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Abstract A rigorous accuracy analysis is given to var-
ious techniques for estimating parameters of geometric
models from noisy data. First, it is pointed out that
parameter estimation for vision applications is very dif-
ferent in nature from traditional statistical analysis and
hence a different mathematical framework is necessary.
After a general framework is formulated, typical numer-
ical techniques are selected, and their accuracy is evalu-
ated up to high order terms. As a byproduct, our analy-
sis leads to a “hyperaccurate” method that outperforms
existing methods.

Keywords: geometric fitting, parameter estimation, er-
ror analysis, hyperaccuracy.

1. Introduction

Modeling the geometric structure of images in a para-
metric form and estimating the parameters from obser-
vations are the first steps of many computer vision ap-
plications such as 3-D reconstruction and virtual real-
ity generation. The purpose of this paper is to present
a theoretical foundation for rigorous accuracy analysis
that can lead to improved estimation techniques.

This may sound simple, because parameter estimation
in the presence of noise is the main theme of statistics,
so all one needs to do seems simply use the established
results of statistics. In Sect. 2, we first point out that this
is not so because parameter estimation for typical com-
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puter vision applications is very different in nature from
traditional statistical analysis. We then present a math-
ematical framework that suits geometric computations
frequently encountered in computer vision applications.

In Sect. 3, we first formulate a general framework and
then focus on problems for which the model equation is
linear in the parameters. In Sect. 4, we select well known
estimation techniques and analyze their accuracy up to
high order terms. This reveals why some methods known
to be superior/inferior are really so in theoretical terms.
As a byproduct, our analysis leads to a “hyperaccurate”
method that outperforms existing methods. In Sect. 5,
we conclude.

2. Geometric Fitting

2.1 Definition

We call the class of problems to be discussed in this pa-
per geometric fitting : we fit a parameterized geometric
model (a curve, a surface, or a relationship in high di-
mensions) expressed as an implicit equation in the form

F (x; u) = 0, (1)

to N data xα, α = 1, ..., N , typically points in an image
or point correspondences over multiple images (Kanatani
1996). The function F (x; u), which may be a vector if
the model is defined by multiple equations, is parame-
terized by u. Each xα is assumed to be perturbed by
independent noise from its true value x̄α which strictly
satisfies (1). From the parameter u of the fitted equa-
tion, one can discern the underlying geometric structure.
A large class of computer vision problems fall into this
category (Kanatani 1996).
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Though one can speak of noise and parameter esti-
mation, the fact that this problem does not straight-
forwardly fit the traditional framework of statistics has
not been widely recognized. The following are typical
distinctions of geometric fitting as compared with the
traditional parameter estimation problem: smallskip

• Unlike traditional statistics, there is no explicit
model which explains observables in terms of de-
terministic mechanisms and random noise. All de-
scriptions are implicit .

• No inputs or outputs exist. No such concepts exist
as causes and effects, or ordinates and abscissas.

• The underlying data space is usually homogeneous
and isotropic with no inherent coordinate system.
Hence, the estimation process should be invariant
to changes of the coordinate system with respect to
which the data are described.

• Usually, the data are geometrically constrained to
be on predetermined curves, surfaces, and hyper-
surfaces (e.g., unit vectors or matrices of deter-
minant 0). The parameters to be estimated may
also be similarly constrained. Hence, the Gaussian
distribution, the most fundamental noise modeling,
does not exist in its strict sense in such constrained
spaces.

We first discuss why the traditional approach does not
suit our intended applications.

2.2 Reduction to Statistical Estimation

It appears that the problem can be rewritten in the tra-
ditional form. The “observable” is the set of data xα,
which can be rearranged into a high dimensional vector

X =
(

x>
1 x>

2 · · · x>
N

)>
. Let εα be noise in xα,

and define the vector E =
(

ε>
1 ε>

2 · · · ε>
N

)>
. Let

X̄ be the true value of X . The statistical model in the
usual sense is

X = X̄ + E. (2)

The unknown X̄ needs to be estimated. Let p(E) be
the probability density of the noise vector E. Our task
is to estimate X̄ from X , which we regard as sampled
from p(X − X̄). The difficulty is that the parameter u,
which we really want to estimate, is not contained in this
model. Instead, the parameter u implicitly constrains
the mutual relationships among the components of X̄ .

In order to make the implicit constraint explicit, one
needs to introducing a new parameter t to solve (1) for
u in the parametric form

x = x(t; u). (3)

For example, if we want to fit a circle (x− a)2 + (y − b)2

= r2, we rewrite it as x = a + r cos θ, y = b + r sin θ by

introducing the directional angle θ. However, this type
of parametric representation is usually very difficult to
obtain.

Suppose such a parametric representation does exist.
Substituting x̄1 = x(t1, u), x̄2 = x(t2, u), ..., x̄N =
x(tN , u), (2) now has the form

X = X̄(t1, ..., tN ; u) + E. (4)

Our task is to estimate the parameters t1 ,..., tN and u
from X .

2.3 Neyman-Scott Problem

Although the problem looks like a standard form, there is
a big difference: we observe only one observable X for a
“particular” set of parameters t1 ,..., tN and u. Namely,
X is a single sample from p(X − X̄(t1, ..., tN ; u)).

The tenet of statistical estimation is to observe re-
peated samples from a distribution, or an ensemble, and
infer its unknown parameters. Naturally, estimation be-
comes more accurate as more samples are drawn, thanks
to the “law of large numbers”. Here, however, only one
sample X is available.

What happens if we increase the data? If we observe
another datum xN+1, the observable X becomes a yet
higher dimensional vector, and (4) becomes a yet higher
dimensional equation, which has an additional unknown
tN+1. This means that the resulting observable X is not
“another” sample of the same distribution; it is one sam-
ple from a new distribution with a new set of parameters
t1 ,..., tN+1 and u. However large the number of data
is, the number of observables is always 1.

This (seeming) anomaly was first pointed out by Ney-
man and Scott (1948). Since then, this problem has been
referred to as the Neyman-Scott problem. Even for a
single observation, maximum likelihood (ML) is possi-
ble. However, Neyman and Scott (1948) pointed out that
the estimated parameters do not necessarily converge to
their true values as N → ∞, indicating the (seeming)
lack of “consistency”, which is a characteristic of ML.

This is natural because increasing the number of data
does not mean increasing the number of samples from
a distribution having particular parameters. Though u
may be unchanged as N increases, we have as many pa-
rameters t1 ,..., tN as the increased number of data. Due
to this (seeming) anomaly, these are called nuisance pa-
rameters, whereas u is called the structural parameter
or the parameter of interest .

2.4 Semiparametric Models

In spite of many attempts in the past, this anomaly has
never been resolved, because it does not make sense to re-
gard what is not standard statistical estimation as stan-
dard statistical estimation. It has been realized that the
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Figure 1: (a) For the standard statistical estimation, it is desired that the accuracy increases rapidly as n → ∞ for the number
n of observations, because admissible accuracy can be reached with a smaller number of observations. (b) For geometric fitting,
it is desired that the accuracy increases rapidly as ε → 0 for the noise level ε, because larger data uncertainty can be tolerated
for admissible accuracy

only way to fit the problem in the standard framework is
to regard t1 ,..., tN not as parameters but as data sam-
pled from a fixed probability density q(t; v) with some
unknown parameters v called hyperparameters.

The problem is now interpreted as follows. Given u
and v, the values t1 ,..., tN are randomly drawn from
q(t; v). Then, (3) defines the true values x̄1, ..., x̄N ,
to which random noise drawn from p(E) is added. The
task is to estimate both u and v by observing x1, ...,
xN . For a given parametric density q(t; v), statisticians
call this interpretation the structural model , while (4)
the functional model .

In practice, however, how can we give the density
q(t; v) by merely looking at a single set of data x1, ...,
xN? To cope with this difficulty, a new approach has
emerged: we introduce a density q(t; v) whose form is
not completely specified. Such a model is said to be
semiparametric (Amari and Kawanabe 1997; Bickel et
al. 1994).

The standard procedure goes like this. We first es-
timate the density q(t; v) (the most difficult part), then
marginalize the model over q(t; v), integrating out all t1,
..., tN (not analytically easy), and finally search for an
optimal value of u. Now that the problem is reduced to
repeated sampling from a fixed distribution, the consis-
tency as N → ∞ is guaranteed under mild conditions.

This approach has been adopted in some computer
vision problems where a large number of data are avail-
able. Ohta (2003) showed that the semiparametric model
yields a better result for 3-D interpretation of a dense op-
tical flow field, and Okatani and Deguchi (2003) demon-
strated that for estimating 3-D shape and motion from a
point cloud seen in multiple images, the semiparametric
model can result in higher accuracy. In both cases, how-
ever, the procedure is very complicated, and the superior
performance is obtained only when the number of data
is extremely large.

2.5 Dual Approach

A natural question arises: why do we need to rewrite (1)
in a parametric form by introducing the new parameter

t? If (1) has a simple form, e.g., a polynomial, why do
we need to convert it to a complicated (generally non-
algebraic1) form, if the conversion is possible at all? Why
cannot we do estimation using (1) as is?

This might be answered as follows. Statisticians try
to fit the problem in the standard framework because
they are motivated to analyze asymptotic behavior of
estimation as the number n of observations increases. In
particular, the “consistency”, i.e., the property that the
computed estimates converge to their true values as n →
∞, together with the speed of convergence measured in
O((1/

√
n)k), is their major concern.

This concern originates from the fact that an estima-
tion method whose accuracy increases rapidly as n →
∞ can attain admissible accuracy with a fewer num-
ber of observations (Fig. 1(a)). Such a method is de-
sirable because most statistical applications are done in
the presence of large noise (e.g., agriculture, medicine,
economics, psychology, and census surveys), and hence
one needs a large number of repeated observations to
compensate for the noise, which entails a considerable
cost in real situations.

To this, Kanatani (1996, 2004d) countered, saying
that the purpose of many computer vision applications is
to estimate the underlying geometric structure as accu-
rately as possible in the presence of small noise. In fact,
the uncertainty introduced by image processing opera-
tions is usually around a few pixels or subpixels. He as-
serted that in such domains, it is more reasonable to eval-
uate the performance in the limit ε → 0 for the noise level
ε, because a method whose accuracy increases rapidly as
ε → 0 can tolerate larger uncertainty for admissible ac-
curacy (Fig. 1(b)).

If our our interest is in the limit ε → 0, we can build
a mathematical theory of estimation directly from (1).
Indeed, this is what has implicitly been done by many
computer vision researchers for years without worrying
about orthodox theories in the statistical literature.

1It is known that a polynomial (or algebraic) equation does
not have an algebraically parametric representation unless its
“genus” is 0 (Clebsch theorem).
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Table 1: Duality between traditional statistical estimation
and geometric fitting (Kanatani 2004)

Statistical estimation Geometric fitting

data generating mechanism geometric constraints

x ∼ p(x; θ) F (x; u) = 0

CR lower bound KCR lower bound

VCR[θ̂] = O(1/n) VKCR[û] = O(ε2)

ML is optimal in the ML is optimal in the

limit n → ∞ limit ε → 0

Akaike’s AIC geometric AIC

AIC = · · · + O(1/n) G-AIC = · · · + O(ε4)

Rissanen’s MDL geometric MDL

MDL = · · · + O(1) G-MDL = · · · + O(ε2)2.6 Duality of interpretation

Kanatani (1996, 2004) pushed this idea further and
showed that resulting mathematical consequences have
corresponding traditional results in a dual form, e.g., the
KCR lower bound (Chernov and Lesort 2004; Kanatani
1998) corresponds to the traditional Cramer-Rao (CR)
lower bound, and the geometric AIC and the geometric
MDL correspond, respectively, to Akaike’s AIC (Akaike
1974) and Rissannen’s MDL (Rissanen 1989) (Table 1).

The correspondence is dual in the sense that small
noise expansions have the form · · ·+O(εk) for geometric
fitting, to which correspond traditional asymptotic ex-

pansions in the form · · · + O(1/
√

nk). Kanatani (1996,
2004) explained this, invoking the following thought ex-
periment.

For geometric fitting, the image data may not be ex-
act due to the uncertainty of image processing opera-
tions, but they always have the same value however many
times we observe them, so the number n of observations
is always 1, as pointed out earlier. Suppose, hypotheti-
cally, they change their values each time we observe them
as if in quantum mechanics. Then, we would obtain n
different values for n observations. If we take their sam-
ple mean, its standard deviation is 1/

√
n times that of

individual observations. This means that repeating hy-
pothetical observations n times effectively reduces the
noise level ε to ε/

√
n. Thus, the behavior of estimation

for ε → 0 is mathematically equivalent to the asymptotic
behavior for n → ∞ of the number n of hypothetical ob-
servations (not the number N of “data”).

In the following, we adopt this approach and analyze
the accuracy of existing estimation techniques around ε
≈ 0.

3. Parameter Estimation and Accuracy

3.1 Noise Description and Estimators

Our goal is to obtain a good estimate of the parameter
u from observed data xα. To do mathematical analy-
sis, however, there is a serious obstacle arising from the

Figure 2: The displacement of a constrained variable is pro-
jected onto the tangent space, with which we identify the noise
domain

fact that the data xα and the parameter u may be con-
strained; they may be unit vectors or matrices of deter-
minant 0, for instance. How can we define noise in the
data and errors of the parameters? Evidently, direct vec-
tor calculus is not suitable. For example, if a unit vector
is perturbed isotropically, the perturbed values are dis-
tributed over a unit sphere, but their average is “inside”
the sphere.

A more serious problem is that noise distributions can-
not be Gaussian, because Gaussian distributions with
infinitely long tails can exist only in a Euclidean space.
Since Gaussian distributions are the most fundamental
of all distributions, how can we do mathematical analysis
without it?

Several mathematical formulations have been pro-
posed for probability distributions in a non-Euclidean
space based on theories of Lie groups and invariant mea-
sures (e.g., Begelfor and Werman (2005) and Pennec et
al. (2006)), but the results are very much complicated.

Fortunately, such complications are not necessary in
our formulation, because we are focusing only on small
noise effects in the dual framework. We can simply as-
sume that noise concentrates on a small region around
the true value and regard it as occurring in the tangent
space at that point. Within this tangent space, the noise
distribution can be regarded as Gaussian; the discrep-
ancy at the tail part is of higher order terms. Accord-
ingly, we define the covariance matrix of xα by

V [xα] = E[
(
Px̄α(xα − x̄α)

)(
Px̄α(xα − x̄α)

)>
], (5)

where E[ · ] denotes expectation over the noise distribu-
tion, and Px̄α denotes projection onto the tangent space
to the domain X of the data at x̄α (Fig. 2).

The geometric fitting problem in the form of (1) is
solved if a procedure is given for computing an estimate
û of u in terms of observed data xα, which defines a
function

û = û(x1, ..., xN ), (6)

called an estimator of u. A natural requirement is that
the true value should be obtained in the absence of noise:

lim
ε→0

û = u. (7)

Here, ε is the noise level, and u the true parameter value.
Chernov and Lesort (2004) called this condition consis-
tency in the dual framework. In this paper, we consider

Springer



Int J Comput Vis (2008) 80: 167–188 171

only consistent estimators in this sense. Confirming con-
sistency is usually a trivial matter.

If x1, ..., xN are random variables, so is û as a func-

tion of them. Hence, we can measure its accuracy by

its covariance matrix. Here again, the parameter u may

be constrained and its domain U may not be Euclidean.

So, we identify the error of û as belonging to the tangent

space to U at the true value u. Namely, we define the

covariance matrix V [û] of û by

V [û] = E[
(
Pu(û − u)

)(
Pu(û − u)

)>
], (8)

where Pu denotes projection onto the tangent space of

the domain U at u.

3.2 KCR Lower Bound

Kanatani (1996, 2005) proved that if each datum xα is

an independent Gaussian random variable in the above-

mentioned sense with mean x̄α and covariance matrix

V [xα], the following inequality holds for an arbitrary

unbiased estimator û of u (see Appendix 1 for the proof):

V [û] Â

(
N∑

α=1

(Pu∇uF̄α)(Pu∇uF̄α)>

(∇xF̄α, V [xα]∇xF̄α)

)−

. (9)

Here, Â means that the left-hand side minus the right

is positive semidefinite, and the superscript − denotes

pseudoinverse. The symbols ∇xF̄α and ∇uF̄α denote the

gradient of the function F (x; u) in (1) with respect to x

and u, respectively, evaluated at x = x̄α. Throughout

this paper, we denote the inner product of vectors a and

b by (a, b).

Chernov and Lesort (2004) called the right-hand side

of (9) the KCR (Kanatani-Cramer-Rao) lower bound and

showed that it holds except for O(ε4) even if û is not

unbiased; it is sufficient that û is “consistent” in the

sense of (7).

If we worked in the traditional domain of statistics,

we would obtain the corresponding CR (Cramer-Rao)

lower bound . The statistical model is given by (4) with

likelihood function p(X − X̄(t1, ..., tN ; u)). So, the CR

bound can be obtained by following the standard proce-

dure described in the statistical literature.

To be specific, we first evaluate second order deriva-

tives of log p(X − X̄(t1, ..., tN ; u)) with respect to both

t1, ..., tN and u (or multiply the first order deriva-

tives each other) and define an (mN + p) × (mN + p)

matrix, where m and p are the dimensions of the vec-

tors tα and the vector u, respectively. We then take

expectation of this matrix with respect to the density

p(X − X̄(t1, ..., tN ; u)). The resulting matrix is called

the Fisher information matrix . Then, we invert it and

discard the nuisance parameters t1, ..., tN by taking out

only the p× p diagonal block corresponding to u, result-

ing in the CR lower bound on u alone, which turns out

to be the same as (9)

In most cases, however, this derivation process is al-

most intractable due to the difficulty of analytically in-

verting a matrix of a very large size. In contrast, the

KCR lower bound in the form of (9) directly gives a

bound on u alone, without involving any “nuisance pa-

rameters”. This is one of the most significant advantages

of working in the dual framework (Kanatani 1996, 2005).

3.3 Minimization Schemes

As we have repeatedly pointed out, our goal is to obtain

a good estimator û of the parameter u from observed

data xα. An estimator û is good if it is always very close

to the true value u, namely if its covariance matrix V [û]

is small; an estimator is optimal if its covariance matrix

agrees with the KCR lower bound in the sense that no

better estimator can exist.

Thus, the goal is to minimize the covariance matrix

V [û] by defining a good function û = û(x1, ..., xN ) of

the data; it is not to minimize some cost function. It

is a practical strategy to implicitly define an estimator

through minimization of a particular cost function, but

we should bear in mind that this is not always necessary ,

as we will see later.

The most widely used is what is called least-squares

(LS) (and by other names such as algebraic distance min-

imization), minimizing

J =

N∑
α=1

F (xα; u)2. (10)

Another popular scheme is to minimizes what is known

as geometric distance (and as other names such as Samp-

son error)

J =

N∑
α=1

F (xα; u)2

‖∇xFα‖2
. (11)

Many other minimization schemes have been proposed

in the past. All of them are designed so as to make

F (xα; u) approximately 0 for all α and at the same time

let the solution û have desirable properties (Bookstein

1979; Sampson 1982; Taubin 1991). To this, Kanatani

(1996) viewed the problem as statistical estimation for

estimating the true data values x̄α that strictly satisfy

the constraint

F (x̄α; u) = 0, α = 1, ..., N, (12)

using the knowledge of the data covariance matrices

V [xα].
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If we assume that the noise in each xα is indepen-

dent Gaussian (in the tangent space) with mean 0 and

covariance matrix V [xα], the likelihood of observing x1,

..., xN is

C

N∏
α=1

e−(xα−x̄α,V [xα]−(xα−x̄α))/2, (13)

where C is a normalization constant. The true values

x̄1, ..., x̄N are constrained by (12). Maximum likelihood

(ML) maximizes (13), which is equivalent to minimizing

the (square) Mahalanobis distance

J =

N∑
α=1

(xα − x̄α, V [xα]−(xα − x̄α)), (14)

subject to (12).

The constraint of (12) can be eliminated by introduc-

ing Lagrange multipliers and ignoring higher order terms

in the noise level, which can be justified in our dual

framework. The resulting form is (see Appendix 2 for

the derivation)

J =

N∑
α=1

F (xα; u)2

(∇xFα, V [xα]∇xFα)
. (15)

It can be shown that the covariance matrix V [û] of

the resulting estimator û achieves the KCR lower bound

except for O(ε4) (Chernov and Lesort 2004; Kanatani

1996, 2005) (see Appendix 3 for the proof).

3.4 Linearized Constraint Optimization

In the rest of this paper, we concentrate on a special sub-

class of geometric fitting problems in which (1) reduces

to the linear form

(ξ(x), u) = 0, (16)

by changing variables ξ = ξ(x). If the data xα are m-

dimensional vectors and the unknown parameter u is a

p-dimensional vector, the mapping ξ( · ) is a (generally

nonlinear) embedding from Rm to Rp. In order to re-

move scale indeterminacy, we normalize u to ‖u‖ = 1.

The KCR lower bound (≡ the right-hand side of (9))

now has the form

VKCR[û] =
( N∑

α=1

ξ̄αξ̄
>
α

(u, V [ξα]u)

)−
, (17)

where we write ξ̄α = ξ(x̄α). The covariance matrix V [ξα]

of ξα = ξ(xα) is given, except for higher order terms in

the noise level, in the form

V [ξα] = ∇xξ̄
>
α V [xα]∇xξ̄α, (18)

where ∇xξ̄α is the m × p Jacobian matrix

∇xξ =

 ∂ξ1/∂x1 · · · ∂ξp/∂x1

...
. . .

...
∂ξ1/∂xm · · · ∂ξp/∂xm

 . (19)

evaluated at x = x̄α. Note that in (17) we do not need

the projection operator for the normalization constraint

‖u‖ = 1, because ξ̄α is orthogonal to u due to (16);

for the moment, we assume that no other internal con-

straints exist.

This subclass of geometric fitting problems covers a

wide range of computer vision applications. The follow-

ing are typical examples:

Example 1 Suppose we want to fit a quadratic curve (cir-

cle, ellipse, parabola, hyperbola, or their degeneracy) to

N points (xα, yα) in the plane. The constraint has the

form

Ax2 + 2Bxy + Cy2 + 2(Dx + Ey) + F = 0. (20)

If we define

ξ(x, y) = (x2 2xy y2 2x 2y 1)>,

u = (A B C D E F )>, (21)

(20) is linearized in the form of (16). If independent

Gaussian noise of mean 0 and standard deviation σ is

added to each coordinates of (xα, yα), the covariance ma-

trix V [ξα] of the transformed ξα has the form

V [ξα]=4σ2


x̄2

α x̄αȳα 0 x̄α 0 0
x̄αȳα x̄2

α + ȳ2
α x̄αȳα ȳα x̄α 0

0 x̄αȳα ȳ2
α 0 ȳα 0

x̄α ȳα 0 1 0 0
0 x̄α ȳα 0 1 0
0 0 0 0 0 0

, (22)

except for O(σ4), where (x̄α, ȳα) is the true position of

(xα, yα). 2

Example 2 Suppose we have N corresponding points in

two images of the same scene viewed from different po-

sitions. If point (x, y) in the first image corresponds to

(x′, y′) in the second, they should satisfy the following

epipolar equation (Hartley and Zisserman 2000):

((
x
y
1

)
, F

(
x′

y′

1

))
= 0. (23)

Here, F is a matrix of rank 2, called the fundamental

matrix , that depends only on the intrinsic parameters of
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the two cameras that took the two images and their rela-

tive 3-D positions, but not on the scene and the location

of the identified points (Hartley and Zisserman 2000). If

we define

ξ(x, y, x′, y′) = (xx′ xy′ x yx′ yy′ y x′ y′ 1)>,

u = (F11 F12 F13 F21 F22 F23 F31 F32 F33)
>, (24)

(23) is linearized in the form of (16). If independent

Gaussian noise of mean 0 and standard deviation σ is

added to each coordinates of the corresponding points

(xα, yα) and (x′
α, y′

α), the covariance matrix V [ξα] of the

transformed ξα has the form

V [ξα]=σ2



x̄2
α + x̄′2

α x̄′
αȳ′

α x̄′
α x̄αȳα

x̄′
αȳ′

α x̄2
α + ȳ′2

α ȳ′
α 0

x̄′
α ȳ′

α 1 0
x̄αȳα 0 0 ȳ2

α + x̄′2
α

0 x̄αȳα 0 x̄′
αȳ′

α

0 0 0 x̄′
α

x̄α 0 0 ȳα

0 x̄α 0 0
0 0 0 0

0 0 x̄α 0 0
x̄αȳα 0 0 x̄α 0

0 0 0 0 0
x̄′

αȳ′
α x̄′

α ȳα 0 0
ȳ2

α + ȳ′2
α ȳ′

α 0 ȳα 0
ȳ′

α 1 0 0 0
0 0 1 0 0
ȳα 0 0 1 0
0 0 0 0 0


, (25)

except for O(σ4), where (x̄α, ȳα) and (x̄′
α, ȳ′

α), are the

true positions of (xα, yα) and (x′
α, y′

α), respectively. The

fundamental matrix has, aside from scale normalization,

the constraint that its determinant is 0. If we take

this constraint into consideration, the KCR lower bound

of (17) involves the corresponding projection operation

(Kanatani and Ohta 2003). 2

As we can see from (22) and (25), the covariance ma-

trix V [ξα] is usually factored into the form

V [ξα] = ε2V0[ξα], (26)

where ε is a constant that characterizes the noise and

V0[ξα] is a matrix that depends only on the true data

values. Hereafter, we assume this form and define ε to be

the noise level ; we call V0[ξα] the normalized covariance

matrix .

The true values in (22) and (25) can be approximated

by their observed values in actual computations, because

the covariance matrix is a “property” of individual data,

not a “function” of its location. The covariance matrix

describes its location uncertainty determined by the im-

age processing operator (e.g., the Harris operator) that

detected it and the characteristics of the image region

surrounding it (e.g., homogeneous or textured). Hence,

the covariance matrix is treated as a given constant in

the optimization process.

4. Accuracy of Parameter Estimation

We now give a rigorous accuracy analysis of typical es-

timation techniques up to high order error terms. The

following analysis has evolved from the author’s earlier

studies of ellipse fitting (Kanatani 2006). The methods

used and the results derived there also have meaning in

a general situation.

4.1 Least Squares (LS)

For the linearized constraint of (16), minimization of

(10) reduces to minimization of

J =

N∑
α=1

(ξα, u)2 =

N∑
α=1

(u, ξαξ>
α u) = (u, MLSu), (27)

where

MLS ≡
N∑

α=1

ξαξ>
α . (28)

The quadratic form (u, MLSu) is minimized by the unit

eigenvector for the smallest eigenvalue of MLS.

To do error analysis, we write

MLSû = λû, (29)

into which we substitute ξα = ξ̄α + ∆ξα and û =

u + ∆1u + ∆2u + · · ·, where ∆k denotes perturbations

corresponding to the kth orders in ∆ξα. Then, we have

(M̄LS + ∆1MLS + ∆2MLS)(u + ∆1u + ∆2u + · · ·)
=(∆1λ + ∆2λ + · · ·)(u + ∆1u + ∆2u + · · ·), (30)

where M̄LS is the value of MLS obtained by replacing

ξα in (29) by their true values ξ̄α, and

∆1MLS =

N∑
α=1

(ξ̄α∆ξ>
α + ∆ξαξ̄

>
α ),

∆2MLS =

N∑
α=1

∆ξα∆ξ>
α . (31)

We also expand the eigenvalue λ in (29) into ∆1λ+∆2λ+

· · ·. Since λ = 0 in the absence of noise, its 0th order

term does not exist.
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Equating first and second order terms on both sides

of (30), we obtain

M̄LS∆1u + ∆1MLSu = ∆1λu, (32)

M̄LS∆2u + ∆1MLS∆1u + ∆2MLSu

=∆1λ∆1u + ∆2λu. (33)

Computing the inner product with u on both sides of

(32) and noting that (u, M̄LS∆1u) and (u, ∆1M̄LSu)

identically vanish due to (ξ̄α, u) = 0, we see that ∆1λ

= 0. Multiplying M̄
−
LS on both sides of (32) and noting

that M̄
−
LSM̄LS = P u (≡ I − uu>, the projection ma-

trix onto the hyperplane orthogonal to u) and ∆1u is

orthogonal to u to a first approximation (because ‖u‖ =

1), we conclude that

∆1u = −M̄
−
LS∆1MLSu. (34)

Evidently, E[∆1u] = 0. Its covariance matrix is

V [∆1u]=E[∆1u∆1u
>]

=M̄
−
LSE[(∆1MLSu)(∆1MLSu)>]M̄

−
LS

=M̄
−
LSE

[ N∑
α=1

(∆ξα, u)ξ̄α

N∑
β=1

(∆ξβ , u)ξ̄
>
β

]
M̄

−
LS

=M̄
−
LS

N∑
αβ=1

(u, E[∆ξα∆ξ>
β ]u)ξ̄αξ̄

>
β M̄

−
LS

=ε2M̄
−
LS

( N∑
α=1

(u, V0[ξα]u)ξ̄αξ̄
>
α

)
M̄

−
LS

=ε2M̄
−
LSM̄

′
LSM̄

−
LS, (35)

where we define

M̄
′
LS ≡

N∑
α=1

(u, V0[ξα]u)ξ̄αξ̄
>
α , (36)

and use the identity E[∆ξα∆ξ>
β ] = ε2δαβV0[ξα] implied

by our assumption about the noise (δαβ is the Kronecker

delta, taking 1 for α = β and 0 otherwise).

Multiplying M̄
−
LS on both sides of (33) and solving for

M̄
−
LSM̄LS∆2u (≡ P u∆2u), we obtain

∆2u
⊥=−M̄

−
LS∆1MLS∆1u − M̄

−
LS∆2MLSu

=M̄
−
LS∆1MLSM̄

−
LS∆1MLSu − M̄

−
LS∆2MLSu,

(37)

where ∆2u
⊥ (≡ P u∆2u) is the component of ∆2u or-

thogonal to u. The parallel component ∆2u
‖ can also

be computed, but it is not important, since it arises

solely for enforcing the normalization constraint ‖û‖ =

Figure 3: The orthogonal error
component ∆u⊥ and the
parallel error component ∆u‖

of an estimate û of u. The
accuracy can be measured by
the orthogonal component
∆u⊥

∆ u
u

O

u

∆ u ⊥

∆ u ||

1 (Fig. 3). Thus, we can measure the accuracy only

by examining the orthogonal component, as discussed in

Sect. 3.1.

If we note that

E[∆1MLSM̄
−
LS∆1MLSu]

=E
[ N∑

α=1

(ξ̄α∆ξ>
α + ∆ξαξ̄

>
α )M̄

−
LS

N∑
β=1

(∆ξβ , u)ξ̄β

]
=

N∑
α,β=1

(u, E[∆ξβ∆ξ>
α ]M̄

−
LSξ̄β)ξ̄α

+

N∑
α,β=1

(ξ̄α, M̄
−
LSξ̄β)E[∆ξα∆ξ>

β ]u

=ε2

N∑
α=1

(u, V0[ξα]M̄
−
LSξ̄α)ξ̄α

+ε2

N∑
α=1

(ξ̄α, M̄
−
LSξ̄α)V0[ξα]u, (38)

E[∆2MLSu]=

N∑
α=1

E[∆ξα∆ξ>
α ]u

=ε2

N∑
α=1

V0[ξα]u = ε2NLSu, (39)

where we define

NLS ≡
N∑

α=1

V0[ξα], (40)

the expectation of ∆2u
⊥ is given by

E[∆2u
⊥]=ε2M̄

−
LS

N∑
α=1

(u, V0[ξα]M̄
−
LSξ̄α)ξ̄α

+ε2M̄
−
LS

N∑
α=1

(ξ̄α, M̄
−
LSξ̄α)V0[ξα]u

−ε2M̄
−
LSNLSu. (41)
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4.2 Taubin Method

The method due to Taubin (1991)2 is to minimize, in-

stead of (27),

J =

∑N

α=1
(ξα, u)2∑N

α=1
(u, V0[ξα]u)

=
(u, MLSu)

(u, NLSu)
. (42)

This is a Rayleigh quotient, so it is minimized by the

eigenvector of the generalized eigenvalue problem

MLSû = λNLSû, (43)

for the smallest eigenvalue. The matrix NLS may be

singular, but we can solve (43) by reducing the number

of parameters as prescribed by Chojnacki, et al. (2004,

2005) (see Appendix 4 for the procedure).

As in the case of LS, we expand (43) in the form

(M̄LS + ∆1MLS + ∆2MLS)(u + ∆1u + ∆2u + · · ·)
=(∆1λ+∆2λ+· · ·)NLS(u+∆1u+∆2u+· · ·), (44)

and equate first and second order terms on both sides.

We obtain

M̄LS∆1u + ∆1MLSu = ∆1λNLSu, (45)

M̄LS∆2u + ∆1MLS∆1u + ∆2MLSu

=∆1λNLS∆1u + ∆2λNLSu. (46)

Computing the inner product with u on both sides

of (45), we again find that ∆1λ = 0. So, the first order

error ∆1u is again given by (34) and hence its covariance

matrix V [∆1u] is given by (35). In other words, LS

and the Taubin method have the same accuracy to a first

approximation.

However, the Taubin method is known to be sub-

stantially better than LS. This implies that the dif-

ference should be second-order effects. Multiplying

M̄
−
LS on both sides of (46) and solving for ∆2u

⊥ (≡
M̄

−
LSM̄

−
LS∆2u), we obtain

∆2u
⊥=−M̄

−
LS∆1MLS∆1u − M̄

−
LS∆2MLSu

−∆2λM̄LSNLSu

=M̄
−
LS∆1MLSM̄

−
LS∆1MLSu − M̄

−
LS∆2MLSu

+∆2λM̄LSNLSu. (47)

Comparing this with (37), we find that an extra term

∆2λM̄
−
LSNLSu is added. We now evaluate its expecta-

tion.

2Taubin (1991) studied curve fitting, which he analyzed
purely from a geometric point of view without using statistical
terms such as means and covariance matrices. What is shown
here is a modification of his method in the present framework.

Computing the inner product with u on both sides of

(46), and noting that (u, MLS∆2u) identically vanishes,

we have

∆2λ =
(u, ∆1MLS∆1u) + (u, ∆2MLSu)

(u, NLSu)
. (48)

From (34) and the first of (31), we have

E[(u, ∆1MLS∆1u)]

=−E[(u, ∆1MLSM̄
−
LS∆1MLSu)]

=−E[(∆1MLSu, M̄
−
LS∆1MLSu)]

=−E
[( N∑

α=1

(∆ξα, u)ξ̄α, M̄
−
LS

N∑
β=1

(∆ξβ , u)ξ̄β

)]
=−

N∑
α=1

N∑
β=1

(u, E[∆ξα∆ξ>
β ]u)(ξ̄αM̄

−
LS, ξ̄β)

=−ε2

N∑
α=1

(u, V0[ξα]u)(ξ̄αM̄
−
LS, ξ̄α)

=−ε2

N∑
α=1

tr[(u, V0[ξα]u)M̄
−
LSξ̄αξ̄

>
α ]

=−ε2tr
[
M̄

−
LS

N∑
α=1

(u, V0[ξα]u)ξ̄αξ̄
>
α

]
=−ε2tr[M̄

−
LSM̄

′
LS] = −qε2, (49)

where M̄
′
LS is the matrix in (36) and q = tr[M̄

−
LSM̄

′
LS].

From (39), we have

(u, ∆2MLSu) = ε2(n, NLSu). (50)

Thus, the expectation of (48) is

E[∆2λ] =
(
1 − q

(n, NLSu)

)
ε2. (51)

Hence, we obtain

E[∆2u
⊥]=ε2M̄

−
LS

N∑
α=1

(u, V0[ξα]M̄
−
LSξ̄α)ξ̄α

+ε2M̄
−
LS

N∑
α=1

(ξ̄α, M̄
−
LSξ̄α)V0[ξα]u

− qε2

(u, NLSu)
M̄

−
LSNLSu. (52)

If the number N of data is fairly large, which is the

case in many vision applications, so is (u, NLSu) =∑N

α=1
(u, V0[ξα]u). Hence, the last term is much smaller

than the corresponding term ε2M̄
−
LSNLSu in (41) for

LS, which explains the improved accuracy of the Taubin

method as compared with LS. We now confirm this by

numerical experiments.
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Figure 4: 20 points on an ellipse

 0.1

 0  0.01  0.02

LS

Taubin

KCR

σ

Figure 5: Noise level vs. RMS error for the ellipse data in
Fig. 4: LS (thick solid line), Taubin (thin solid line), and
KCR lower bound (dotted line)

Example 3 Figure 4 shows N = 20 points (x̄α, ȳα) taken

on ellipse

x2

502
+

y2

1002
= 1, (53)

with equal intervals. From them, we generated data

points (xα, yα) by adding Gaussian noise of mean 0 and

standard deviation σ to the x and y coordinates indepen-

dently. Then, we fitted an ellipse by LS and the Taubin

method.

Figure 5 plots for different σ the fitting error evaluated

by the following root mean square over 10,000 indepen-

dent trials:

D =

√√√√ 1

10000

10000∑
a=1

‖P uû(a)‖2. (54)

Here, û(a) is the ath value of û. The thick and thin line

are for LS and the Taubin method, respectively. The

dotted line is the corresponding KCR lower bound DKCR

=
√

trVKCR[û] (see (17).

As we can see, the LS solution is of very low accuracy,

while the Taubin solution is fairly accurate. The plots

for LS and Taubin should have, at σ = 0, the same slope

distinct from that of the KCR lower bound, as far as the

first order error ∆1u is concerned. However, this effect

is too weak to be visible in Fig. 5, implying that the

performance difference between LS and Taubin is mostly

due to second order error ∆2u, in particular the last term

of (41). 2

4.3 Optimally Weighted Least Squares

A well known correction to LS is to appropriately weight
each summand in (27) in the form

J =

N∑
α=1

Wα(ξα, u)2, (55)

which is minimized by the unit eigenvector of

M =

N∑
α=1

Wαξαξ>
α , (56)

for the smallest eigenvalue. The weight Wα is determined
so that the covariance matrix of the resulting estimate is
as close to the KCR lower bound as possible.

Following the analysis in Sect. 4.1, we can easily see
that the first order covariance matrix in (35) is now re-
placed by

V [∆1u] = ε2M̄
−
( N∑

α=1

Wα(u, V0[ξα]u)ξ̄αξ̄
>
α

)
M̄

−
. (57)

It is not difficult to see that this coincides with the KCR
lower bound if we set

Wα =
1

(u, V0[ξα]u)
. (58)

In fact, we have

V [∆1u]=ε2M̄
−
( N∑

α=1

ξ̄αξ̄
>
α

(u, V0[ξα]u)

)
M̄

−
=ε2M̄

−
M̄M̄

−

=ε2M̄
−

, (59)

where we define

M̄ ≡
N∑

α=1

ξ̄αξ̄
>
α

(u, V0[ξα]u)
. (60)

Evidently, (59) equals the KCR lower bound given by
(17).

However, we cannot use (58), because the true value u
is unknown. So, we do iterations. Namely, we first give
an appropriate initial guess of u, say by LS, substitute
it into (58) and compute the eigenvector of the matrix
M in (56) for the smallest eigenvalue. Using the result-
ing solution, we update the weight Wα and iterate this
process. This method is known as optimally weighted (it-
erative) least squares, or simply reweight (Taubin 1991).
The fact that this method achieves the KCR lower bound
to a first approximation was pointed out by Chernov and
Lesort (2004).

We now evaluate its accuracy. After the iterations
have converged, the resulting solution û satisfies

M̂ û = λû, (61)
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where

M̂ =

N∑
α=1

ξαξ>
α

(û, V0[ξα]û)
. (62)

Substituting ξα = ξ̄α + ∆ξα, û = u + ∆1u + ∆2u + · · ·,
and λ = ∆1λ + ∆2λ + · · · into (61), we have

(M̄ + ∆1M + ∆∗
1M + ∆2M + ∆∗

2M )(u + ∆1u

+∆2u + · · ·)

=(∆1λ + ∆2λ + · · ·)(u + ∆1u + ∆2u + · · ·), (63)

where we put

∆1M =

N∑
α=1

∆ξαξ̄
>
α + ξ̄α∆ξ>

α

(u, V0[ξα]u)
,

∆2M =

N∑
α=1

∆ξα∆ξ>
α

(u, V0[ξα]u)
, (64)

∆∗
1M =−2

N∑
α=1

(∆1u, V0[ξα]u)

(u, V0[ξα]u)2
ξ̄αξ̄

>
α ,

∆∗
2M =−2

N∑
α=1

(∆1u, V0[ξα]u)

(u, V0[ξα]u)2
(∆ξαξ̄

>
α + ξ̄α∆ξ>

α )

+

N∑
α=1

(
−2(∆2u, V0[ξα]u)

(u, V0[ξα]u)
+

4(∆1u, V0[ξα]u)2

(u, V0[ξα]u)2

− (∆1u, V0[ξα]∆1u)

(u, V0[ξα]u)

)
ξ̄αξ̄

>
α

(u, V0[ξα]u)
. (65)

Here, ∆∗
1M and ∆∗

2M are, respectively, the first and

second order perturbations of M for using û in the de-

nominator in (62).

Equating first and second order terms on both sides

of (63), we obtain

M̄∆1u + (∆1M + ∆∗
1M )u = ∆1λu, (66)

M̄∆2u + (∆1M + ∆∗
1M )∆1u + (∆2M + ∆∗

2M )u

=∆1λ∆1u + ∆2λu. (67)

Computing the inner product with u on both sides

of (66) and noting that (u, M̄u), (u, ∆1Mu), and

(u, ∆∗
1Mu) all identically vanish, we find that ∆1λ =

0. Multiplying M̄
−

on both sides of (66) and solving for

∆1u, we obtain as before

∆1u = −M̄
−

∆1Mu, (68)

whose covariance matrix V [∆1u] coincides with the KCR

lower bound ε2M̄
−

.

Multiplying M̄
−

on both sides of (67) and solving for

∆2u
⊥ (≡ M̄

−
M̄∆2u), we obtain

∆2u
⊥=−M̄

−
(∆1M + ∆∗

1M )∆1u

−M̄
−

(∆2M + ∆∗
2M )u

=M̄
−

∆1MM̄
−

∆1Mu+M̄
−

∆∗
1MM̄

−
∆1Mu

−M̄
−

∆2Mu − M̄
−

∆∗
2Mu. (69)

Now, we compute its expectation. We first see that

E[M̄
−

∆1MM̄
−

∆1Mu]

=E
[
M̄

−
N∑

α=1

∆ξαξ̄
>
α + ξ̄α∆ξ>

α

(u, V0[ξα]u)
M̄

−
N∑

α=1

(∆ξα, u)ξ̄α

(u, V0[ξα]u)

]
=M̄

−
N∑

α,β=1

(ξ̄α, M̄
−

ξ̄β)E[∆ξα∆ξ>
β ]u

(u, V0[ξα]u)(u, V0[ξβ ]u)

+M̄
−

N∑
α,β=1

(M̄
−

ξ̄β , E[∆ξα∆ξ>
β ]u)ξ̄α

(u, V0[ξα]u)(u, V0[ξβ ]u)

=ε2M̄
−

N∑
α=1

(ξ̄α, M̄
−

ξ̄α)V0[ξα]u

(u, V0[ξα]u)2

+ε2M̄
−

N∑
α=1

(M̄
−

ξ̄α, V0[ξα]u)ξ̄α

(u, V0[ξα]u)2
. (70)

We also see that

E[M̄
−

∆∗
1MM̄

−
∆1Mu]

=E
[
2M̄

−
N∑

α=1

(∆1Mu, M̄
−

V0[ξα]u)ξ̄αξ̄
>
α

(u, V0[ξα]u)2
M̄

−
∆1Mu

]
=2M̄

−
N∑

α=1

(V0[ξα]u,M̄
−
E[(∆1Mu)(∆1Mu)>]M̄

−̄
ξα)ξ̄α

(u, V0[ξα]u)2
.

(71)

The expectation E[(∆1Mu)(∆1Mu)>] is

E[(∆1Mu)(∆1Mu)>]

=E
[ N∑

α=1

(∆ξα, u)ξ̄α

(u, V0[ξα]u)

N∑
β=1

(∆ξβ , u)ξ̄
>
β

(u, V0[ξβ ]u)

]
=

N∑
α,β=1

(u, E[∆ξα∆ξ>
β ]u)ξ̄αξ̄

>
β

(u, V0[ξα]u)(u, V0[ξβ ]u)

=ε2

N∑
α=1

(u, V0[ξα]u)ξ̄αξ̄
>
α

(u, V0[ξα]u)2
= ε2

N∑
α=1

ξ̄αξ̄
>
α

(u, V0[ξα]u)

=ε2M̄ . (72)
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Hence, (71) becomes

E[M̄
−

∆∗
1MM̄

−
∆1Mu]

=2ε2M̄
−

N∑
α=1

(V0[ξα]u, M̄
−

M̄M̄
−

ξ̄α)ξ̄α

(u, V0[ξα]u)2

=2ε2M̄
−

N∑
α=1

(V0[ξα]u, M̄
−

ξ̄α)ξ̄α

(u, V0[ξα]u)2
. (73)

The expectation of M̄
−

∆2Mu is

E[M̄
−

∆2Mu]

=E
[
M̄

−
N∑

α=1

(∆ξα, u)∆ξα

(u, V0[ξα]u)

]
=M̄

−
N∑

α=1

E[∆ξα∆ξ>
α ]u

(u, V0[ξα]u)

= ε2M̄
−

N∑
α=1

V0[ξα]u

(u, V0[ξα]u)
= ε2M̄

−
Nu, (74)

where we define

N ≡
N∑

α=1

V0[ξα]

(u, V0[ξα]u)
. (75)

The expectation of M̄
−

∆∗
2Mu is

E[M̄
−

∆∗
2Mu]

=E
[
−2M̄

−
N∑

α=1

(∆1u, V0[ξα]u)(∆ξα, u)ξ̄α

(u, V0[ξα]u)2

]
=2M̄

−
N∑

α=1

(u,E[∆ξα(∆1Mu)>]M̄
−

V0[ξα]u)ξ̄α

(u, V0[ξα]u)2
. (76)

The expectation E[∆ξα(∆1Mu)>] is

E[∆ξα(∆1Mu)>]

=E
[
∆ξα

N∑
β=1

(∆ξβ , u)ξ̄
>
β

(u, V0[ξβ ]u)

]
=

N∑
β=1

E[∆ξα∆ξ>
β ]uξ̄

>
β

(u, V0[ξβ ]u)
=

ε2V0[ξα]uξ̄
>
α

(u, V0[ξα]u)
. (77)

Hence, (76) becomes

E[M̄
−

∆∗
2Mu]

=2ε2M̄
−

N∑
α=1

(u, V0[ξα]u)(ξ̄α, M̄
−

V0[ξα]u)ξ̄α

(u, V0[ξα]u)3

=2ε2M̄
−

N∑
α=1

(ξ̄α, M̄
−

V0[ξα]u)ξ̄α

(u, V0[ξα]u)2
, (78)

Table 2: The role of the Taubin method and renormalization

No weight Iterative reweight

eigenvalue
problem

LS ↔ optimally
weighted LS

⇓ ⇓
generalized
eigenvalue
problem

Taubin ↔ renormalization

which is the same as (73). Thus, the expectation of

∆2u
⊥ in (69)

E[∆2u
⊥]=ε2M̄

−
N∑

α=1

(M̄
−

ξ̄α, V0[ξα]u)ξ̄α

(u, V0[ξα]u)2

+ε2M̄
−

N∑
α=1

(ξ̄α, M̄
−

ξ̄α)V0[ξα]u

(u, V0[ξα]u)2

−ε2M̄
−

Nu. (79)

4.4 Renormalization

We can see the similarity between (34) and (41) for (un-

weighted) LS and (68) and (79) for optimally weighted

LS, where the (unweighted) matrix MLS is replaced by

the weighted matrix M . We have seen that the last

term −ε2M̄
−
LSNLSu in (41) can be reduced by using

the Taubin method, replacing (29) by (43) by inserting

the (unweighted) matrix NLS.

The above comparison implies that the last term

−ε2M̄
−

Nu in (79) may be removed if we replace the

eigenvalue problem of (61) by a generalized eigenvalue

problem

M̂ û = λN̂ û, (80)

by inserting the weighted matrix

N̂ =

N∑
α=1

V0[ξα]

(û, V0[ξα]û)
. (81)

Indeed, this is the idea of the renormalization of

Kanatani (1993, 1996) (Table 2). His original idea was

that the exact value u is obtained as the eigenvector of

M̄ in (60) for eigenvalue 0. If we approximate M̄ by M̂

in (61), we have

M̂ = M̄ + ∆1M + ∆∗
1M + ∆2M + ∆∗

2M . (82)
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Evidently E[∆1M ] = O and E[∆∗
1M ] = O, but we see

from the second of (64) that

E[∆2M ]=

N∑
α=1

E[∆ξα∆ξ>
α ]

(u, V0[ξα]u)

=

N∑
α=1

ε2V0[ξα]

(u, V0[ξα]u)
= ε2N . (83)

Hence, M̂ − ε2N is closer to M̄ in expectation than

M̂ . Though we do not know ε2 and N , the latter may

be approximated by N̂ . The former is simply regarded

as an unknown to be estimated. Kanatani (1993,1996)

approximated it by the value c that make M̂ − cN̂ sin-

gular, since the true value M̄ has eigenvalue 0. Thus,

Kanatani’s renormalization goes as follows:

1. Initialize û, say by LS, and let c = 0.

2. Solve the eigenvalue problem

(M̂ − cN̂ )u = λu, (84)

and let u be the unit eigenvector for the eigenvalue

λ closest to 0.

3. If λ ≈ 0, return û and stop. Else, let

c ← c +
λ

(u, N̂u)
, û ← u, (85)

and go back to Step 2.

This method has been demonstrated to result in

dramatic improvement over (unweighted or optimally

weighted) LS in many computer vision problems includ-

ing fundamental matrix computation for 3-D reconstruc-

tion and homography estimation for image mosaicing

(Kanatani and Ohta 2003; Kanatani et al. 2000). We

now analyze its accuracy.

After the iterations have converged, we have

(M̂ − cN̂ )û = 0, (86)

which is essentially (80). As before, we have the pertur-

bation expansion(
M̄ + (∆1M + ∆∗

1M ) + (∆2M + ∆∗
2M )

+ · · · − (∆1c + ∆2c + · · ·)(N + ∆∗
1N

+ · · ·)
)
(u + ∆1u + ∆2u + · · ·) = 0, (87)

where

∆∗
1N = −2

N∑
α=1

(∆1u, V0[ξα]u)V0[ξα]

(u, V0[ξα]u)
, (88)

which arises from the expansion of the denominator in

the expression of N̂ (the second order perturbation ∆∗
2N

does not affect the subsequent analysis).

Equating first and second order terms on both sides

of (87), we obtain

M̄∆1u + (∆1M + ∆∗
1M − ∆1cN )u = 0, (89)

M̄∆2u + (∆1M + ∆∗
1M − ∆1cN )∆1u

+(∆2M + ∆∗
2M − ∆1c∆

∗
1N − ∆2cN )u = 0. (90)

Computing the inner product with û on both sides of

(89), we find that ∆1c = 0 as before. Multiplying M̄
−

on

both sides of (89) and solving for ∆1u, we again obtain

(68). Thus, its covariance matrix V [∆1u] coincides with

the KCR lower bound ε2M̄
−

.

Multiplying M̄
−

on both sides of (90) and solving for

∆2u
⊥, we obtain

∆2u
⊥=−M̄

−
∆1M∆1u−M̄

−
∆∗

1M∆1u−M̄
−

∆2Mu

−M̄
−

∆∗
2Mu + ∆2cM̄

−
Nu

=M̄
−

∆1MM̄
−

∆1Mu+M̄
−

∆∗
1MM̄

−
∆1Mu

−M̄
−

∆2Mu − M̄
−

∆∗
2Mu + ∆2cM̄

−
Nu.

(91)

Comparing this with (69), we find that an extra term

∆2cM̄
−

Nu is added. We now evaluate its expectation.

Computing the inner product with u on both sides of

(90) and noting that (u, M̄∆2u), (u, ∆∗
1M∆1u), and

(u, ∆∗
2Mu) all identically vanish, we have

∆2c =
(u, ∆2Mu) + (u, ∆1M∆1u)

(u, Nu)
(92)

We first note from the definition of N in (75) that

(u, Nu) =

N∑
α=1

(u, V0[ξα]u)

(u, V0[ξα]u)
= N. (93)

The expectation of (u, ∆2Mu) is

E[(u, ∆2Mu)]=

N∑
α=1

(u, E[∆ξα∆ξ>
α ]u)

(u, V0[ξα]u)

=

N∑
α=1

(u, ε2V0[ξα]u)

(u, V0[ξα]u)
= Nε2. (94)

The expectation of (u, ∆1M∆1u) is

E[(u, ∆1M∆1u)]

=−E[(u, ∆1MM̄
−

∆1Mu)]

=−E[(∆1Mu, M̄
−

∆1Mu)]

=−E
[( N∑

α=1

(∆ξα, u)ξ̄α

(u, V0[ξα]u)
, M̄

−
N∑

β=1

(∆ξβ , u)ξ̄β

(u, V0[ξβ ]u)

)]
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=−
N∑

α,β=1

(u, E[∆ξα∆ξ>
β ]u)(ξ̄α, M̄

−
ξ̄β)

(u, V0[ξα]u)(u, V0[ξβ ]u)

=−ε2

N∑
α=1

(u, V0[ξα]u)(ξ̄α, M̄
−

ξ̄α)

(u, V0[ξα]u)2

=−ε2

N∑
α=1

(ξ̄α, M̄
−

ξ̄α)

(u, V0[ξα]u)

=−ε2

N∑
α=1

tr[M̄
−

ξ̄αξ̄
>
α ]

(u, V0[ξα]u)

=−ε2tr
[
M̄

−
N∑

α=1

ξ̄αξ̄
>
α

(u, V0[ξα]u)

]
=−ε2tr[M̄

−
M̄ ] = −ε2tr[P u] = −(p − 1)ε2, (95)

Thus, from (92) we have

E[∆2c] =
(
1 − p − 1

N

)
ε2, (96)

and hence from (91)

E[∆2u
⊥]=ε2M̄

−
N∑

α=1

(M̄
−

ξ̄α, V0[ξα]u)ξ̄α

(u, V0[ξα]u)2

+ε2M̄
−

N∑
α=1

(ξ̄α, M̄
−

ξ̄α)V0[ξα]u

(u, V0[ξα]u)2

−p − 1

N
ε2M̄

−
Nu. (97)

(96) corresponds to the well known formula of unbiased

estimation of the noise variance ε2 (note that the p-

dimensional unit vector u has p− 1 degrees of freedom).

As in the case of the Taubin method (see 52), the last

term in (97) is much smaller than the corresponding term

ε2M̄
−

Nu in (79).

Kanatani’s renormalization was at first not well under-

stood. This was due to the generally held preconception

that parameter estimation should minimize some cost

function. People wondered what renormalization was ac-

tually minimizing. In this line of thought, Chojnacki et

al. (2001) interpreted renormalization be an approxima-

tion to ML to be discussed below. We have seen, how-

ever, that optimal estimation does not necessarily mean

minimizing a cost function and that renormalization is

an effort to improve accuracy by a direct means. We will

see another example in Sect. 4.6 again.

Example 4 Figure 6 is the RMS error plot correspond-

ing to Fig. 5 using the ellipse data in Example 3. The

thick solid line is for LS, the dashed line is for optimally

 0.1

 0  0.01  0.02

LS

opt. LS

renorm.

KCR

σ

Figure 6: Noise level vs. RMS error for the ellipse data in
Fig. 4: LS (thick solid line), optimally weighted LS (dashed
line), renormalization (thin solid line), and the KCR lower
bound (dotted line)

weighted LS, and the thick solid line is for renormal-

ization. The dotted line is for the KCR lower bound.

Although the plots for optimally weighted LS and renor-

malization should both be tangent to that of the KCR

lower bound at σ = 0, but not for LS, this is not visible

from the figure, again confirming that the performance

difference is mostly due to the second order error ∆2u.

In fact, we can see from Fig. 6 that the accuracy gain of

optimally weighted LS over the (unweighted) LS is rather

small, meaning that satisfaction of the KCR lower bound

in the first order is not a good indicator of high accuracy.

In contrast, renormalization performs considerably bet-

ter than optimally weighted LS, clearly demonstrating

that the last term of (79) has a decisive influence on the

accuracy. The situation is exactly parallel to the rela-

tionship between LS and the Taubin method (Fig. 5). 2

4.5 Maximum Likelihood (ML)

We are assuming that we observe noisy data ξα = ξ̄α +

∆ξα, α = 1, ..., N and that their true values ξ̄α satisfy

the constraint

(ξ̄α, u) = 0, α = 1, ..., N. (98)

If the noise terms ∆ξα are subject to independent Gaus-

sian of mean 0 and covariance matrix V [ξα] (= ε2V0[ξα]),

maximum likelihood (ML) reduces to minimization of

the Mahalanobis distance

J =

2∑
α=1

(ξα − ξ̄α, V0[ξ0](ξα − ξ̄α)), (99)

subject to (98). Introducing Lagrange multipliers, we

can eliminate the constraint of (98) and rewrite (99) as

J =

N∑
α=1

(ξα, u)2

(u, V0[ξα]u)
. (100)
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Differentiating this with respect to u, we obtain

∇uJ =

N∑
α=1

2(ξα, u)ξα

(u, V0[ξα]u)
−

N∑
α=1

2(ξα, u)2V0[ξα]u

(u, V0[ξα]u)2
. (101)

Hence, the ML estimator û is the solution of

M̂ û = L̂û, (102)

where M̂ is defined by (62) and L̂ is given by

L̂ =

N∑
α=1

(ξα, û)2V0[ξα]

(û, V0[ξα]û)2
. (103)

Equation (102) can be solved by various numeri-

cal means. The FNS (fundamental numerical scheme)

of Chojnacki et al. (2000) reduces (102) to itera-

tive eigenvalue computing (see Appendix 5); the HEIV

(heteroscedastic errors-in-variable) of Leedan and Meer

(2000) reduces it to iterative generalized eigenvalue com-

puting (see Appendix 6). We can also use the projective

Gauss-Newton iterations of Kanatani and Sugaya (2006,

2007) (see Appendix 7). We now analyze the accuracy

of the resulting ML estimator.

Whatever iterative scheme is used, (102) holds in the

end. Its perturbation expansion is

(M̄ + ∆1M + ∆∗
1M + ∆2M + ∆∗

2M

+· · ·−∆2L−∆∗
2L)(ū+∆1u+∆2u+· · ·)=0, (104)

where

∆2L=

N∑
α=1

(∆ξ̄α, ū)2V0[ξα]

(ū, V0[ξα]ū)2
,

∆∗
2L=

N∑
α=1

(ξ̄α, ∆1u)2V0[ξα]

(ū, V0[ξα]ū)2

+2

N∑
α=1

(ξ̄α, ∆1u)(∆ξ̄α, ū)V0[ξα]

(ū, V0[ξα]ū)2
. (105)

Note that (103) vanishes if ξα and û are replaced by ξ̄α

and u, respectively. Hence, the 0th order term of L is

O. Since (103) contains the quadratic term (ξα, û)2, the

first order perturbations ∆1L and ∆∗
1L are also O.

Equating first and second order terms on both sides

of (105), we obtain

M̄∆1u + (∆1M + ∆∗
1M )ū = 0, (106)

M̄∆2u + (∆1M + ∆∗
1M )∆1u

+(∆2M + ∆∗
2M − ∆2L − ∆∗

2L)ū = 0. (107)

Multiplying M̄
−

on both sides of (106) and solving for

∆1u, we again obtain (68). Hence, its covariance matrix

V [∆1u] coincides with the KCR lower bound ε2M̄
−

.

Multiplying M̄
−

on both sides of (107) and solving

for ∆2u
⊥, we obtain

∆2u
⊥=−M̄

−
∆1M∆1u−M̄

−
∆∗

1M∆1u−M̄
−
∆2Mū

−M̄
−

∆∗
2Mū + M̄

−
∆2Lū + M̄

−
∆∗

2Lū

=M̄
−
∆1MM̄

−
∆1Mū+M̄

−
∆∗

1MM̄
−
∆1Mū

−M̄
−

∆2Mū − M̄
−

∆∗
2Mū

+M̄
−

∆2Lū + M̄
−

∆∗
2Lū (108)

For computing its expectation, we only need to con-

sider the new terms M̄
−

∆2Lū and M̄
−

∆∗
2Lū. First,

we see that

E[M̄
−

∆2Lū]

=M̄
−

N∑
α=1

(ū, E[∆ξ̄α∆ξ̄
>
α ]ū)V0[ξα]ū

(ū, V0[ξα]ū)2

=M̄
−

N∑
α=1

(ū, ε2V0[ξα]ū)V0[ξα]ū

(ū, V0[ξα]ū)2

=ε2M̄
−

N∑
α=1

V0[ξα]ū

(ū, V0[ξα]ū)
= ε2M̄

−
Nū. (109)

For M̄
−

∆∗
2Lū, we have

E[M̄
−

∆∗
2Lū]=M̄

−
N∑

α=1

(ξ̄α, E[∆1u∆1u
>]ξ̄α)V0[ξα]ū

(ū, V0[ξα]ū)2

+2M̄
−

N∑
α=1

(ξ̄α, E[∆1u∆ξ̄
>
α ]ū)V0[ξα]ū

(ū, V0[ξα]ū)2
.

(110)

We have already seen that the first order error ∆1u sat-

isfies the KCR lower bound, so E[∆1u∆1u
>] = εM̄

−

(see (59)). On the other hand,

E[∆1u∆ξ̄
>
α ]ū

=−E[M̄
−

∆1Mū∆ξ̄
>
α ]ū

=−M̄
−

E
[ N∑

β=1

∆ξβ ξ̄
>
β + ξ̄β∆ξ>

β

(ū, V0[ξβ ]ū)
ū∆ξ̄

>
α

]
=−M̄

−
N∑

β=1

(ū, E[∆ξβ∆ξ̄
>
α ]ū)ξ̄β

(ū, V0[ξβ ]ū)

=−ε2M̄
− (ū, V0[ξα]ū)ξ̄α

(ū, V0[ξα]ū)
= −ε2M̄

−
ξ̄α. (111)
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Hence,

E[M̄
−

∆∗
2Lū]

=ε2M̄
−

N∑
α=1

(ξ̄α, M̄
−

ξ̄α)V0[ξα]ū

(ū, V0[ξα]ū)2

−2ε2M̄
−

N∑
α=1

(ξ̄α, M̄
−

ξα)V0[ξα]ū

(ū, V0[ξα]ū)2

=−ε2M̄
−

N∑
α=1

(ξ̄α, M̄
−

ξ̄α)V0[ξα]ū

(ū, V0[ξα]ū)2
. (112)

Adding (109) and (112) to (79), we conclude that

E[∆2u
⊥] = ε2M̄

−
N∑

α=1

(M̄
−

ξ̄α, V0[ξα]u)ξ̄α

(u, V0[ξα]u)2
. (113)

Comparing this with (79) and (97), we can see the last

two terms there are removed.

Note 1. Optimally weighted LS vs. ML

There has been a widespread misunderstanding that

optimally weighted LS can actually compute ML because

(55) is identical to (100) if the weight Wα is chosen as

in (58). However, this is not so (Chojnacki et al. 2000;

Kanatani 1996).

Optimally weighted LS minimizes J in (100) for u in

the numerator with u in the denominator fixed. Then,

the resulting solution u is substituted into the denom-

inator, followed by the minimization of J for u in the

numerator, and this is iterated. This means that when

the solution û is obtained, it is guaranteed that

N∑
α=1

(ξα, û + δu)2

(û, V0[ξα]û)
≥

N∑
α=1

(ξα, û)2

(û, V0[ξα]û)
, (114)

for any infinitesimal perturbation δu, which the conver-

gence of optimally weighted LS means. This, however,

does not guarantee that

N∑
α=1

(ξα, û + δu)2

(û + δu, V0[ξα](û + δu))
≥

N∑
α=1

(ξα, û)2

(û, V0[ξα]û)
, (115)

for any infinitesimal perturbation δu, which minimiza-
tion of J really means.

Note 2. Gaussian noise assumption

There is a subtle point to be clarified. If the constraint
is the “linear” form of (98), the transition from (99) to
(100) is exact ; no approximation is used. However, the
crucial assumption is that the noise in ξα is Gaussian,
because then and only then is the likelihood proportional

to e−J/constant. If the noise is not Gaussian, minimization
of J in (99) is not ML in its strict sense.

This issue arises when one linearizes the problem by
changing variables in the form of ξ = ξ(ξ) as described in
Sect. 3.4. Namely, if the noise in the x-space is assumed
Gaussian, the corresponding noise in the transformed ξ-
space is no longer Gaussian. Hence, ML in the strict
sense (also called “Golden Standard” (Hartley and Zis-
serman 2000) should minimize the Mahalanobis distance
in the x-space, which is different from the Mahalanobis
distance in the ξ-space.

If we transform the the Mahalanobis distance in the
ξ-space into the ξ-space, extra higher-order terms are
introduced in the numerator on the right-hand side of
(100). The effect of perturbation in the denominator
is of higher order, since the numerator is O(ε2), while
the denominator is O(1), justifying the computation of
(18) and (19) (in fact, we experimentally confirmed that
adding second order terms in the denominator have no
perceptible differences in the final result). However, the
small changes in the numerator exhibit perceptible dif-
ferences when the noise level ε is large.

We do not go into the details of this issue by two
reasons, not to mention the space limitation. First, we
have confirmed by experiments that no differences are
observed in the small noise range over which our numer-
ical experiments are conducted. The second is a practical
issue. If the noise is large, the Gaussian noise assump-
tion is questionable. There may be systematic errors
and outlying data; their removal is more important than
optimal estimation based on the Gaussian noise assump-
tion. Hence, it does not have much sense arguing which
to adopt, ML based on Gaussian noise in the x-space
or ML based on Gaussian noise in the ξ-space, if the
Gaussian noise assumption is questionable.

The motivation of our analysis is that the result should
be used in precise control such as visual sensing of robots,
as mentioned in Sect. 2.5. In such a domain, useful ap-
plications are possible only when the noise is made small
(e.g., to a few pixels or subpixels) by improving measure-
ment devices and image processing operations. For such
applications, the above analysis seems satisfactory.

4.6 Hyperaccuracy Fitting

(113) implies the possibility of improving the accuracy
of ML further. Namely, we “subtract” (113) from the
ML estimator û (Kanatani 2006). Of course, (113) can-
not be precisely computed, because it involves the true
values ξ̄α and u. So, we plug in the data ξα and the ML
estimator û. As is well known, the unknown squared
noise level ε2 is estimated from the residual of (100) in
the following form (Kanatani 1996):

ε̂2 =
(û, M̂ û)

N − (p − 1)
. (116)
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Figure 7: Noise level vs. RMS error for the ellipse data in
Fig. 4: Taubin (dashed line), renormalization (thin solid line),
ML (thick solid line), hyperaccurate correction (chained line),
and the KCR lower bound (dotted line)

Figure 8: One instance of el-
lipse fitting: LS (broken line),
ML (thick solid line), hyper-
accuracy correction (thin solid
line), true ellipse (dotted line)

Hence, the correction has the form

ũ = N
[
û − ε̂2M̂

−
N∑

α=1

(M̂
−

ξα, V0[ξα]û)ξα

(û, V0[ξα]û)2

]
, (117)

where the operation N [ · ] denotes normalization to unit
norm for compensating for the parallel component ∆u‖

(see Fig. 3).

Example 5 Figure 7 shows the RMS error plot corre-
sponding to Figs. 5 and 6, using the ellipse data in the
Example 3. The dashed line is for the Taubin method,
the thin line is for renormalization, and the thick solid
line is for ML; we used the FNS of Chojnacki et al. (2000)
for computing ML. The dotted line indicates the KCR
lower bound.

We can see that in spite of the drastic bias reduction
of ML “in form” ((113)), as compared to the Taubin
method ((79)) and renormalization ((97)), ML has only
comparable accuracy to the Taubin method and renor-
malization. The chained line shows the result of the
hyperaccurate correction of (117). We can see that the
error is further reduced.

Figure 8 shows one instance of ellipse fitting (σ =
0.015). The dotted line shows the true ellipse; the bro-
ken line is for LS; the thick solid line is for ML; the thin
solid line is for the hyperaccurate correction. We can see
that the fitted ellipse is closer to the true shape after the
correction.

For comparing all the methods tested so far, we define
the “error ratio” D/DKCR by D in (54) divided by DKCR

Table 3: Average error ra-
tio of different methods LS 1.636

Optimally weighted LS 1.575

Taubin 1.144

Renormalization 1.133

ML 1.125

Hyperaccurate correction 1.007

KCR lower bound 1.000

and average it over the tested range of σ. Table 3 list
this value for different method. 2

5. Conclusions

We have given a rigorous accuracy analysis of various
techniques for geometric fitting. We first pointed out
how our problem is different from traditional statistical
analysis and explained why we need a different frame-
work. After giving general theories in our new frame-
work, we selected typical techniques and analyzed their
accuracy up to second order terms. Table 2 summa-
rizes the first order error, its covariance matrix, and the
second order bias. Conducting numerical simulations of
ellipse fitting, we have observed the following:

1. LS and the Taubin method have the same error to
a first approximation. However, the latter achieves
much higher accuracy, because a dominant second
order bias term of LS is reduced.

2. Optimally weighted LS achieves the KCR lower
bound to a first approximation. However, the ac-
curacy gain over (unweighted) LS is rather small.
This is due to the existence of second order bias
terms.

3. Renormalization reduces the dominant bias term of
optimally weighted LS, resulting in considerable ac-
curacy improvement.

4. ML is less biased than renormalization. Yet, the
accuracy gain is rather small; ML, renormalization,
and Taubin all have similar accuracy behavior.

5. By estimating and subtracting the bias term from
the ML solution, we can achieve higher accuracy
than ML (“hyperaccuracy”).

Thus, we conclude that it is the second order error ,
not the first, that has dominant effects over the accuracy.
We have also found that not all second order terms have
the same degree of influence. The influence of individual
bias terms on accuracy is very difficult to analyze in the
geometric fitting framework, where all basic relationships
are only implicitly described. Also, there may be a pos-
sibility that adding a special bias term may increase the
accuracy, which is also very difficult to analyze. These
are left for future research.
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Table 4: Summary of the first order error and the second order bias

Method First order error &
covariance matrix

Second order bias

LS
−M̄

−
LS∆1MLSu

ε2M̄
−
LSM̄

′
LSM̄

−
LS

ε2M̄
−
LS

N∑
α=1

(u, V0[ξα]M̄
−
LSξ̄α)ξ̄α+ε2M̄

−
LS

N∑
α=1

(ξ̄α, M̄
−
LSξ̄α)V0[ξα]u−ε2M̄

−
LSNLSu

Taubin
−M̄

−
LS∆1MLSu

ε2M̄
−
LSM̄

′
LSM̄

−
LS

ε2M̄
−
LS

N∑
α=1

(u,V0[ξα]M̄
−
LSξ̄α)ξ̄α+ε2M̄

−
LS

N∑
α=1

(ξ̄α,M̄
−
LSξ̄α)V0[ξα]u−

q

(u,NLSu)
M̄

−
LSNLSu

opt. LS
−M̄

−
∆1Mu

ε2M̄
− ε2M̄

−
N∑

α=1

(M̄
−

ξ̄α, V0[ξα]u)ξ̄α

(u, V0[ξα]u)2
+ε2M̄

−
N∑

α=1

(ξ̄α, M̄
−

ξ̄α)V0[ξα]u

(u, V0[ξα]u)2
−ε2M̄

−
Nu

renorm.
−M̄

−
∆1Mu

ε2M̄
− ε2M̄

−
N∑

α=1

(M̄
−

ξ̄α, V0[ξα]u)ξ̄α

(u, V0[ξα]u)2
+ε2M̄

−
N∑

α=1

(ξ̄α, M̄
−

ξ̄α)V0[ξα]u

(u, V0[ξα]u)2
−

p − 1

N
ε2M̄

−
Nu

ML
−M̄

−
∆1Mu

ε2M̄
− ε2M̄

−
N∑

α=1

(M̄
−

ξ̄α, V0[ξα]u)ξ̄α

(u, V0[ξα]u)2
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Appendix 1: Derivation of the KCR Lower Bound

For simplicity, we consider only the case where no intrin-

sic constraints exist on the data xα or the parameter u,

assuming that the noise is identical and isotropic Gaus-

sian with mean 0 and variance ε2. In other words, we

assume that the probability density of each datum xα is

p(xα) =
1

(
√

2π)nεn
e−‖xα−x̄α‖2/2ε2

. (118)

Suppose an unbiased estimator û(x1, ..., xN ) is given. Its

unbiasedness mean

E[û − u] = 0, (119)

where E[ · ] is expectation over the joint probability den-

sity p(x1) · · · p(xN ). Since this density is parameterized

by the true data values x̄α, (119) can be viewed as an

equation of x̄α as well as the unknown u. The crucial

fact is that (119) should be an identity in x̄α and u that

satisfies (1), because unbiasedness is a “property” of the

estimator û that should hold for whatever values of x̄α

and u. Hence, (119) should be invariant to infinitesimal

variation of x̄α and u. This means

δ

∫
(û − u)p1 · · · pNdx

=−
∫

(δu)p1 · · · pNdx

+

N∑
α=1

∫
(û − u)p1 · · · δpα · · · pNdx

=−δu +

∫
(û − u)

N∑
α=1

(p1 · · · δpα · · · pN )dx, (120)

where pα is an abbreviation of p(xα) and
∫

dx is a short-

hand of
∫
· · ·

∫
dx1 · · ·xN . Note that we consider varia-

tions in x̄α (not xα) and u. Since the estimator û is a

function of the data xα, it is not affected by such vari-

ations. Since the variation δu is independent of xα, it

can be moved outside the integral
∫

dx. Also note that∫
p1 · · · pNdx = 1.

The infinitesimal variation of (118) with respect to x̄α

is

δpα = (lα, δx̄α)pα, (121)

where we define the score lα by

lα ≡ ∇x̄α log pα =
xα − x̄α

ε2
. (122)

Since (119) is an identity in x̄α and u that satisfies (1),

the variation (120) should vanish for arbitrary infinitesi-
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mal variations δx̄α and δu that are compatible with (1).

If (121) is substituted into (120), its vanishing means

E[(û − u)

N∑
α=1

l>α δx̄α] = δu. (123)

The infinitesimal variation of (1) has the form

(∇xF̄α, δx̄α) + (∇uF̄α, δu) = 0, (124)

where ∇xF̄α and ∇uF̄α mean gradients of F (x, u) with

respect to x and u, respectively, evaluated at x = x̄α.

Consider the following particular variations δx̄α:

δx̄α = − (∇xF̄α)(∇uF̄α)>

‖∇xF̄α‖2
δu. (125)

Evidently, (124) is satisfied for whatever δu. Substitut-

ing (125) into (123), we obtain

E
[
(û − u)

N∑
α=1

m>
α

]
δu = −δu, (126)

where we define the vectors mα by

mα =
(∇uF̄α)(∇xF̄α)>

‖∇xF̄α‖2
lα. (127)

Since (126) should hold for arbitrary variation δu, we

have

E[(û − u)

N∑
α=1

m>
α ] = −I . (128)

Hence, we have

E
[(

û − u∑N

α=1
mα

)(
û − u∑N

α=1
mα

)>]
=

(
V [û]−I
−I M

)
,

(129)

where we define the matrix M by

M =E
[( N∑

α=1

mα

)( N∑
β=1

mβ

)>]
=

N∑
α,β=1

(∇uF̄α)(∇xF̄α)>

‖∇xF̄α‖2
E[lαlβ ]

(∇xF̄α)(∇uF̄α)>

‖∇xF̄α‖2

=
1

ε2

(∇uF̄α)(∇uF̄α)>

‖∇xF̄α‖2
. (130)

In the above equation, we use the identity E[lαl>β ] =

δαβI/ε4, which is a consequence of independence of the

noise in each datum xα.

Since the inside of the expectation E[ · ] on the left-

hand side of (129) is positive semidefinite, so is the right-

hand side. Hence, the following is also positive semidef-

inite:(
I M−1

M−1

)(
V [û] −I
−I M

)(
I

M−1 M−1

)
=

(
V [û] − M−1

M−1

)
. (131)

From this, we conclude that

V [û] Â M−1. (132)

This result is easily generalized to the case where in-

trinsic constraints exist on the data xα and the param-

eter u and the covariance matrix V [xα] is not full rank

(Kanatani 1996). In the general case, we obtain (9).

Appendix 2: Linear Approximation of ML

For simplicity, we consider only the case where no in-

trinsic constraints exist on the data xα or the parame-

ter u, assuming that the noise is identical and isotropic

Gaussian. Substituting x̄α = xα − ∆xα into (12) and

assuming that the noise term ∆xα is small, we obtain

the linear approximation

Fα − (∇xFα, ∆xα) = 0, (133)

subject to which we want to minimize
∑N

α=1
‖∆xα‖2.

Introducing Lagrange multipliers λα, let

L =
1

2

N∑
α=1

‖∆xα‖2 +

N∑
α=1

λα(Fα − (∇xFα, ∆xα)). (134)

Taking the derivative of L with respect to ∆xα and set-

ting it to 0, we have

∆xα − λα∇xFα = 0. (135)

Hence, ∆xα = λα∇xFα. Substitution of this into (133)

yields

Fα − (∇xFα, λα∇xFα) = 0, (136)

from which we obtain λα in the form

λα =
Fα

‖∇xFα‖2
. (137)

Thus,

J =

N∑
α=1

‖∆xα‖2 =

N∑
α=1

‖λα∇xFα‖2

=

N∑
α=1

F 2
α

‖∇xFα‖4
‖∇xFα‖2 =

N∑
α=1

F 2
α

‖∇xFα‖2
. (138)
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This result can easily be generalized to the case where

intrinsic constraints exist on the data xα and the param-

eter u and the covariance matrix V [xα] is not full rank

(Kanatani 1996). In the general case, we obtain (15).

Appendix 3: Covariance Matrix of ML

For simplicity, we consider only the case where no in-

trinsic constraints exist on the data xα or the parame-

ter u, assuming that the noise is identical and isotropic

Gaussian with mean 0 and variance ε2, so V [xα] = ε2I .

Letting xα = x̄α + ∆xα and replacing u by u + ∆u in

(15), we can expand J in the form

J =

N∑
α=1

((∇xF̄α, ∆xα) + (∇uF̄α, ∆u))2

‖∇xF̄α‖2
+ O(ε3), (139)

where ∇xF̄α and ∇uF̄α have the same meaning as in

(124). Note that replacing ∇xFα by ∇xF̄α by in the

denominator does not affect the leading term because

the numerator is O(ε2); the difference is absorbed into

the remainder term O(ε3).

If we find ∆u that minimizes (139), the ML estimator

û is given by u + ∆u. Since the first term on the right-

hand side of (139) is quadratic in ∆uα, the derivative of

J with respect to ∆u is

2

N∑
α=1

((∇xF̄α, ∆xα) + (∇uF̄α, ∆u))∇uF̄α

‖∇xF̄α‖2
+O(ε2).(140)

Letting this be 0, we have

N∑
α=1

(∇uF̄α)(∇uF̄α)>

‖∇xF̄α‖2
∆u

=−
N∑

α=1

(∇uF̄α)(∇xF̄α)>

‖∇xF̄α‖2
∆xα + O(ε2), (141)

from which we obtain

N∑
α=1

(∇uF̄α)(∇uF̄α)>

‖∇xF̄α‖2
∆u∆u>

N∑
β=1

(∇uF̄β)(∇uF̄β)>

‖∇xF̄β‖2

=

N∑
α,β=1

(∇uF̄α)(∇xF̄α)>

‖∇xF̄α‖2
∆xα∆x>

β
(∇xF̄β)(∇uF̄β)>

‖∇xF̄α‖2

+O(ε3). (142)

Taking expectation on both sides, we obtain

N∑
α=1

(∇uF̄α)(∇uF̄α)>

‖∇xF̄α‖2
V [û]

N∑
β=1

(∇uF̄β)(∇uF̄β)>

‖∇xF̄β‖2

=

N∑
α=1

(∇uF̄α)(∇xF̄α)>

‖∇xF̄α‖2

(∇xF̄α)(∇uF̄α)>

‖∇xF̄α‖2
+ O(ε4)

=

N∑
α=1

(∇uF̄α)(∇xF̄α)>

‖∇xF̄α‖2
+ O(ε4). (143)

Note that E[O(ε3)] = O(ε4), because odd noise terms

vanish in expectation. The first term in the last expres-

sion is the KCR lower bound in this case.

This result can easily be generalized to the case where

intrinsic constraints exist on the data xα and the pa-

rameter u and the covariance matrix V [xα] is not full

rank (Kanatani 1996). We conclude that the covariance

matrix of the ML estimator agrees with the KCR lower

bound except for O(ε4).

Appendix 4: Procedure for the Taubin Method

In most vision applications, the embedded data ξα,

the parameter u, and the normalized covariance matrix

V0[ξα] are decomposed in the form

ξα

(
zα

C

)
, u =

(
v
a

)
, V0[ξα] =

(
V0[zα] 0

0> 0

)
,

(144)

where C and a are constants; see (21) for ellipse fitting

and (24) for fundamental matrix computation. Here, zα

and v are (p − 1)-dimensional vectors, and V0[zα] is a

(p− 1)× (p− 1) normalized covariance matrix of zα; see

(22) and (25).

For computing estimates v̂ and â of v and a, we define

(p − 1) × (p − 1) matrices M̃ LS and ÑLS by

M̃ LS =

N∑
α=1

z̃αz̃>
α , ÑLS =

N∑
α=1

V0[zα], (145)

where

z̃α = zα − z̄, z̄ =
1

N

N∑
α=1

zα. (146)

Then, (43) splits into two equations

M̃ LS v̂ = λÑLSv̂, (v̂, z̄) + Câ = 0. (147)

If we compute the (p − 1)-dimensional unit generalized

eigenvector v̂ of the first equation for the smallest gen-

eralized eigenvalue λ (see, e.g., Kanatani (1996) for the

procedure), the second gives â. Hence, û is given by

û = N [

(
v̂
â

)
], (148)

where N [ · ] denotes normalization to unit norm.
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Appendix 5: Procedure for FNS

The FNS of Chojnacki et al. (2000) solves (102) by the

following iterations:

1. Initialize û, say by LS.

2. Compute the matrix M̂ in (62) and the matrix L̂

in (103), and solve the eigenvalue problem

(M̂ − L̂)u = λu. (149)

Let u be the unit eigenvector for the eigenvalue λ

closest to 0.

3. If u ≈ û except for sign, stop. Else, let û ← u and

go back to Step 2.

Later, Chojnacki et al. (2005) pointed out that conver-

gence performance improves if we choose in Step 2 not

the eigenvalue closest to 0 but the smallest one. See

Kanatani and Sugaya (2006, 2007) for the comparative

experiment of this effect.

Appendix 6: Procedure for HEIV

In most vision applications, the embedded data ξα,

the parameter u, and the normalized covariance matrix

V0[ξα] are decomposed in the form of (144). For comput-

ing estimates v̂ and â of v and a, we define (p−1)×(p−1)

matrices M̃ and L̃ by

M̃ =

N∑
α=1

z̃αz̃>
α

(v̂, V0[zα]v̂)
,

L̃=

N∑
α=1

(v̂, z̃α)2V0[zα]

(v̂, V0[zα]v̂)2
, (150)

where we put

z̃α=zα − z̄,

z̄=

N∑
α=1

zα

(v̂, V0[zα]v̂)

/
N∑

β=1

1

(v̂, V0[zβ ]v̂)
. (151)

Then, (102) splits into the following two equations (Cho-

jnacki et al. 2004, 2005):

M̃ v̂ = L̃v̂, (v̂, z̄) + Câ = 0. (152)

If determine v̂ from the first equation, the second deter-

mines â. Hence, the estimate û is given in the form of

(148). The HEIV of Leedan and Meer (2000) solves the

first equation by the following iterations:

1. Initialize v̂, say by LS.

2. Compute the matrices M̃ and L̃ in (150), and solve

the generalized eigenvalue problem

M̃v = λL̃v. (153)

Let v be the unit generalized eigenvector for the

generalized eigenvalue λ closest to 1.

3. If v ≈ v̂ except for sign, return v̂ and stop. Else,

let v̂ ← v and go back to Step 2.

Leedan and Meer (2000) pointed out that choosing in

Step 3 not the generalized eigenvalue closest to 1 but the

smallest one improves the convergence performance. See

Kanatani and Sugaya (2006, 2007) for the comparative

experiment of this effect.

Appendix 7: Projective Gauss-Newton Iterations

Since the gradient ∇uJ is given by (101), we can min-

imize the function J in (100) by Newton iterations. If

we evaluate the Hessian ∇2
uJ , the increment ∆u in u is

determined by solving

(∇2
uJ)∆u = −∇uJ. (154)

Since ∇2
uJ is singular (the function J is constant in the

direction of u), the solution is indeterminate. However,

if we use pseudoinverse and compute

∆u = −(∇2
uJ)−∇uJ, (155)

we obtain a solution, which is orthogonal to u.

Differentiating (100) and introducing Gauss-Newton

approximation (i.e., ignoring terms that contain (u, ξα)),

we see that the Hessian is nothing but the matrix M̂

in (62) for u = û. In order to compute pseudoinverse,

we enforce M̂ , which is generally nonsingular, to have

eigenvalue 0, using the projection matrix P û = I−ûû>.

The iteration procedure given by Kanatani and Sugaya

(2006, 2007) goes as follows:

1. Initialize û, say by LS.

2. Compute

u = N [û − (P ûM̂P û)−(M̂ − L̂)û]. (156)

3. If u ≈ û, return û and stop. Else, let û ← u and

go back to Step 2.

This scheme is just as effective as FNS, HEIV, and renor-

malization. See Kanatani and Sugaya (2006, 2007) for

the comparative experiments.
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