̄)

. (50)

Comparing (49) and (47), we notice that the only difference is that NTθ̄ in (47) is replaced by qNTθ̄ in (49). We see from
(50) that q < 1 when N is large. This can be regarded as one of the reasons of the high accuracy of the Taubin method
(Kanatani, 2008).

5. Hyper least squares

Now, we propose to chose the matrix N to be

N = NT + 2S[ξ̄ce
>] − 1

N2

N∑
α=1

(
tr[M̄−V0[ξα]]ξ̄αξ̄

>
α + (ξ̄α, M̄−ξ̄α)V0[ξα] + 2S[V0[ξα]M̄−ξ̄αξ̄

>
α ]

)
. (51)

Then, we have E[T] = σ2N from (42), so (43) becomes

E[∆⊥
2 θ] = σ2M̄−

( (θ̄,Nθ̄)
(θ̄,Nθ̄)

N − N
)
θ̄ = 0. (52)

Thus, the choice of N in (51) completely eliminates the bias up to second order noise terms. However, (51) involves the
true values ξ̄α and M̄, so we evaluate them by replacing the true values (x̄α, ȳα) in their definitions by the observations
(xα, yα). As a result, the matrix M̄ becomes nonsingular, so we compute its spectral decomposition, replace the smallest
eigenvalue with 0, and evaluate the pseudoinverse M̄−. The use of observations in the place of their true values does not
affect the order analysis, because expectations of odd-order error terms vanish and hence the error in (52) is at most
O(σ4). Thus, the second order bias is exactly 0 . Following Al-Sharadqah and Chernov (2009), we call the method using
(51) hyper least squares, or HyperLS .

Since the last term on the right hand side of (51) is O(1/N), we may omit it. Let us call the method using

NS = NT + 2S[ξ̄ce
>], (53)

SemihyperLS . It seems that the accuracy is preserved, since N is usually large. According to our experiments reported in
the next section, however, this is not necessarily so when N is not very large. Now, we summarize the resulting schemes,
replacing the true values by observations. For circles, we have

ξc = (s2
x + s2

y, f0xc, f0yc, f
2
0 )>, e = (2, 0, 0, 0)>, (54)

where we define

xc =
1
N

N∑
α=1

xα, yc =
1
N

N∑
α=1

yα, s2
x =

1
N

N∑
α=1

x2
α, s2

y =
1
N

N∑
α=1

y2
α. (55)

The Taubin method and the SemihyperLS, respectively, correspond to

NT =


4(s2

x + s2
y) 2f0xc 2f0yc 0

2f0xc f2
0 0 0

2f0yc 0 f2
0 0

0 0 0 0

 , NS =


8(s2

x + s2
y) 4f0xc 4f0yc 2f2

0

4f0xc f2
0 0 0

4f0yc 0 f2
0 0

2f2
0 0 0 0

 . (56)

The use of the above NS is the circle fitting algorithm of Al-Sharadqah and Chernov (2009), who called it “Hyper”. For
ellipses, we have

ξc = (s2
x, 2γxy, s2

y, 2f0xc, 2f0yc, f
2
0 )>, e = (1, 0, 1, 0, 0, 0)>, (57)

where we define

γxy =
1
N

N∑
α=1

xαyα. (58)

The Taubin method and the SemihyperLS, respectively, correspond to
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a b c d

Fig. 1. a. Twenty points on a circle. b. Fitted circles for σ = 1.0. c. Thirty points on an ellipse. d. Fitted ellipses for σ = 0.5. In b and d, the
lines correspond to 1. standard LS, 2. Taubin method, 3. SemihyperLS, 4. HyperLS, 5. ML. The true shape is drawn in thick lines.

NT=4



s2
x γxy 0 f0xc 0 0

γxy s2
x + s2

y γxy f0yc f0xc 0
0 γxy s2

y 0 f0yc 0
f0xc f0yc 0 f2

0 0 0
0 f0xc f0yc 0 f2

0 0
0 0 0 0 0 0


,

NS=



6s2
x 6γxy s2

x + s2
y 6f0xc 2f0yc f2

0

6γxy 4(s2
x + s2

y) 6γxy 4f0yc 4f0xc 0
s2

x + s2
y 6γxy 6s2

y 2f0xc 6f0yc f2
0

6f0xc 4f0yc 2f0xc 4f2
0 0 0

2f0yc 4f0xc 6f0yc 0 4f2
0 0

f2
0 0 f2

0 0 0 0


. (59)

6. Numerical experiments

We placed 20 equidistant points subtending π/4 on a circle of radius 100 (Fig. 1a) and 30 equidistant points in the first
quadrant of an ellipse of major and minor axes 100 and 50 (Fig. 1c). The scale constant f0 is fixed to 600, meaning that
we are in effect considering a circle of radius 0.17 and an ellipse of major and minor axes 0.17 and 0.08 in an image of size
1× 1. We added to the x- and y-coordinates of each point independent Gaussian noise of mean 0 and standard deviation
σ and fitted a circle and an ellipse by the standard LS, the Taubin method, the SemihyperLS, the (full) HyperLS, and
ML, which minimizes the geometric distance

JML =
1
N

N∑
α=1

(
(xα − x̄α)2 + (yα − ȳα)2

)
, (60)

rather than the algebraic distance of (14), subject to the constraint that each (x̄α, ȳα) satisfies the circle/ellipse equation
in (1) or (2). This maximizes the likelihood if the noise is independent, identical, and isotropic Gaussian. For numerical
computation, we used the FNS of Chojnacki et al. (2000) (see Kanatani and Sugaya (2007) for the details). As mentioned
in the Introduction, FNS and similar schemes like HEIV and projective Gauss-Newton iterations minimize not directly
(60) but a simplified form called the Sampson error, but the minimum of (60) can be obtained by running a few iterations
of a Sampson error minimization algorithm (Kanatani and Sugaya, 2010). It has also been observed that the solution that
minimizes the Sampson error agrees with the ML solution up to several significant digits (Kanatani and Sugaya, 2008).
Thus, FNS can safely be regarded as minimizing (60).

Figure 1b show fitted circles for σ = 1.0, and Fig. 1d ellipses for σ = 0.5. As we see, circle fitting is very robust to
noise; except for the standard LS, which is very poor, not much difference is visible among different methods even for
large noise. In contrast, ellipse fitting is very sensitive to noise, causing large differences among methods even for small
noise. For statistical evaluation, we conducted the following experiments.

Since the computed θ and its true value θ̄ are both unit vectors, we measure their discrepancy by the orthogonal
component

∆⊥θ = Pθ̄θ, (61)

where Pθ̄ (≡ I − θ̄θ̄
>) is the orthogonal projection matrix along θ̄ (Fig. 2). We generated 10000 independent noise

instances for each σ and evaluated the bias B and the RMS (root-mean-square) error D defined by

B =
∥∥∥ 1

10000

10000∑
a=1

∆⊥θ(a)
∥∥∥, D =

√√√√ 1
10000

10000∑
a=1

‖∆⊥θ(a)‖2, (62)
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θ

∆ θ

θ

O

Fig. 2. The true value θ̄, the computed value θ, and its orthogonal component ∆⊥θ to θ̄.

a b c d

Fig. 3. The bias (a) and the RMS error (b) for circle fitting, and the bias (c) and the RMS error (d) for ellipse fitting. The horizontal axes
indicate the standard deviation σ of the added noise. 1. Standard LS. 2. Taubin method. 3. SemihyperLS. 4. HyperLS. 5. ML. The dotted lines

in b and d indicate the KCR lower bound.

where θ(a) is the solution in the ath trial. Figure 3 plots of B and D for the circle (a, b) and the ellipse (c, d). The dotted
lines in b and d indicate the theoretical limit, called the KCR lower bound (Chernov and Lesort, 2004; Kanatani, 1996,
2008), given by

DKCR = σ

√√√√tr[
( N∑

α=1

ξ̄αξ̄
>
α

(θ̄, V0[ξα]θ̄)

)−
]. (63)

A similar expression was also obtained by Ameiya and Fuller (1988). It is known that the ML solution reaches this bound
in the leading order (Chernov and Lesort, 2004; Kanatani, 1996, 2008).

Standard linear algebra routines for solving the generalized eigenvalue problem in the form of (17) assumes that the
matrix N is positive definite. As can be seen from (56) and (59), however, the matrix NT has a row and a column of
zeros. It is easy to see that the matrix NS in (56) and (59) is not positive definite, and numerical tests show that the
matrix N in (51) is not necessarily positive definite, either. However, this causes no problem, because (17) can be written
as

Nθ =
1
λ
Mθ. (64)

Since the matrix M in (15) is positive definite for noisy data, we can solve (64) instead, using a standard routine. If the
smallest eigenvalue of M happens to be 0, it indicates that the data are all exact; any method, e.g., the standard LS,
gives an exact solution. For noisy data, the solution θ is given by the eigenvector of (64) for the eigenvalue 1/λ with the
largest absolute value.

As we can see from Fig. 3a, b, there do exist accuracy differences among different methods of circles, but they are
very small except the standard LS. However, Fig. 3a shows that HyperLS has smaller bias than all other methods. For
ellipses, the differences among methods are more marked. Fig. 3a, c shows that for both circles and ellipses, the standard
LS has very large bias, as compared to which the Taubin solution has much smaller bias, and the HyperLS has even
smaller bias. The bias of SemihyperLS is nearly the same as the Taubin method for both circles and ellipses. As pointed
out in Section 4, all algebraic methods have the same covariance matrix to the leading order, meaning that the accuracy
difference among algebraic methods are mainly accounted for by the bias. This is confirmed by Fig. 3b, d. For both
circles and ellipses, the standard LS performs very poorly, compared to which the Taubin solution is significantly better
when measured in the RMS error. For ellipses, the HyperLS is more accurate than the Taubin method. The SemihyperLS
performs nearly like the Taubin method for both circles and ellipses.

Figure 3a, c shows that the bias of HyperLS is even smaller than ML, nearly zero for small σ as theoretically predicted.
Yet, Fig. 3d shows that ML has the smallest RMS error of all. This is because ML minimizes the geometric distance of
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(60), rather than the algebraic distance, and hence has a smaller covariance matrix (Kanatani, 1996, 2008). However, ML
computation may not converge in the presence of large noise. Indeed, the interrupted plot of ML in Fig. 3d indicate that
the iterations did not converge beyond that noise level. For circles, ML is very stable but also fails for very large noise. In
the example shown here, it failed around the noise level σ = 4. The convergence of ML critically depends on the accuracy
of the initialization. Here, we used the standard LS to start the ML iterations. We confirmed that the use of our HyperLS
to start ML significantly extends the noise range of convergence, though the computation fails sooner or later.

7. Conclusions

We have successfully extended the HyperLS principle, originally invented for circle fitting (Rangarajan and Kanatani,
2009), to ellipses 2 . This is achieved by finding a scale normalization that eliminates the statistical bias of the LS estimator
up to second order noise terms. To this end, we performed a rigorous statistical analysis of the covariance and bias of the
LS ellipse fitting problem. Doing numerical experiments, we validated our findings by comparing the performance of our
estimator with other LS estimators. Since the results in Secion 6 are limited to particular instances, and the observed
differences are rather small expect for the standard LS, they may not be sufficient to draw definitive conclusions. However,
additional experiments suggest that:

(i) For fitting circles/ellipses to points that span more than 1/4 of the circumference, all LS estimators have nearly
identical performance; even the standard LS produces a fairly accurate solution (see Kanatani and Sugaya (2007)
for comparative experiments).

(ii) For short sequences, the behavior of the standard LS is unpredictable. Most often, it performs very poorly, producing
a very small circle/ellipse, as shown in our example, but sometimes it produces a fairly good fit, depending on the
shape of the sequence and data scaling or the choice of f0. It thus is more appropriate to say that the standard LS
is “unreliable” than “inaccurate”. We infer that the strong bias of the standard LS may sometimes favorably shift
the solution toward the true shape.

(iii) The differences among Taubin, SemihyperLS, HyperLS, and ML are generally very small. What we can say with
certainty is that Taubin and SemihyperLS almost always produce practically the same fits. In comparison, HyperLS
fits are generally better, although the difference is small and difficult to perceive by merely observing particular
examples. The distinction can be observed only after statistical tests using a lot of different noise instances. In our
experiments, we averaged over 10,000 trials, but this still appears insufficient to approximate the expectation, as
evidenced by the large variations for different σ.

(iv) ML produces almost always the best fit, but the failure of convergence in the presence of large noise is unavoidable.
The convergence heavily depends on the accuracy of the initialization.

(v) Comparing Taubin, SemihyperLS, and HyperLS, we could not find any evidence that Taubin or SemihyperLS should
be preferred to HyperLS. We also observed that the use of HyperLS for ML initialization can significantly extend
the range of convergence. We conclude that initializing ML iterations with the proposed HyperLS is the best choice
for circle/ellipse fitting.

In this paper, we analyzed only the leading covariance term, which is O(σ2), and the leading bias term, which is also
O(σ2). Due to technical difficulties, we are unable to evaluate at this stage how higher order terms of O(σ4) affect the
solution. This is a remaining issue to be studied in the future.
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Appendix A. Scale effects of algebraic solutions

Motivation. In (1) and (2), f0 is a scale constant of the order of the magnitude of the data. This in effect scales the
x and y coordinates of the data into the range ±1. This f0 is introduced to stabilize numerical computation with finite
precision length; without it, serious accuracy loss is incurred when we use real image data in image processing applications.
Suppose, for example, the image size is about 1000 × 1000 pixels, and suppose we are considering a circle of radius of
about 100 pixels. If we let f0 = 1, the vector ξ in (11) is about (1002 +1002, ..., 1)> = (20000, ..., 1)>. For its norm ‖ξ‖, we
compute

√
400000000 + · · · + 1, but the value 1 would easily be lost in the course of finite length computation, resulting

2 The code is available at http://homepages.inf.ed.ac.uk/cgi/rbf/CVONLINE/entries.pl?TAG384.
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in a significant loss of accuracy. Here, we briefly discuss, purely for theoretical interest , how the solution of (17) would be
affected if we use different values of f0, assuming the computation is done using a hypothetical computer with infinite
precision length. We should keep in mind that this analysis has no practical meaning in real situations.

Theory. Let us consider the case of ellipse fitting. If we magnify the data coordinates (x, y) s times to (sx, sy),
the vector ξ in (12) is transformed to ξ′ = Sξ, where S = diag(s2, s2, s2, s, s, 1). If an ellipse having coefficients θ =
(A, B,C,D,E, F )> is enlarged by s times, the enlarged ellipse has coefficients θ′ = (A/s2, B/s2, C/s2, D/s,E/s, F )>, so
θ = Sθ′ holds. By this scale change, the matrix M in (15) is transformed to M′ = SMS. Let M′θ′ = λ′N′θ′ be the
transformed eigenvalue problem of Mθ = λNθ. It is easy to see that if N′ = βSNS for some β 6= 0, the transformed
problem has the solution θ′ = S−1θ with λ′ = βλ. Hence, the ellipse fitted to the data enlarged s times is the s times
enlargement of the ellipse fitted to the original data. If this is the case, we say that the fitting method is scale invariant .

Examples. It is easy to see that N = βSNS holds for the matrices N corresponding to (5), (6), (9), and (10), so the
methods using them are scale invariant. However, the use of (7) and (8) is not scale invariant. We can easily see that the
matrix NT in (56) transforms to N′

T = SNTS/s2, so the Taubin method is also scale invariant. However, this must not
be taken to mean that the Taubin method computes the same ellipse enlarged/reduced if the data are enlarged/reduced,
because computer computation does not return a correct value unless carried out with an appropriate scale f0.

HyperLS. We can easily see that the matrix NS in (56) transforms to N′
S = SNSS/s2, so SemihyperLS is also scale

invariant. However, HyperLS is not strictly invariant because it involves the pseudoinverse M̄−. Since M̄′ = SM̄S, we
would obtain M̄′−1 = S−1M̄−1S−1 if M̄ were nonsingular. However, M̄′− = S−1M̄−S−1 does not necessarily hold for
pseudoinverse. If this were to hold, we can easily see that the matrix N in (51) would satisfy to N′ = SNS/s2, guaranteeing
the scale invariance of HyperLS. Geometrically, the pseudoinverse is an operation of decomposing the entire space into the
direct sum of the null space of the matrix and its orthogonal complement and defining the inverse only in the orthogonal
complement keeping the null space intact. If the space is linearly transformed by S, the null space is also transformed
accordingly, and M̄′− = S−1M̄−S−1 no longer holds.

Remarks. How much is the HyperLS solution affected by the value of f0 if its variations are kept within the order
of the magnitude of the data (otherwise, correct computation cannot be done by a finite length computer)? This can be
checked only by experiments. According to our experiments, θ and Sθ′, after normalized into unit vectors, share several
significant digits, as long as the scale change is kept to the order of 1 – 10. In contrast, the difference is much larger for
the standard LS. Thus, we can regard HyperLS as practically scale invariant.

Appendix B. Derivation of (41)

E[∆1MM̄−∆1M] = E[
1
N

N∑
α=1

(
ξ̄α∆1ξ

>
α + ∆1ξαξ̄

>
α

)
M̄− 1

N

N∑
β=1

(
ξ̄β∆1ξ

>
β + ∆1ξβ ξ̄

>
β

)
]

=
1

N2

N∑
α,β=1

E[(ξ̄α∆1ξ
>
α + ∆1ξαξ̄

>
α )M̄−(ξ̄β∆1ξ

>
β + ∆1ξβ ξ̄

>
β )

=
1

N2

N∑
α,β=1

E[ξ̄α∆1ξ
>
α M̄−ξ̄β∆1ξ

>
β + ξ̄α∆1ξ

>
α M̄−∆1ξβ ξ̄

>
β + ∆1ξαξ̄

>
α M̄−ξ̄β∆1ξ

>
β

+∆1ξαξ̄
>
α M̄−∆1ξβ ξ̄

>
β ]

=
1

N2

N∑
α,β=1

E[ξ̄α(∆1ξα, M̄−ξ̄β)∆1ξ
>
β + ξ̄α(∆1ξα, M̄−∆1ξβ)ξ̄>

β + ∆1ξα(ξ̄α, M̄−ξ̄β)∆1ξ
>
β

+∆1ξα(ξ̄α, M̄−∆1ξβ)ξ̄>
β ]

=
1

N2

N∑
α,β=1

E[(∆1ξα, M̄−ξ̄β)ξ̄α∆1ξ
>
β + (∆1ξα, M̄−∆1ξβ)ξ̄αξ̄

>
β + (ξ̄α, M̄−ξ̄β)∆1ξα∆1ξ

>
β

+∆1ξα(M̄−∆1ξβ , ξ̄α)ξ̄>
β ]

=
1

N2

N∑
α,β=1

E[ξ̄α((M̄−ξ̄β)>∆1ξα)∆1ξ
>
β + tr[M̄−∆1ξβ∆1ξ

>
α ]ξ̄αξ̄

>
β + (ξ̄α, M̄−ξ̄β)∆1ξα∆1ξ

>
β

+∆1ξα(∆1ξ
>
β M̄−ξ̄α)ξ̄>

β ]

=
1

N2

N∑
α,β=1

(
ξ̄αξ̄

>
β M̄−E[∆1ξα∆1ξ

>
β ] + tr[M̄−E[∆1ξβ∆1ξ

>
α ]]ξ̄αξ̄

>
β
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+(ξ̄α, M̄−ξ̄β)E[∆1ξα∆1ξ
>
β ] + E[∆1ξα∆1ξ

>
β ]M̄−ξ̄αξ̄

>
β

)
=

σ2

N2

N∑
α,β=1

(
ξ̄αξ̄

>
β M̄−δαβV0[ξα] + tr[M̄−δαβV0[ξα]]ξ̄αξ̄

>
β + (ξ̄α, M̄−ξ̄β)δαβV0[ξα]

+δαβV0[ξα]M̄−ξ̄αξ̄
>
β

)
=

σ2

N2

N∑
α=1

(
ξ̄αξ̄

>
α M̄−V0[ξα] + tr[M̄−V0[ξα]]ξ̄αξ̄

>
α + (ξ̄α, M̄−ξ̄α)V0[ξα] + V0[ξα]M̄−ξ̄αξ̄

>
α

)
=

σ2

N2

N∑
α=1

(
tr[M̄−V0[ξα]]ξ̄αξ̄

>
α + (ξ̄α, M̄−ξ̄α)V0[ξα] + 2S[V0[ξα]M̄−ξ̄αξ̄

>
α ]

)
(B.1)
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