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A B S T R A C T

Because 3-D data are acquired using 3-D sensing such as stereo vision and laser range finders,
they have inhomogeneous and anisotropic noise. This paper studies optimal computation of

the similarity (rotation, translation, and scale change) of such 3-D data. We first describe two
well known methods for this: the Gauss-Newton and the Gauss-Helmert methods, which are
often regarded as different techniques. We then point out that they have similar mathematical
structures and combine them to define a hybrid, which we call the modified Gauss-Helmert

method . Doing stereo vision simulation, we demonstrate that the proposed method is superior
to either of the two methods in convergence performance. Finally, we show an application to
real GPS geodetic data and point out that the widely used homogeneous and isotropic noise
model is insufficient. We also discuss some numerical issues about GPS data.
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1. Introduction

The task of autonomous robots to reconstruct the 3-D structure of the scene using stereo vision and simultaneously
compute its location in the map of the environment, called SLAM (Simultaneous Localization and Mapping), is one of
the central themes of robotics studies today. One of the fundamental techniques for this is to compute the 3-D motion
of the robot between two time instances. This information is obtained by tracking a particular 3-D object to compute its
rotation, translation, and scale change. A similar task occurs in reconstructing the entire shape of a 3-D object by 3-D
sensing, for which multiple sensors are necessary, because one sensor can reconstruct only the part that is visible to it.
Hence, we need to map a partial shape obtained from one sensor to a partial shape obtained from another by computing
an appropriate similarity between them. The same task arises for geodetic measurement of the earth surface from multiple
satellite sensor data (Acar et al., 2006; Felus and Burch, 2009; Grafarend and Awange, 2003; Neitzel, 2010).

Thus, 3-D similarity estimation is an important problem in many engineering applications. To this end, many re-
searchers have focused on accurate rotation estimation since 1980s. This is because translation can be estimated from the
displacement of the centroid of the object, and the scale change is easily perceived from its changing size. However, rota-
tion estimation is not so straightforward in the presence of noise, and many rotation estimation algorithms that assume
homogeneous and isotropic noise have been proposed in the past (Arun et al., 1987; Dorst, 2005; Horn, 1987; Horn et al.,
1988; Kanatani, 1994; Umeyama, 1991). However, the assumption of homogeneous and isotropic noise is not realistic for
3-D data acquired by 3-D sensing such as stereo vision and laser/ultrasonic range finders, because the accuracy is usually
different between the depth direction and the direction orthogonal to it, resulting in an inhomogeneous and anisotropic
noise distribution depending on the position, orientation, and type of the sensor.

This observation motivated computer vision researchers to study optimal estimation under inhomogeneous and
anisotropic noise in late 1990s (Kanatani, 1996; Matei and Meer, 1999). Ohta and Kanatani (1998) presented a 3-D
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rotation estimation scheme that takes the inhomogeneity and anisotropy of the noise in 3-D data it into account. They
used a technique called renormalization, which iteratively removes statistical bias of reweighted least squares (Kanatani,
1996). Later, schemes for computing a maximum likelihood (ML) solution have been proposed for estimating the 3-D
rotation (Niitsuma and Kanatani, 2011b), 3-D rigid motion (Matei and Meer, 1999). Niitsuma and Kanatani (2011b)
extended it to 3-D similarity estimation, using the Levenberg-Marquardt (LM) method, the most widely used standard
optimization technique in the field of computer vision (Triggs, et al., 1999; Fitzgibbon, 2003; Hartley and Zisserman,
2004). The LM is basically the Gauss-Newton method, to which the gradient descent principle is combined to ensure
convergence (Press, et al., 1992).

In geodetic science, on the other hand, the Gauss-Helmert method is popular for similarity estimation (Mikhail and
Ackermann, 1976; Neitzel, 2010); Helmert himself was a geodesist, and the similarity transformation is sometimes referred
to as the “Helmert transformation”. The Gauss-Helmert method is also used in some computer vision applications
(Förstner, 2000; Perwass et al., 2006; Gebken and Sommer, 2008). However, no comparative studies of the Gauss-Newton
and Gauss-Helmert methods are found, partly because they have been mainly used in different domains: the former in
robotics and computer vision, the latter in geodetic science.

In general terms, the Gauss-Newton method first expresses the residual as a nonlinear function in the unknowns by
eliminating the nonlinear constraint using Lagrange multipliers and then minimizes it by Newton iterations, introducing
the Gauss-Newton approximation to the Hessian evaluation. The Gauss-Helmert method, on the other hand, first linearizes
the nonlinear constraint around the current values of the unknowns and expresses the residual as a quadratic function in
the increments of the variables. Then, the variables are updated by the increments that minimizes it, and this procedure
is iterated.

In this paper, we start with the maximum likelihood framework of 3-D similarity estimation (Section 2) and formulate
the Gauss-Newton method (Section 3). Then, we reformulate the Gauss-Helmert method in a form that makes the
comparison easier (Section 4) and point out that the two have a very similar mathematical structures (Section 5). We
then combine them to define a hybrid, which we call the “modified Gauss-Helmert method” (Section 6). Doing stereo
vision simulation, we demonstrate that the proposed method is superior to either of the two methods in the convergence
performance (Section 7). We also show an application to real GPS geodetic data and point out that the widely used
homogeneous and isotropic noise model is insufficient with some discussions about numerical problems of GPS data
(Section 8). Finally, we summarize our observations (Section 9).

2. Maximum likelihood estimation of 3-D similarity

Suppose we are given 3-D position measurements rα and r′α, α = 1, ..., N , before and after a similarity motion. We
model the measurement uncertainty by independent Gaussian noise of mean 0 and covariance matrices σ2V0[rα] and
σ2V0[r′α], where the scalar σ, which we call the noise level, describes the magnitude, and the matrices V0[rα] and V0[r′α],
which we call the normalized covariance matrices, describe the directional characteristics of the noise. This separation is
merely for computational convenience; there is no fixed rule as to how to define σ. This convention is introduced because
first it is difficult to evaluate the absolute noise magnitude and second the optimization computation is not affected by
multiplication of all the covariance matrices by a positive constant. Thus, we need not know the exact noise magnitude
for optimization; relative values suffice.

We say that noise is homogeneous if its distribution is the same for all the data and inhomogeneous otherwise. We
also say that noise is isotropic if the distribution is orientation independent, and anisotropic otherwise. If the noise is
isotropic and homogeneous, we can let V0[rα] = V0[r′α] = I (the unit matrix) for all α. In this paper, we assume that
V0[rα] and V0[r′α] are not necessarily diagonal and generally different from position to position. Thus, the noise is generally
inhomogeneous and anisotropic, including homogeneous and isotropic noise as a special case.

Let r̄α and r̄′α be the true positions of rα and r′α, respectively, that undergo a similarity of rotation R, translation
t, and scale change s. Their optimal estimation in the sense of ML is to minimize the Mahalanobis distance, which we
hereafter call “residual” for simplicity (the multiplier 1/2 is merely for convenience),

J =
1
2

N∑
α=1

(rα − r̄α, V0[rα]−1(rα − r̄α)) +
1
2

N∑
α=1

(r′α − r̄′α, V0[r′α]−1(r′α − r̄′α)), (1)

where and throughout this paper (a,b) denotes the inner product of vectors a and b. The residual J is minimized with
respect to r̄α and r̄′α subject to

r̄′α = Sr̄α + t, (2)
for some rotation R, translation t, and scale change s. Here, we combine the rotation R and scale change s into a “scaled
rotation” S = sR and express it in terms of the quaternion 1 q = (q0, q1, q2, q3)> as follows:

S =


q2
0 + q2

1 − q2
2 − q2

3 2(q1q2 − q0q3) 2(q1q3 + q0q2)

2(q2q1 + q0q3) q2
0 − q2

1 + q2
2 − q2

3 2(q2q3 − q0q1)

2(q3q1 − q0q2) 2(q3q2 + q0q1) q2
0 − q2

1 − q2
2 + q2

3

 . (3)

1 Mathematically, q is called a “quaternion” when associated with its algebra, i.e., the rule of composition (Kanatani, 1990). However, the
quaternion algebra does not play any role in this paper.
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This matrix represents a rotation if q is normalized to unit norm (Kanatani, 1990). If q is not restricted to a unit
vector, the square norm ‖q‖2 represents the scale change s. This quaternion representation of similarity has been used
for computer vision and robotics, and recently it is also used in geodetics (Akylimaz, 2011).

Introducing to (1) Lagrange multipliers λα for the constraint (2), we let

J̃ =
1
2

N∑
α=1

(rα − r̄α, V0[rα]−1(rα − r̄α)) +
1
2

N∑
α=1

(r′α − r̄′α, V0[r′α]−1(r′α − r̄′α)) −
N∑

α=1

(λα, r̄′α − Sr̄α − t). (4)

The ML estimators of r̄α, r̄′α, q and t are obtained by letting the derivatives of (4) with respect to them be 0 and solving
the resulting equations.

3. Gauss-Newton method

We first formulate the Gauss-Newton method, the most fundamental optimization technique for robotics and computer
vision. Differentiating (4) with respect to r̄α and r̄′α, we obtain

∇r̄α J̃ = −V0[rα]−1(rα − r̄α) + S>λα, ∇r̄′α J̃ = −V0[r′α]−1(r′α − r̄′α) − λα. (5)

Letting these be 0 and solving for r̄α and r̄′α, we have

r̄α = rα − V0[rα]S>λα, r̄′α = r′α + V0[r′α]λα. (6)

Substituting these into (2), we can obtain the Lagrange multipliers λα in the form

λα = −Wαeα, (7)

where we define

eα = r′α − Srα − t, Wα = (SV0[rα]S> + V0[r′α])−1. (8)

Substituting (7) into (6) and substituting the resulting r̄α and r̄′α into (1), we can express the residual J in the following
form:

J =
1
2

N∑
α=1

(eα,Wαeα). (9)

Differentiating (3) with respect to qi, i = 0, 1, 2, 3, we obtain

∂S
∂qi

= 2Qi, (10)

where we define

Q0 =

 q0 −q3 q2

q3 q0 −q1

−q2 q1 q0

, Q1 =

 q1 q2 q3

q2 −q1 −q0

q3 q0 −q1

, Q2 =

 −q2 q1 q0

q1 q2 q3

−q0 q3 −q2

, Q3 =

 −q3 −q0 q1

q0 −q3 q2

q1 q2 q3

. (11)

Letting

Vα = SV0[rα]S> + V0[r′α], (12)

and differentiating VαWα = I with respect to qi on both sides, we obtain

2(QiV0[rα]S> + SV0[rα]Q>
i )Wα + Vα

∂Wα

∂qi
= O, (13)

from which ∂Wα/∂qi is expressed as

∂Wα

∂qi
= −4WαS[QiV0[rα]S>]Wα, (14)

where S[ · ] denotes symmetrization (S[A] = (A + A>)/2). Thus, the derivative of (9) with respect to qi is

∂J

∂qi
= −2

N∑
α=1

(Qirα,Wαeα) − 2
N∑

α=1

(eα,WαQiV0[rα]S>Wαeα). (15)
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The symmetrization operator S[ · ] is not necessary in the second term on the right because only the symmetric part
counts in a quadratic form. If we define the 3 × 4 matrix Uα

Uα = 2
(

Q0rα Q1rα Q2rα Q3rα

)
, (16)

we can write (15) in the form

∇qJ = −
N∑

α=1

U>
α Wαeα − 2

(
N∑

α=1

(eα,WαQiV0[rα]S>Wαeα)

)
i=0,1,2,3

, (17)

where the second term on the right means the 4-D vector with that term as the ith component, i = 0, 1, 2, 3. Differentiation
of (9) with respect to t yields

∇tJ = −
N∑

α=1

Wαeα. (18)

Differentiating (15) with respect to qj and doing the Gauss-Newton approximation, we obtain the second derivative

∂2J

∂qi∂qj
= 4

N∑
α=1

(Qirα,WαQjrα). (19)

From (18), the second derivative with respect to t is

∇2
tJ =

N∑
α=1

Wα. (20)

Differentiation (18) with respect to qi and doing the Gauss-Newton approximation, we obtain the following mixed second
derivative:

∇t
∂J

∂qi
= 2

N∑
α=1

WαQirα. (21)

By “Gauss-Newton approximation”, we mean omission of the terms of O(eα). Note that the residual J in (9) is quadratic
in eα with a coefficient matrix of O(1) and that eα would be 0 in the absence of noise. In general terms, the Gauss-Newton
approximation means retaining only the leading term of the expansion of the Hessian in the quantities that would be
zero in the absence of noise (Triggs, et al., 1999). If the residual had the form of the sum of squares (1/2)

∑N
α=1 ‖eα‖2, in

particular, the Hessian with the Gauss-Newton approximation would be expressed only in terms of the Jacobian matrix
of eα with respect to the parameters (Fitzgibbon, 2003).

Using the matrix Uα in (16), we can now express the Gauss-Newton approximated Hessian H of the residual J in the
form

H =


N∑

α=1

U>
α WαUα

N∑
α=1

U>
α Wα

N∑
α=1

WαUα

N∑
α=1

Wα

 . (22)

Thus, we obtain the following procedure for the Gauss-Newton method.
(i) Provide an initial guess of q and t, and let J0 = ∞ (a sufficiently large number).
(ii) Compute the scaled rotation S in (3) for q.
(iii) Compute the vectors eα and the matrices Wα in (8), and evaluate the residual J in (9).
(iv) If J ≈ J0, return q and t and stop. Else, let J0 ← J .
(v) Compute the matrices Qi in (11) and the matrices Uα in (16).
(vi) Solve the following 7-D linear equation:

N∑
α=1

U>
α WαUα

N∑
α=1

U>
α Wα

N∑
α=1

WαUα

N∑
α=1

Wα


 ∆q

∆t

 =


N∑

α=1

U>
α Wαeα

N∑
α=1

Wαeα

 + 2


( N∑

α=1

(eα,WαQiV0[rα]S>Wαeα)
)

i=0,3

0

 .

(23)
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(vii) Update q and t as follows, and return to Step (ii):

q ← q + ∆q, t ← t + ∆t. (24)

As described in textbooks of optimization, (23) and (24) mean approximating, via Taylor expansion, the residual J in (9)
by a quadratic function around the current values of q and t and moving to the minimum of the approximated residual
J until the iterations converge.

4. Gauss-Helmert method

We now formulate the Gauss-Helmert method, which is popular in geodetic science (Förstner, 2000; Mikhail and Acker-
mann, 1976; Neitzel, 2010; Perwass et al., 2006; Gebken and Sommer, 2008). Suppose we are given some approximations
r(0)

α and r′α
(0) of the true positions r̄α and r̄′α. Let q and t be the current estimates the true solution q̄ and t̄. We write

r̄α = r(0)
α + ∆r̄α, r̄′α = r′α

(0) + ∆r̄′α, q̄ = q + ∆q, t̄ = t + ∆t. (25)

Substituting (25) into (2), doing Taylor expansion, and omitting second and higher order terms in the correction terms,
we obtain

r′α
(0) + ∆r̄′α = S(r(0)

α + ∆r̄α) +
3∑

i=0

∆qi
∂S
∂qi

r(0)
α + t + ∆t, (26)

If (25) and (26) are substituted into (4), we obtain

J̃ =
1
2

N∑
α=1

(rα − r(0)
α − ∆r̄α, V0[rα]−1(rα − r(0)

α − ∆r̄α)) +
1
2

N∑
α=1

(r′α − r′α
(0) − ∆r̄′α, V0[r′α]−1(r′α − r′α

(0) − ∆r̄′α))

−
N∑

α=1

(λα,
(
r′α

(0) + ∆r̄′α − S(r(0)
α + ∆r̄α) −

3∑
i=0

∆qi
∂S
∂qi

r(0)
α − t − ∆t

)
). (27)

Differentiating this with respect to ∆r̄α, ∆r̄′α, ∆qi, and ∆t and letting the results be 0, we have

−V0[rα]−1(rα − r(0)
α − ∆r̄α) + S>λα = 0, − V0[r′α]−1(r′α − r′α

(0) − ∆r̄′α) − λα = 0,

N∑
α=1

(λα,
∂S
∂qi

r(0)
α ) = 0,

N∑
α=1

λα = 0. (28)

From the first and second equations, we obtain

r(0)
α + ∆r̄α = rα − V0[rα]S>λα, r′α

(0) + ∆r̄′α = r′α + V0[r′α]λα. (29)

Substitution of these into (26) results in

2
3∑

i=0

∆qiQir(0)
α + ∆t − (SV0[rα]S> + V0[r′α])λα = eα, (30)

where eα is the first vector in (8). We have also used the matrices Qi in (11) and the relation in (10). If we define the
3 × 4 matrices

U(0)
α = 2

(
Q0r(0)

α Q1r(0)
α Q2r(0)

α Q3r(0)
α

)
, (31)

the third equation in (28) has the form
N∑

α=1

U(0)>
α λα = 0. (32)

Using the matrices U(0)
α in (31) and the matrices Vα in (12) we can write (30) as

U(0)
α ∆q + ∆t − Vαλα = eα. (33)

We see that (30), (32), and (33) define linear equations in λ1, ..., λN , ∆q, and ∆t. Solving these, we can determine q̄,
t̄, r̄α, and r̄′α, which exactly minimize the residual J in (1) subject to the linearized constraint (26). However, (26) is an
approximation, so we regard the computed solution q and t as new current values and upgrade r(0)

α by the left side of
the first equation in (29) using the computed λα (the value r′α

(0) is not used in the computation). We repeat this until
all variables converge. The procedure is summarized as follows:

(i) Provide an initial guess of q and t, and let r(0)
α = rα and J0 = ∞ (a sufficiently large number).

(ii) Compute the scaled rotation S in (3) for q.
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(iii) Compute the vectors eα and the matrices Wα in (8), and evaluate the residual J in (9).
(iv) If J ≈ J0, return q and t and stop. Else, let J0 ← J .
(v) Compute the matrices Qi in (11) and U(0)

α in (31).
(vi) Solve the following (3N + 7)-D linear equation:

−V1 U(0)
1 I

. . .
...

...

−VN U(0)
N I

U(0)>
1 · · · U(0)>

N

I · · · I





λ1

...

λN

∆q

∆t


=



e1

...

eN

0

0


. (34)

(vii) Update r(0)
α , q and t as follows, and return to Step (ii):

r(0)
α ← rα − V0[rα]S>λα, q ← q + ∆q, t ← t + ∆t. (35)

5. Reduced Gauss-Helmert method

The above description gives an impression that the Gauss-Newton and Gauss-Helmert methods are very different
disciplines. We now show that the Gauss-Helmert method can be expressed in a form very similar to the Gauss-Newton
method. From (33), we can express λα in the form

λα = Wα

(
U(0)

α ∆q + ∆t − eα

)
, (36)

where Wα is the matrix defined in (8). If (36) is substituted into the first and the second equalities in (28) to eliminate
λα, we obtain linear equations only in ∆q and ∆t. Hence, the procedure of the Gauss-Helmert method can also be written
in the following form:

(i) Provide an initial guess of q and t, and let r(0)
α = rα and J0 = ∞ (a sufficiently large number).

(ii) Compute the scaled rotation S in (3) for q.
(iii) Compute the vectors eα and the matrices Wα in (8), and evaluate the residual J in (9).
(iv) If J ≈ J0, return q and t and stop. Else, let J0 ← J .
(v) Compute the matrices Qi in (11) and the matrices U(0)

α in (31).
(vi) Solve the following 7-D linear equation:

N∑
α=1

U(0)>
α WαU(0)

α

N∑
α=1

U(0)>
α Wα

N∑
α=1

WαU(0)
α

N∑
α=1

Wα


 ∆q

∆t

 =


N∑

α=1

U(0)>
α Wαeα

N∑
α=1

Wαeα

 . (37)

(vii) Compute λα by (36).
(viii) Update r(0)

α , q, and t as follows, and return to Step (ii):

r(0)
α ← rα − V0[rα]S>λα, q ← q + ∆q, t ← t + ∆t. (38)

This reduction of the algorithm reduces the memory usage in the computer. Since (34) is a (3N + 7)-D linear equation,
the coefficient matrix has (3N + 7)2 elements, and the unknown is a (3N + 7)-D vector. In contrast, (37) is a 7-D linear
equation; the coefficient matrix has 49 elements, and the unknown is a 7-D vector. The effect memory reduction becomes
more significant as the number N of the data increases. Mathematically, this reduction of a high-dimensional linear
equation to a smaller dimension is equivalent to replacing a part of the coefficient matrix with a submatrix known as the
Schur complement (Triggs, et al., 1999).

At the same time, (37) makes the similarity to the Gauss-Newton method more apparent. Comparing (23) and (37),
we see that the matrices Uα in (16) are replaced by the matrices U(0)

α in (31). For the Gauss-Newton method, the right
side of (23) is the gradient of the residual J with respect to q and t, but the counterpart of the second term is missing
on the right side of (37). However, when ∆q = ∆t = 0 at the time of the convergence of the Gauss-Helmert iterations,
we see from (36) that λα = −Wαeα. Hence, the first equation in (38) implies

r(0)
α = rα + V0[rα]S>Wαeα, (39)

which coincides with (6) if (7) is substituted. Substitution of (39) into (31) shows

U(0)
α = Uα + 2

(
Q0V0[rα]S>Wαeα Q1V0[rα]S>Wαeα Q2V0[rα]S>Wαeα Q3V0[rα]S>Wαeα

)
. (40)
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Hence, we have

U(0)>
α Wαeα = UαWαeα + 2

(
(eα,WαQiV0[rα]S>Wαeα)

)
i=0,1,2,3

. (41)

If this is substituted, the right side of (37) coincides with that of (23). Thus, the Gauss-Helmert method returns the same
solution as the Gauss-Newton method. Since the matrix on the left side of (23) is the Gauss-Newton approximation of
the Hessian of the residual J , the matrix on the left side of (37) can also be viewed as an approximation of the Hessian
of J . If we call it the Gauss-Helmert approximation, the Gauss-Newton and the Gauss-Helmert approximations differ by
O(eα).

6. Modified Gauss-Helmert method

It is easily seen that (6) of the Gauss-Newton method gives the maximum likelihood estimators of r̄α and r̄′α, given
the current estimates q and t, while the first equation in (35) (or (38)) gives an iterative update using the Lagrange
multipliers λα in (36) expressed in the increments ∆q and ∆t of q and t. Although the resulting r(0)

α converges to the
first equation of (6), as we showed in the preceding section, we can expect higher accuracy if we directly use the first
equation of (6) rather than the iterative update as in (35) or (38). The modified procedure is summarized as follows:

(i) Provide an initial guess of q and t, and let J0 = ∞ (a sufficiently large number).
(ii) Compute the scaled rotation S in (3) for q.
(iii) Compute the vectors eα and the matrices Wα in (8), and compute r(0)

α as follows:

r(0)
α = rα + V0[rα]S>Wαeα. (42)

(iv) Evaluate the residual J in (9). If J ≈ J0, return q and t and stop. Else, let J0 ← J .
(v) Compute the matrices Qi in (11) and the matrices U(0)

α in (31).
(vi) Solve the following 7-D linear equation:

N∑
α=1

U(0)>
α WαU(0)

α

N∑
α=1

U(0)>
α Wα

N∑
α=1

WαU(0)
α

N∑
α=1

Wα


 ∆q

∆t

 =


N∑

α=1

U(0)>
α Wαeα

N∑
α=1

Wαeα

 . (43)

(vii) Update r(0)
α , q, and t as follows, and return to Step (ii):

q ← q + ∆q, t ← t + ∆t (44)

In other words, the Lagrange multipliers λα, which are the main characteristics of the Gauss-Helmert method, no longer
appear in this modified algorithm. If the values of r(0)

α defined in (42) are used, the right side of (43) coincides with
that of (23). In other words, while the right side of (37) of the (reduced) Gauss-Helmert method agrees with that of the
Gauss-Newton method in the end, this modified algorithm uses the expression in the Gauss-Newton method from the
beginning. In this sense, this algorithm is a hybrid between the Gauss-Helmert and the Gauss-Newton methods. The only
difference is now whether the Gauss-Newton or the Gauss-Helmert approximation is used for the Hessian.

7. Simulated Stereo Vision

We now experimentally compare the convergence performance of the Gauss-Newton, the Gauss-Helmert, and the mod-
ified Gauss-Helmert methods by stereo vision simulation, for which inhomogeneous and anisotropic noise characteristics
can be analytically modeled.

7.1. Covariance evaluation

A curved grid surface is rotated around the world origin O and translated after its scale is changed, as depicted on
the left of Fig. 1. The 3-D positions of the grid points are reconstructed by stereo vision before and after the similarity
motion. The simulated stereo images are shown on the right of Fig. 1. The image size is set to 500 × 800 pixels and the
focal length to 600 pixels. The two cameras are positioned so that the disparity angle, or the parallax, of the world origin
O is 10◦. We added independent Gaussian noise of mean 0 and standard deviation σ pixels to the x and y coordinates of
each of the grid points in the images and computed their 3-D positions r̂α and r̂′α by the method described in Kanatani
et al. (2008). For optimal similarity estimation, we need to evaluate the normalized covariances V0[r̂α] and V0[r̂′α] of the
reconstructed 3-D positions r̂α and r̂′α. Following Kanazawa and Kanatani (1995) and Niitsuma and Kanatani (2011a),
we evaluated these as follows.

We fix an XY Z world coordinate system and regard the reference camera position as placed at the coordinate origin
O with the optical axis aligned to the Z-axis. The image xy coordinate system is defined in such a way that its origin o
is at the principal point (the intersection with the optical axis) and the x- and y-axis are parallel to the X- and Y -axis
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before motion

after motion

Fig. 1. A grid surface rotates, translates, and changes the scale. The 3-D position of the grid points are measured by stereo vision before and
after the similarity motion. The ellipsoid illustrates the measurement uncertainty.

of the world coordinate system, respectively. Then, the camera is rotated around the world coordinate origin O by R
(rotation matrix) and translated by t from the reference position. We call {R, t} the motion parameters of the camera.
The camera imaging geometry is modeled by perspective projection with focal length f , projecting a 3-D point onto a
2-D point (x, y) by the following relationship (Hartley and Zisserman, 2004):

x ' PX, x ≡


x/f0

y/f0

1

 , X ≡

 r

1

 . (45)

The symbol ' means equality up to a nonzero constant multiplier, and f0 is a scale constant of approximately the image
size for stabilizing finite length computation (Hartley, 1997). The 3 × 4 projection matrix P is given by

P =


f/f0 0 0

0 f/f0 0

0 0 1

 (
R> −R>t

)
, (46)

where the aspect ratio is assumed to be 1 with no image skews, or so corrected by prior calibration.
We consider two cameras with motion parameters {R, t} and {R′, t′} with focal lengths f and f ′, respectively. Let P

and P′ be the projection matrices of the respective cameras, and x and x′ the images of a point in 3-D observed by the
respective cameras. Image processing for correspondence detection entails uncertainty to some extent, and we model it by
independent isotropic Gaussian noise of mean 0 and standard deviation σ (pixels). Due to noise, the detected points x and
x′ do not exactly satisfy the epipolar constraint, so we correct x and x′, respectively, to x̂ and x̂′ that exactly satisfy the
epipolar constraint in an optimal manner (Appendix A). From the corrected positions x̂ and x̂′, the corresponding 3-D
position r̂ is uniquely determined. Note that although the noise in xα and x′

α is assumed to be independent, the noise in
the corrected positions x̂α and x̂′

α is no longer independent (Kanatani, 1996). The normalized covariance matrices V0[x̂]
and V0[x̂′] and the normalized correlation matrices V0[x̂, x̂′] and V0[x̂′, x̂] are given as follows (Kanatani, 1996; Kanazawa
and Kanatani, 1995):

V0[x̂] =
1
f2
0

(
Pk − (PkFx̂′)(PkFx̂′)>

‖PkFx̂′‖2 + ‖PkF>x̂‖2

)
, V0[x̂′] =

1
f2
0

(
Pk − (PkF>x̂)(PkF>x̂)>

‖PkFx̂′‖2 + ‖PkF>x̂‖2

)
,

V0[x̂, x̂′] =
1
f2
0

(
− (PkFx̂′)(PkF>x̂)>

‖PkFx̂′‖2 + ‖PkF>x̂‖2

)
= V0[x̂′, x̂]>. (47)

Here, F is the fundamental matrix between the two images (Hartley and Zisserman, 2004), and we define Pk ≡ diag(1, 1, 0).
Since the vector X̂ reconstructed from x̂ and x̂′ satisfies the projection relationship in (45), vectors x̂ and PX̂ are parallel,
and so are x̂′ and P′X̂. Thus, we have

x̂ × PX̂ = 0, x̂′ × P′X̂ = 0 (48)

It follows that if the noise in x̂ and x̂′ is ∆x̂ and ∆x̂′, respectively, the noise ∆X̂ in X̂ satisfies to a first approximation

∆x̂ × PX̂ + x̂ × P∆X̂ = 0, ∆x̂′ × P′X̂′ + x̂′ × P′∆X̂ = 0. (49)
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These are combined into one equation in the form x̂ × P̃

x̂′ × P̃′

 ∆r̂ =

 (PX̂) × I O

O (P′X̂) × I

  ∆x̂

∆x̂′

 , (50)

where ∆r̂ is the 3-D vector of the first three components of ∆X̂ and P̃ and P̃′ are the left 3× 3 submatrices of the 3× 4
projection matrices P and P′, respectively. Here, we define the product a × A of a 3-D vector a and a 3 × 3 matrix A
to be the 3 × 3 matrix whose columns are the vector products of a and the respective columns of A (Kanatani, 1996).
Multiplying both sides by the transpose of the left side from left, we obtain(

(x̂ × P̃)>(x̂ × P̃) + (x̂′ × P̃′)>(x̂′ × P̃′)
)
∆r̂ =

(
(x̂ × P̃)>((PX̂) × I) (x̂′ × P̃′)>((P′X̂) × I)

)  ∆x̂

∆x̂′

 , (51)

which can be rewritten this in form

A∆r̂ = B

 ∆x̂

∆x̂′

 , (52)

A ≡ ‖x̂‖2P̃>PN [x̂]P̃ + ‖x̂′‖2P̃′>PN [x̂′]P̃′, B ≡
(
P̃>

(
(x̂,PX̂)I− (PX̂)x̂>

)
P̃′>

(
(x̂′,P′X̂)I− (P′X̂)x̂′>

))
, (53)

where we define

PN [x̂] ≡ I −N [x̂]N [x̂]>, PN [x̂′] ≡ I −N [x̂′]N [x̂′]>, (54)

and N [ · ] denotes normalization to unit norm (N [a] = a/‖a‖). From (52), we obtain

∆r̂∆r̂> = A−1B

 ∆x̂∆x̂> ∆x̂∆x̂′>

∆x̂′∆x̂> ∆x̂′∆x̂′>

B>(A−1)>. (55)

Taking expectation on both sides, we obtain the normalized covariance matrix V0[r̂] of the reconstructed position r̂ in the
following form:

V0[r̂] = A−1B

 V0[x̂] V0[x̂, x̂′]

V0[x̂′, x̂] V0[x̂′]

B>(A−1)>. (56)

Note that here we have replaced only ∆x̂∆x̂>, ∆x̂∆x̂′>, ∆x̂′∆x̂>, and ∆x̂′∆x̂′> by their expectations. Strictly speaking,
x̂α and x̂′

α are also random variables, but we use the values computed from the data for them. Replacing only those
values that cannot be observed by their expectations is a practical compromise. Evaluating the normalized covariance
matrix V0[r̂α] in (56), we find that the uncertainty distribution has an ellipsoidal shape elongated in the depth direction,
as illustrated on the left of Fig 1. The ratio of radii is, on average over all the points, 1.00 : 1.685 : 5.090 in the vertical,
horizontal, and depth directions, respectively, meaning that the error in the depth direction is approximately five times
as large as in the vertical direction. We actually measured this ratio by adding noise to the images many times and found
that it is about 1.00 : 1.686 : 5.095, a very close value to the prediction by (56).

This stereo vision simulation is merely for evaluating the performance of the Gauss-Newton and the (original and
modified) Gauss-Helmert methods; we are not intending to obtain a practical stereo vision system, for which many
realistic issues including robust image matching are to be resolved.

7.2. Results

Table 1 shows how the residual J of each method decreases with iterations. The standard deviation of the error added
to the stereo images is σ = 1.0, 2.0, 3.0 (pixels), respectively. We started from the identity (R = I, t = 0, s = 1) and
imposed no threshold for convergence: we stopped if J stops decreasing. In each step, unchanged digits are underlined.
Note that this does not mean that these digits are correct. Here, we are interested in how quickly the residual decreases
and how quickly the number of converged digits increases. We are doing double precision computation with a 64 bit length
register, so 16 decimal digits should be unchanged after convergence.

From Table 1, we see that the initial decrease in J of the Gauss-Helmert method is conspicuous; it drops sharply and
almost abruptly in the first few iterations. In contrast, the residual J of the Gauss-Newton method reduces continuously,
and the number of converged digits increases steadily. On the other hand, the initial decrease in J of the modified
Gauss-Helmert method is smaller than the Gauss-Helmert method. This is because the modified Gauss-Helmert method
computes the ML estimator of r̄α for the “current” estimate of the similarity. Since the initial guess (the identity) is
far from the truth, the values r(0)

α computed by (42) are very poor approximations, while the Gauss-Helmert method
initializes r(0)

α by the data rα themselves, so they are better estimates of r̄α. Nevertheless, the modified Gauss-Helmert
method exhibits the best convergence performance of all, and the effect is more marked as the noise in the data increases.
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Table 1
Three examples of the decrease in the residual J for the standard deviation
σ = 1.0, 2.0, 3.0 (pixels) of the error added to the stereo images. Unchanged
digits are underlined.

Gauss-Newton Gauss-Helmert Modified G-H

σ = 1.0

0 23368.98044646554 23368.98044646554 23368.98044646554
1 5923.560464358145 151.2986897231218 1285.065292480236
2 260.2294019664706 138.7852882171576 157.4589569299990
3 138.6397722443412 138.4925647492029 138.5000828752851
4 138.4925871308799 138.4925039364953 138.4925004345684
5 138.4924995387721 138.4924994558186 138.4924994516441
6 138.4924994515073 138.4924994515843 138.4924994514191
7 138.4924994514190 138.4924994514190 138.4924994514189
8 138.4924994514186 138.4924994514186 138.4924994514183

σ = 2.0

0 23705.92405252490 23705.92405252490 23705.92405252490
1 6631.055953257285 594.2288594040884 1561.554831323493
2 736.3892569773028 558.1047339694743 558.6320435827311
3 553.9802729910044 553.1013519598023 553.0948890717049
4 553.1072304698275 553.0944258828818 553.0931283140471
5 553.0934173237943 553.0931334967796 553.0931253383568
6 553.9031314363093 553.0931261287393 553.0931253320340
7 553.9031254597525 553.0931253408035 553.0931253320183
8 553.9031253346927 553.0931253326902
9 553.9031253320766 553.0931253320288
10 553.9031253320209 553.0931253320218
11 553.9031253320202 553.0931253320192

σ = 3.0

0 24182.94641626991 24182.94641626991 24182.94641626991
1 7749.683523117275 1385.515352477767 2074.419348255112
2 1602.792794683083 1264.397843471071 1237.583977963944
3 1243.659456346911 1237.444020868650 1237.288888227983
4 1237.725240249172 1237.323793869136 1237.288729761082
5 1237.327534736445 1237.289379736924 1237.288728527720
6 1237.292254473387 1237.288833051470 1237.288728517618
7 1237.289050047267 1237.288731797017 1237.288728517540
8 1237.288757863381 1237.288728948894 1237.288728517537
9 1237.288731196586 1237.288728533946 1237.288728517535
10 1237.288728762133 1237.288728519425
11 1237.288728539869 1237.288728517618
12 1237.288728519574 1237.288728517545
13 1237.288728517725 1237.288728517538
14 1237.288728517554
15 1237.288728517537

Figure 2a shows for various σ the average number of iterations over independent 1000 trials, each time with different
noise. We can see that the Gauss-Helmert method converges faster than the Gauss-Newton method and in most cases
the modified Gauss-Helmert method converges even faster. For comparison, Fig. 2b shows the result initialized using the
widely used homogeneous and isotropic noise model assuming V0[rα] = V0[rα] = I for all α. In this case, we compute the
centroids rc and r′c of the data {rα} and {r′α}, respectively, and the deviations r̃α = rα − rc and r̃′α = r′α − r′c from their
respective centroids. The scale change s is estimated by

s =

√√√√∑N
α=1 ‖r̃′α‖2∑N
α=1 ‖r̃α‖2

, (57)

and the rotation R is computed from {r̃α} and {r̃′α} by the method of singular value decomposition (SVD) (Appendix
B). The translation t is determined from t = r′c − sRrc. As we see from Fig. 2b, the Gauss-Newton method converges
faster than the Gauss-Helmert method for such an accurate initialization when the noise in the data is small. However,
the Gauss-Helmert method becomes more efficient as the noise increases. Yet , the modified Gauss-Helmert method is
always the most efficient for all the noise level.

We next evaluated the accuracy of the computed rotation R̂, the translation t̂, and the scale change ŝ. Note that
the accuracy is independent of the convergence performance observed above. As the analysis in Section 5 shows, the
Gauss-Newton, the Gauss-Helmert, and the modified Gauss-Helmert methods all should produce the same solution when
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a b

Fig. 2. The average number of iterations for various noise level σ (pixels) over 1000 independent trials: (1) Gauss-Newton, (2) Gauss-Helmert,

and (3) modified Gauss-Helmert. (a) Initialized by the identity. (b) Initialized using the homogeneous and isotropic noise model.

a b c

Fig. 3. The RMS error vs. the standard deviation σ (pixels) of the noise added to the stereo images: (a) rotation, (b) translation, and (c) scale
change. The dotted lines are for the homogeneous and isotropic noise model.

they have converged, irrespective of the speed of convergence. Here, we compare their accuracy with the method using
homogeneous and isotropic noise. Let R̄, t̄, and s̄ be their true values, respectively. We computed the rotation angle δΩ
(degree) of the relative rotation R̂R̄−1, the translation error δt = t̂− t̄ and the scale change error δs = ŝ− s̄. Repeating
this 1000 times with σ fixed, each time using different image noise, we evaluated the RMS errors

ER =

√√√√ 1
1000

1000∑
a=1

(δΩ(a))2, Et =

√√√√ 1
1000

1000∑
a=1

‖δt(a)‖2, Es =

√√√√ 1
1000

1000∑
a=1

(δs(a))2, (58)

where the superscript (a) denotes the value of the ath trial. Figure 3 plots these for various σ. It is clearly demonstrated
that accurate estimation cannot be done unless the inhomogeneity and anisotropy of the 3-D sensing data are taken into
consideration.

8. Real Data Example

Turkey is a country with frequent earthquakes, and researchers monitor the land deformation using GPS data. Table 2
shows the X, Y , and Z coordinates (in meters) of five positions selected from a landslide area near Istanbul in October
1997 and March 1998 (Acar et al., 2006). The absolute positions are corrected in reference to control points in stable
areas. The covariance matrices of these values are estimated using statistical regression analysis. For the 1997 data, their
normalized covariance matrices (up to a common noise level) are in the order listed in the table 34 10 17

10 12 7

17 7 33

,

 234 83 136

83 97 58

136 58 245

,

 24 8 12

8 10 6

12 6 25

,

 63 25 36

25 28 16

36 16 53

,

 22 8 12

8 9 5

12 5 23

.

For the 1998 data, 51 18 23

18 18 13

23 13 30

,

 323 140 159

140 148 100

159 100 218

,

 41 14 19

14 16 11

19 11 28

,

 141 47 70

47 49 38

70 38 96

,

 59 20 29

20 24 16

29 16 43

.

The noise level σ is around the order of 10−4 (meters).
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Table 2
The 3-D data (in meters) of five points near
Istanbul in October 1997 and March 1998 (Acar
et al., 2006)

X Y Z

October 1997

4233187.8344 2308228.6785 4161469.1229
4233190.6059 2308518.3249 4161336.2582
4233429.1004 2307875.2240 4161292.4034
4233259.8205 2307712.3025 4161553.4880
4233770.4580 2308340.5240 4160740.3286

March 1998

4233187.8612 2308228.7042 4161469.1383
4233190.6124 2308518.3166 4161336.2682
4233429.1008 2307875.2239 4161292.4029
4233259.8309 2307712.2990 4161553.5007
4233770.4534 2308340.5219 4160740.3181

Table 3
a. Changes in the residual J (×10−6) for the data in Table 2. Unchanged digits
are underlined. b. The translation t = (t1, t2, t3)> (meters), the scale change s,
the rotation angle Ω (degrees), and the residual J (×10−6) estimated from the
data in Table 2.

Gauss-Newton Gauss-Helmert Modified G-H

a

0 13.90466081612066 13.90466081612066 13.90466081612066
1 6.409224221023396 6.409224221568889 6.409224220271752
2 6.409224212420786 6.409224212419703 6.409224212421016
3 6.409224212420786 6.409224212419703 6.409224212421016

Conventional Optimal

b

t1 −199.8603562003 −274.6708352865
t2 42.52530292571 100.2332078221
t3 143.6578706433 140.7879487881
s 1.000003703184 1.000008522356
l1 −0.0495064987939 −0.0085468407697
l2 0.9328527741966 0.8213706338012
l3 −0.3568400317382 −0.5703308105318
Ω 0.002242810319013 0.002887644251870
J 9.242857990972 × 10−6 6.40922421242 × 10−6

We regarded (4233000, 2308000, 4161000) as a tentative world coordinate origin and applied the three methods. Table
3(a) shows the changes in J initialized by the identity (unchanged digits are underlined). Table 3(b) lists the computed
translation t (meters), the scale change s, the rotation axis l (unit vector), and the rotation angle Ω (degrees) with respect
to the original world coordinate system, which are compared with the solution using the conventional homogeneous and
isotropic noise model. The two solutions agree at most in the first digit. This illustrates that accurate estimation cannot
be done without using the optimal computation shown here.

Note that all the numbers in Table 2 have 11 digits. Retaining such long digit sequences in the computation would cause
shortage of bits for intermediate values with sufficient accuracy even in double precision. In fact, if we use the numbers in
Table 2 as are, we observe that the residual converges only up to seven digits; the remaining digits keep fluctuating after
that. Subtracting (4233000, 2308000, 4161000) makes all the values in Table 2 seven-digit numbers. As a result, as we see
from Table 3(a), the residual converges to 16 digits in three iterations for all the methods. The necessity of appropriate
normalization of image data for stabilizing finite length computation is well recognized for computer vision applications
(Hartley, 1997), but this is also true for GPS data, which usually consist of long digit sequences.

9. Conclusions

Because 3-D data are acquired using 3-D sensing such as stereo vision and laser range finders, they have inhomogeneous
and anisotropic noise. In this paper, we studied optimal computation of the similarity (rotation, translation, and scale
change) of such 3-D data. We compared the two well known methods that are suitable for this purpose: the Gauss-Newton
method, which is widely regarded as the standard optimization technique by computer vision and robotics engineers, and
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the Gauss-Helmert method, which is popular among geodetic scientists. Doing stereo vision simulation with inhomogeneous
and anisotropic noise in 3-D data, we observed that

(i) The Gauss-Helmert method has a very similar structure to the Gauss-Newton method. This becomes evident if the
unknowns are reduced to the similarity variables alone by eliminating the Lagrange multipliers. We can view the
Gauss-Helmert iterations a variant of the Gauss-Newton iterations with a special approximation of the Hessian of
the residual, which may be called the “Gauss-Helmert approximation”.

(ii) In the course of the iterations, the Gauss-Helmert method sharply drops the residual at first, but the subsequent
convergence is not necessarily fast. In contrast, the Gauss-Newton iterations continuously and steadily reduce the
residual. However, both converge to the same solution up to 16 digits in double precision. Overall, the Gauss-Newton
method is more efficient when the initialization is accurate and the data noise is low, but the Gauss-Helmert method
becomes more efficient when the initialization is poor or the noise level is high.

Then, we combined them to define a hybrid, which we call the “modified Gauss-Helmert method”. We observed that:
(iii) The initial drop of the residual is not so sharp as the Gauss-Helmert method, but it converges to the same solution

(up to 16 digits in double precision), and the convergence is as smooth as the Gauss-Newton method.
(iv) Irrespective of the accuracy of the initialization or the noise level of the data, the convergence is almost always

faster than the Gauss-Newton or the Gauss-Helmert method.
We also applied our method to real GPS geodetic data and found that the widely used homogeneous and isotropic noise
model is insufficient for accurate estimation. We also found that numerical inaccuracy can result if long digit sequences
of GPS data are used without appropriate normalization.
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Appendix A. Optimal Triangulation

Let (x, y) and (x′, y′) be a pair of corresponding points between stereo images. Since correspondence detection by an
image processing operations inevitably entails uncertainty to some degree, they do not necessarily satisfy the epipolar
constraint. Geometrically, this corresponds to the fact that the lines of sight starting from the lens center of the two
cameras and passing through (x, y) and (x′, y′) in the image plane do not necessarily meet in the scene. For optimal 3-D
reconstruction, we need to correct (x, y) and (x′, y′) optimally to (x̂, ŷ) and (x̂′, ŷ′) so that their lines of sight intersect.
By “optimally”, we mean that the correction is done in such a way that the reprojection error (x̂− x)2 + (ŷ − y)2 + (x̂′ −
x′)2 + (ŷ′ − y′)2 is minimized. This correction procedure goes as follows (Kanatani et al., 2008):

(i) Let E0 = ∞ (a sufficiently large number), x̂ = x, ŷ = y, x̂′ = x′, ŷ′ = y′, and x̃ = ỹ = x̃′ = ỹ′ = 0, and express the
fundamental matrix F = (Fij) as the 9-D vector f = (F11, F12, F13, F21, F22, F23, F31, F32, F33)>.

(ii) Compute the following 9 × 9 matrix V0[ξ̂] and the 9-D vector ξ∗:

V0[ξ̂] =



x̂2 + x̂′2 x̂′ŷ′ f0x̂′ x̂ŷ 0 0 f0x̂ 0 0

x̂′ŷ′ x̂2 + ŷ′2 f0ŷ′ 0 x̂ŷ 0 0 f0x̂ 0

f0x̂′ f0ŷ′ f2
0 0 0 0 0 0 0

x̂ŷ 0 0 ŷ2 + x̂′2 x̂′ŷ′ f0x̂′ f0ŷ 0 0

0 x̂ŷ 0 x̂′ŷ′ ŷ2 + ŷ′2 f0ŷ′ 0 f0ŷ 0

0 0 0 f0x̂′ f0ŷ′ f2
0 0 0 0

f0x̂ 0 0 f0ŷ 0 0 f2
0 0 0

0 f0x̂ 0 0 f0ŷ 0 0 f2
0 0

0 0 0 0 0 0 0 0 0


,

ξ∗ =



x̂x̂′ + x̂′x̃ + x̂x̃′

x̂ŷ′ + ŷ′x̃ + x̂ỹ′

f0(x̂ + x̃)

ŷx̂′ + x̂′ỹ + ŷx̃′

ŷŷ′ + ŷ′ỹ + ŷỹ′

f0(ŷ + ỹ)

f0(x̂′ + x̃′)

f0(ŷ′ + ỹ′)

f2
0


. (A.1)

Here, f0 is a fixed reference length of approximately the image size.
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(iii) Update x̃, ỹ, x̃′, ỹ′, x̂, ŷ, x̂′, and ŷ′ as follows:(
x̃

ỹ

)
← (f , ξ∗)

(f , V0[ξ̂]f)

(
F11 F12 F13

F21 F22 F23

) x̂′

ŷ′

1

,

(
x̃′

ỹ′

)
← (f , ξ∗)

(f , V0[ξ̂]f)

(
F11 F21 F31

F12 F22 F32

) x̂
ŷ
1

, (A.2)

x̂ ← x − x̃, ŷ ← y − ỹ, x̂′ ← x′ − x̃′, ŷ′ ← y′ − ỹ′. (A.3)
(iv) Compute the reprojection error E by

E = x̃2 + ỹ2 + x̃′2 + ỹ′2. (A.4)
If E ≈ E0, return (x̂, ŷ) and (x̂′, ŷ′) and stop. Else, let E0 ← E and go back to Step (ii).

Appendix B. Optimal rotation estimation for homogeneous isotropic noise

Various methods are known for optimally computing the 3-D rotation for homogeneous and isotropic noise (Arun et
al., 1987; Horn, 1987; Horn et al., 1988; Kanatani, 1994; Umeyama, 1991), but all are mathematically equivalent. The
simplest is the following method in terms of the singular value decomposition (SVD) (Kanatani, 1993):

(i) Compute the following correlation matrix N between the 3-D positions rα and r′α before and after the rotations:

N =
N∑

α=1

r′αr>α . (B.1)

(ii) Compute the SVD of N in the form

N = Udiag(σ1, σ2, σ3)V>, (B.2)
where U and V are orthogonal matrices, and σ1 ≥ σ2 ≥ σ3 (≥ 0) are the singular values.

(iii) Return the following rotation matrix:

R = Udiag(1, 1, det(UV>))V>. (B.3)
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