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Abstract: The best known method for optimally computing parameters from noisy data based on geometric con-
straints is maximum likelihood (ML). This paper reinvestigates “hyperaccurate correction” for further improving the
accuracy of ML. In the past, only the case of a single scalar constraint was studied. In this paper, we extend it to
multiple constraints given in the form of vector equations. By detailed error analysis, we illuminate the existence of
a term that has been ignored in the past. Doing simulation experiments of ellipse fitting, fundamental matrix, and
homography computation, we show that the new term does not effectively affect the final solution. However, we show
that our hyperaccurate correction is even superior to hyper-renormalization, the latest method regarded as the best
fitting method, but that the iterations of ML computation do not necessarily converge in the presence of large noise.
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1. Introduction

One of the most fundamental tasks of computer vision is to
compute the 2-D and 3-D shapes of objects based on geometric
constraints, by which we mean properties that can be described
by relatively simple equations such as the objects being lines or
planes, their being parallel or orthogonal, and the camera imag-
ing geometry being perspective projection. We call the inference
based on such geometric constraints geometric estimation. Tech-
niques for optimal geometric estimation in the presence of noise
has been extensively studied since 1980s by many researchers in-
cluding the authors [3], [6] .

Currently, it widely is recognized that the highest accuracy is
achieved by methods based on maximum likelihood (ML) and
those based on renormalization [9]. For ML, we minimize the
Mahalanobis distance, a special case of which is the reprojection
error [3]. One of the problem of ML is that it is not a convex
problem [1], for which a global optimum is easily obtained. Kahl
and Hartley [4] showed that if the L2-norm used in ML optimiza-
tion is replaced by the L∞-norm, the problem can be converted
to a quasiconvex problem, for which a global optimum can be
obtained by iteratively using linear programming (LP) and sec-
ond order conic programming (SCOP) and that the accuracy is
comparable to ML, although ML is theoretically desirable if it
can be computed. In this paper, we concentrate on problem for
which the ML solution can be obtained. Kanatani [7], [8] showed
that the accuracy of ML is further improved by analyzing the
statistical bias of the solution and subtracting it, which he called
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hyperaccurate correction.
On the other hand, renormalization [5], [6] does not minimize

any cost function; it directly estimates a biasless solution. Re-
cently, Kanatani et al. [10] did higher order error analysis and
derived an improved version, called hyper-renormalization. They
showed that it can compute a solution without bias up to second
order noise terms and demonstrated by experiments that it is su-
perior to ML [10]. According to comparative experiments, it is
observed that ML with hyperaccurate correction slightly surpasses
hyper-renormalization. However, the iterations for ML computa-
tion, such as the FNS of Chojnacki et al. [2], do not necessarily
converge in the presence of large noise. Hyper-renormalization,
on the other hand, is very robust to noise and converges af-
ter a few iterations, because it is an iterative improvement of
HyperLS [13], [14], [22], an algebraic method with very high
accuracy. Thus, ML with hyperaccurate correction and hyper-
renormalization both have strength and weakness, as reviewed by
Kanatani [9].

The bias of ML has also been studied in the domain of tra-
ditional statistical estimation, where observations are explicitly
expressed in terms of noise (such expressions are called the sta-
tistical model) and the estimation performance is evaluated by
asymptotic analysis in the limit N → ∞ of the number N of
observations. Okatani and Deguchi [19] adopted this approach
to computer vision problems by introducing auxiliary variables,
reducing the problem to the form of nonlinear regression, and
employing semiparametric modeling. They also attempted to re-
move bias by analyzing the curvature of a hypersurface defined by
the statistical model [20] and using a bias removal scheme based
on projected scores [21]. The main difference of the geometric es-
timation we consider here from traditional statistical estimation
is that the constraints are treated as implicit functions and esti-
mation performance is evaluated in the perturbation limit σ → 0
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Fig. 1 (a) Fitting an ellipse to a point sequence. (b) Computing the fundamental matrix from cor-
responding points between two images. (c) Computing a homography between two images.

of the noise level σ [8].
The purpose of this paper is to reexamine the hyperaccurate

correction of ML, for which only the case of a single constraint
was analyzed in the past [7], [8]. Here, we extend it to multi-
ple constraints given as a vector equation. Doing a detailed error
analysis, we point out the existence of a term that has been ig-
nored in the past. We also do numerical experiments to see how
that term affects the final solution.

In Sec. 2, we give a mathematical formulation of our geometric
estimation. We introduce our noise model in Sec. 3, and describe
the ML optimization procedure in Sec. 4. We do error analysis of
ML in the multiple constraint case in Sec. 5 and explicitly evaluate
the bias of the resulting solution in Sec. 6. Our extended hyper-
accurate correction scheme is described in Sec. 7. In Sec. 8, we do
numerical experiments to compare the accuracy of hyperaccurate
correction with existing methods including hyper-renormalization.
We also examine the effect of the newly introduced term. In Sec. 9,
we conclude.

2. Geometric Estimation

The geometric estimation problem we consider here is defined
as follows. Suppose we observe N noisy observations x1, ..., xN ,
which are n-D vectors. We assume that their noiseless values x̄1,
..., x̄N should satisfy L equations or “constraints”

F (k)(x; θ) = 0, k = 1, ..., L, (1)

where θ is an unknown parameter vector that specifies the
2-D/3-D shapes of the objects we are viewing or their 2-D/3-D mo-
tions. The function F (k)(x; θ) in Eq. (1) has generally a nonlinear
form, but in many practical applications it is linear in unknown
parameters or can be reparameterized so that it is linear in them.
Then, Eq. (1) can be written in the form

(ξ(k)(x), θ) = 0, k = 1, ..., L, (2)

where and hereafter we denote the inner product of vectors a and
b by (a, b). In Eq. (2), ξ(k)(x) is some nonlinear mapping of x
from Rm to Rn, where m and n are the dimensions of the data
xα and the parameter θ, respectively: the ith component ξ

(k)
i (x)

of ξ(k)(x) are those terms of (1) that are multiplied by the ith
component θi of θ, and those terms that do not involve θ are
regarded as multiplied by a constant, which we also regard as one
component of θ (see the examples below). We further assume
that the L vectors ξ(k)(x) need not be linearly independent. We
call the number r of independent ones the rank of the constraint.
Since the vector θ in (2) has scale indeterminacy, we normalize it
to unit norm: ‖θ‖ = 1.

Example 1 (Ellipse fitting). Given a point sequence (xα, yα),
α = 1, ..., N , we wish to fit an ellipse of the form

Ax2 + 2Bxy + Cy2 + 2f0(Dx + Ey) + f2
0 F = 0. (3)

(Fig. 1(a)). If we let

ξ=(x2, 2xy, y2, 2f0x, 2f0y, f2
0 )>,

θ=(A, B, C, D, E, F )>, (4)

the ellipse equation (3) has the form of Eq. (2) with L = 1. Here,
f0 is a scale constant to stabilize finite length numerical computa-
tion so that the components of the vector ξ have the same order
of magnitude. We choose it to be of an approximate magnitude
of the data xα and yα.
Example 2 (Fundamental matrix computation). Corre-
sponding points (x, y) and (x′, y′) in two images of the same scene
taken from different positions satisfy the epipolar equation [3]
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where F is a matrix of rank 2 called the fundamental matrix ,
from which we can compute the camera positions and the 3-D
structure of the scene (Fig. 1(b)). As in the case of ellipse fitting,
f0 is a scale constant to stabilize finite length computation. If we
let

ξ=(xx′, xy′, f0x, yx′, yy′, f0y, f0x
′, f0y

′, f2
0 )>,

θ=(F11, F12, F13, F21, F22, F23, F31, F32, F33)>, (6)

the eipolar equation (5) has the form of Eq. (2) with L = 1.
Example 3 (Homography computation). Two images of a
planar surface or infinitely far away scene (Fig. 1(c)) are related
by a homography of the form

x′=f0
h11x + h12y + h13f0

h31x + h32y + h33f0
,

y′=f0
h21x + h22y + h23f0

h31x + h32y + h33f0
, (7)

where f0 is a scale constant of the order of the data. In matrix
form, Eq. (7) is equivalently rewritten as
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where ' denotes equality up to a nonzero multiplier. This equa-
tion means that the vectors on both sides are parallel to each
other, so we can alternatively write this as
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The three components of this vector equation have the form of
Eq. (2) with L = 3 as follows [11]:

(ξ(1), θ) = 0, (ξ(2), θ) = 0, (ξ(3), θ) = 0. (10)

Here, we define

θ=(h11 h12 h13 h21 h22 h23 h31 h32 h33)>,

ξ(1)=(0, 0, 0,−f0x,−f0y,−f2
0 , xy′, yy′, f0y

′)>,

ξ(2)=(f0x, f0y, f2
0 , 0, 0, 0,−xx′,−yx′,−f0x

′)>,

ξ(3)=(−xy′,−yy′,−f0y
′, xx′, yx′, f0x

′, 0, 0, 0)>. (11)

The three components of (9) have the form of (2) with L = 3.
Note that ξ(1), ξ(2), and ξ(3) are linearly dependent ; only two of
them are independent, so the rank is r = 2.

3. Noise modeling

We regard each observation xα as perturbed from its true value
x̄α by independent Gaussian noise ∆xα of mean 0 and covari-
ance matrix σ2V0[xα], where σ is an unknown constant, which we
call the noise level , that describes the magnitude of noise, while
V0[xα] is a matrix, which we call the normalized covariance ma-
trix , that specifies the orientation dependence of the noise distri-
bution. We assume that the normalized covariance matrix V0[xα]
is known. The separation of V [xα] into σ2 and V0[xα] is merely
a matter of convenience; there is no fixed rule. This convention
is motivated by the fact that estimation of the absolute magni-
tude of data uncertainty is very difficult in practice, while optimal
estimation can be done only from the knowledge of V0[xα].

If the noise distribution is homogeneous, i.e., the same for all
xα, and isotropic, i.e. the same for all directions, we can let
V0[xα] = I (the identity). It has been observed that for feature
point detection in 2-D images, it is sufficient to assume homoge-
neous and isotopic noise with V0[xα] = I for most applications
[18], while accurate estimation of V0[xα] is crucial for 3-D data
[12] because 3-D data are obtained by 3-D sensors, such as stereo
vision and laser sensing, which have strong orientation dependence
with different accuracy in the depth direction and the directions
orthogonal to it.

Let us write ξ(k)(xα) simply as ξ(k)
α . It can be expanded in the

form

ξ(k)
α = ξ̄

(k)
α + ∆1ξ

(k)
α + ∆2ξ

(k)
α + · · · , (12)

where and hereafter the bar denotes the noiseless value and ∆m

denotes mth order terms in the noise level σ. The first order noise
term ∆1ξ

(k)
α is expressed in terms of the original noise term ∆xα

in xα and the Jacobian matrices of the mapping ξ(k)(x) in the
following form:

∆1ξ
(k)
α = T (k)

α ∆xα, T (k)
α ≡ ∂ξ(k)(x)

∂x

˛

˛

˛

˛

˛

x=x̄α

. (13)

We define the covariance matrix V (kl)[ξα] between ξ(k)
α and ξ(l)

α

by

V (kl)[ξα] = E[∆ξ(k)
α ∆ξ(l)>

α ] = V
(kl)
0 [ξα], (14)

where E[ · ] denotes the expectation over data uncertainty. The
following relationship holds:

V (kl)[ξα] = T (k)
α V [xα]T (l)>

α . (15)

Example 4 (Ellipse fitting). The first order noise term ∆1ξα

is

∆1ξα =T α
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!

,
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!>

, (16)

and the second order noise term ∆2ξα is

∆2ξα = (∆x2
α, 2∆xα∆yα, ∆y2

α, 0, 0, 0)>. (17)

Example 5 (Fundamental matrix computation). The first
order noise term ∆1ξα is

∆1ξα =T α(∆xα, ∆yα, ∆x′
α, ∆y′

α)>,
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and the second order noise term ∆2ξα is

∆2ξα =(∆xα∆x′
α, ∆xα∆y′

α, 0, ∆yα∆x′
α, ∆yα∆y′

α,

0, 0, 0, 0)>. (19)

Example 6 (Homography computation). The first order
noise term ∆1ξ

(k)
α is

∆1ξ
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α)>,
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and the second order noise term ∆2ξα is

∆2ξ
(1)
α =(0, 0, 0, 0, 0, 0, ∆xα∆y′

α, ∆yα∆y′
α, 0)>,

∆2ξ
(2)
α =(0, 0, 0, 0, 0, 0,−∆x′

α∆xα,−∆x′
α∆yα, 0)>,

∆2ξ
(3)
α =(−∆y′

α∆xα,−∆y′
α∆yα, 0, ∆x′

α∆xα,

∆x′
α∆yα, 0, 0, 0, 0)>. (21)

The Jacobian matrices T
(k)
α contain the true values of the ob-

servations, which are replaced by observed values. It has been
confirmed by many experiments that this replacement does not
affect the final results. Here, the covariance matrices among ξ(k)

α

are defined in terms of the first order derivatives of ξ(k)(xα) in
terms of the Jacobian matrices T

(k)
α , but it has also been con-

firmed that inclusion of higher order derivatives does not affect
the final results.
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4. Maximum Likelihood

In our setting, maximum likelihood (ML) is to minimize the
Mahalanobis distance

J =
1
N

N
X

α=1

(xα − x̄α, V0[xα]−1(xα − x̄α)), (22)

subject to

(ξ(x̄α), θ) = 0. (23)

If the noise is homogeneous and isotropic, we can let V0[xα] = I ,
so the right side of Eq. (22) is (1/N)

PN
α=1 ‖xα − x̄α‖2, which is

commonly referred to as the reprojection error [3].
Minimizing Eq. (22) subject to Eq. (23) is generally a compli-

cated nonlinear optimization, but the computation is simplified if
the transformed variable ξ(k)

α is regarded as subject to indepen-
dent Gaussian noise of mean 0 and covariance matrices V (kl)[ξα]
= σ2V

(kl)
0 [ξα], although this is not strictly true. Under this Gaus-

sian noise approximation, the constraint in Eq. (23) can be elim-
inated using Lagrange multipliers [6]. Then, the Mahalanobis
distance in Eq. (22) reduces to

J =
1
N

N
X

α=1

3
X

k,l=1

W (kl)
α ξ(k)

α ξ(l)>
α , (24)

where W
(kl)
α is the (kl) element of the pseudoinvers of truncated

rank r of of the matrix whose (kl) element is (θ, V
(kl)
0 [ξα]θ). We

write this symbolically as follows:

“

W (kl)
α

”

=
“

(θ, V
(kl)
0 [ξα]θ)

”−

r
. (25)

By “truncated rank r”, we mean that the eigenvalues except the
r largest ones are replaced by 0 in the spectral decomposition.
Today, Eq. (24) is known as the Sampson error [3] after the pio-
neering ellipse fitting scheme of P. D. Sampson [23]. In the single
constraint case (L = 1), Eq. (24) is easily minimized by the FNS
of Chojnacki et al. [2], which can be straightforwardly extended
to the multiple constraint case (L > 1) [11]. The minimizer of the
Sampson error (24), or the “Sampson solution” for short, is not
exactly the ML solution that minimizes Eq. (22), but we can mod-
ify Eq. (24) by using the computed Sampson solution, minimize
the resulting modified Sampson error, and iterate this process. It
can be shown that in the end the modified Sampson error coin-
cides with the Mahalanobis distance (22), meaning that we obtain
the exact ML solution [15]. It has been observed that Sampson
error modification iterations converge after a few rounds but the
solution does not change except a few of the least significant dig-
its [11], [16], [17]. Hence, we can practically identify the Sampson
solution with the exact ML solution. We now do detailed error
analysis of the solution that minimizes Eq. (24).

5. Error Analysis

The derivative of Eq. (4) with respect to θ has the following
form [11]:

∇uJ = 2(M − L)θ, (26)

M ≡ 1
N

N
X

α=1

3
X

k,l=1

W (kl)
α ξ(k)

α ξ(l)>
α ,

L≡ 1
N

N
X

α=1

3
X

k,l,m,n=1

W (km)
α W (ln)

α (ξ(m)
α , θ)(ξ(n)

α , θ)V (kl)
0 [ξα]. (27)

If Eq. (12) is substituted, the matrix M is expanded in the form

M = M̄ + ∆1M + ∆2M + · · · , (28)

where · · · denotes terms of order 3 or higher in σ. The terms
∆1M and ∆2M have the following expressions:

∆1M = ∆0
1M + ∆∗

1M , (29)

∆2M = ∆0
2M + ∆∗

2M + ∆†
2M , (30)

∆0
1M ≡ 1

N

N
X

α=1

3
X

k,l=1

W̄ (kl)
α (∆1ξ

(k)
α ξ̄

(l)>
α +ξ̄

(k)
α ∆1ξ

(l)>
α ), (31)

∆∗
1M ≡ 1

N

N
X

α=1

3
X

k,l=1

∆1W
(kl)
α ξ̄

(k)
α ξ̄

(l)>
α , (32)

∆0
2M ≡ 1

N

N
X

α=1

3
X

k,l=1

W̄ (kl)
α (∆1ξ

(k)
α ∆1ξ

(l)>
α +∆2ξ

(k)
α ξ̄

(l)>
α

+ξ̄
(k)
α ∆2ξ

(l)>
α ), (33)

∆∗
2M≡ 1

N

N
X

α=1

3
X

k,l=1

∆1W
(kl)
α (∆1ξ

(k)
α ξ̄

(l)>
α +ξ̄

(k)
α ∆1ξ

(l)>
α ), (34)

∆†
2M ≡ 1

N

N
X

α=1

3
X

k,l=1

∆2W
(kl)
α ξ̄

(k)
α ξ̄

(l)>
α . (35)

Here, ∆1W
(kl)
α and ∆2W

(kl)
α are written as follows (see Appendix

A.1):

∆1W
(kl)
α =−2

3
X

m,n=1

W̄ (km)
α W̄ (ln)

α (∆1θ, V
(mn)
0 [ξα]θ̄),

∆2W
(kl)
α =−

3
X

m,n=1

W̄ (km)
α W̄ (ln)

α

“

(∆1θ, V
(mn)
0 [ξα]∆1θ),

+2(∆2θ, V
(mn)
0 [ξα]θ̄)

”

. (36)

For the matrix L in Eq. (27), we obtain from (ξ̄(k)
α , θ̄) = 0

L = L̄ + ∆1L + ∆2L + · · · , L̄ = ∆1L = O, (37)

∆2L =
1
N

N
X

α=1

3
X

k,l,m,n=1

W̄ (km)
α W̄ (ln)

α

“

(ξ̄(m)
α , ∆1θ)(ξ̄(n)

α , ∆1θ)

+(ξ̄(m)
α , ∆1θ)(∆1ξ

(n)
α , θ̄) + (∆1ξ

(m)
α , θ̄)(ξ̄(n)

α , ∆1θ)

+(∆1ξ
(m)
α , θ̄)(∆1ξ

(n)
α , θ̄)

”

V
(kl)
0 [ξα]. (38)

Substituting this into Mθ = Lθ, which is obtained by letting
Eq. (26) be 0, we have

(M̄ + ∆1M + ∆2M + · · · )(θ̄ + ∆1θ + ∆2θ + · · · )
=∆2L(θ̄ + ∆1θ + ∆2θ + · · · ). (39)
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θ
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O

Fig. 2 The true value θ̄, the computed value θ, and its orthogonal
component ∆⊥θ of θ̄.

Equating terms of the same order on both sides, we obtain

M̄∆1θ + ∆1Mθ̄ = 0, (40)

M̄∆2θ + ∆1M∆1θ + ∆2Mθ̄ = ∆2Lθ̄. (41)

Multiplying Eq. (40) by the pseudoinverse M̄
− on both sides and

noting that M̄
−

M̄ = P θ̄ (the projection matrix along θ̄) and
that ∆1θ is orthogonal to θ̄, we can write the first order error
term ∆1θ as follows:

∆1θ = −M̄
−∆1Mθ̄ = −M̄

−∆0
1Mθ̄. (42)

Here, we have noted that (ξ̄α, θ̄) = 0 implies ∆∗
1Mθ̄ = 0. Mul-

tiplying Eq. (41) by M̄
− on both sides, we obtain

∆⊥
2 θ = −M̄

−∆1M∆1θ − M̄
−∆2Mθ̄ + M̄

−∆2Lθ̄, (43)

where we defined ∆⊥
2 θ = P θ̄∆2θ to be the error component of

∆2θ orthogonal to θ̄ (Fig. 2).

6. Bias Analysis

Since the expectation of odd-order error terms is zero, we have
E[∆1θ] = 0. This means that the first order bias is 0, so we focus
on the second order bias E[∆>

2 θ]. From Eq. (43), we obtain

E[∆⊥
2 θ] = −E[M̄−∆1M∆1θ] − E[M̄−∆2Mθ̄]

+E[M̄−∆2Lθ̄]. (44)

We now evaluated each term separately. The basic strategy is to
eliminate the noise terms ∆1ξ

(k)
α in the expectation expression,

using the identity

E[∆1ξ
(k)
α ∆1ξ

(l)>
β ] = σ2δαβV

(kl)
0 [ξα], (45)

obtained from our assumption of independent noise, where δαβ is
the Kronecker delta, taking 1 for α = β and 0 otherwise. We also
eliminate ∆2ξ

(k)
α in the expectation expression by defining a new

quantity e
(k)
α by

E[∆2ξ
(k)
α ] = σ2e(k)

α . (46)

6.1 The first term
The first term of Eq. (44) is written as

−E[M̄−∆1M∆1θ] = E[M̄−∆0
1MM̄

−∆0
1Mθ̄]

+E[M̄−∆∗
1MM̄

−∆0
1Mθ̄]. (47)

The first term on the left side is written as follows:

E[M̄−∆0
1MM̄

−∆0
1Mθ̄]

=E
h 1
N2

M̄
−

N
X

α,β=1

3
X

k,l,m,n=1

W̄ (kl)
α W̄

(mn)
β

“

∆1ξ
(k)
α ξ̄

(l)>
α

+ξ̄
(k)
α ∆1ξ

(l)>
α

”

M̄
−(∆1ξ

(m)
β , θ̄)ξ̄(n)

β

i

=
σ2

N2
M̄

−
N
X

α=1

3
X

k,l,m,n=1

W̄ (kl)
α W̄ (mn)

α (ξ̄(l)
α ,

M̄
−

ξ̄
(n)
α )V (km)

0 [ξα]θ̄

+
σ2

N2
M̄

−
N
X

α=1

3
X

k,l,m,n=1

W̄ (kl)
α W̄ (mn)

α (θ̄,

V
(ml)
0 [ξα]M̄−

ξ̄
(n)
α )ξ̄(k)

α . (48)

From Eq. (34) and the second of Eq. (36), we obtain

∆∗
1M =

2
N

N
X

α=1

3
X

k,l,m,n=1

W̄ (km)
α W̄ (ln)

α (M̄−∆0
1Mθ̄,

V
(mn)
0 [ξα]θ̄)ξ̄(k)

α ξ̄
(l)>
α . (49)

Hence the second term on the right side of Eq. (47) is

E[M̄−∆∗
1MM̄

−∆0
1Mθ̄]

=E
h 2
N

M̄
−

N
X

α=1

3
X

k,l=1

W̄ (km)
α W̄ (ln)

α (M̄−∆0
1Mθ̄,

V
(mn)
0 [ξα]θ̄)(ξ̄(l)

α , M̄
−∆0

1Mθ̄)ξ̄(k)
α

i

=
2
N

M̄
−

N
X

α=1

3
X

k,l=1

W̄ (km)
α W̄ (ln)

α (ξ̄(l)
α ,

E[∆1θ∆1θ
>]V (mn)

0 [ξα]θ̄)ξ̄(k)
α

=
2σ2

N2
M̄

−
N
X

α=1

3
X

k,l=1

W̄ (km)
α W̄ (ln)

α (ξ̄(l)
α , M̄

−
V

(mn)
0 [ξα]θ̄)ξ̄(k)

α ,

(50)

where we have used the fact that E[∆1θ∆1θ
>] has the expression

(see Appendix A.2)

E[∆1θ∆1θ
>] =

σ2

N
M̄

−
, (51)

which is the leading term of the covariance matrix of the com-
puted θ. Equation (51) it coincides with the theoretical accu-
racy limit called the KCR (Kanatani-Cramer-Rao) lower bound
[6], [8], [14]. Thus, Eq. (47) is written as follows:

E[M̄−∆1M∆1θ]

=
σ2

N2
M̄

−
N
X

α=1

3
X

k,l,m,n=1

W̄ (kl)
α W̄ (mn)

α (ξ̄(l)
α , M̄

−
ξ̄
(n)
α )

V
(km)
0 [ξα]θ̄ +

3σ2

N2
M̄

−
N
X

α=1

3
X

k,l=1

W̄ (km)
α W̄ (ln)

α (ξ̄(l)
α ,

M̄
−

V
(mn)
0 [ξα]θ̄)ξ̄(k)

α . (52)

6.2 The second term
The second term of Eq. (44) is written as follows:

−E[M̄−∆2Mθ̄]=−E[M̄−∆0
2Mθ̄] − E[M̄−∆∗

2Mθ̄]. (53)

The first term on the right side is written as
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−E[M̄−∆0
2Mθ̄] = −M̄

− 1
N

N
X

α=1

3
X

k,l=1

W̄ (kl)
α

“

E[∆1ξ
(k)
α ∆1ξ

(l)>
α ] + ξ̄

(k)
α E[∆2ξ

(l)>
α ]

”

θ̄

=−σ2

N
M̄

−
N
X

α=1

3
X

k,l=1

W̄ (kl)
α

“

V
(kl)
0 [ξα]θ̄ + (e(k)

α , θ̄)ξ̄(l)
α

”

,

(54)

where Eq. (46) is used. The second term on the right side of
Eq. (53) is written as

−E[M̄−∆∗
2Mθ̄]

=−E[M̄− 1
N

N
X

α=1

3
X

k,l=1

∆1W
(kl)
α (∆1ξ

(l)
α , θ̄)ξ̄(k)

α ]

=−2M̄
− 1

N

N
X

α=1

3
X

k,l,m,n=1

W̄ (km)
α W̄ (ln)

α (θ̄,

E[∆1ξ
(l)
α (∆0

1Mθ̄)>]M̄−
V

(mn)
0 [ξα]θ̄)ξ̄(k)

α . (55)

The expression E[∆1ξ
(l)
α (∆0

1Mθ̄)>] in the above equation is eval-
uated as follows:

E[∆1ξ
(l)
α (∆0

1Mθ̄)>] = E[∆1ξ
(l)
α

“ 1
N

N
X

β=1

3
X

p,q=1

W̄
(pq)
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(p)
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(p)
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”
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]

=
1
N

N
X

β=1

3
X
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(pq)
β E[∆1ξ
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β ]θ̄ξ̄
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β

=
σ2

N

3
X

p,q=1

W̄ (pq)
α V

(lq)
0 [ξα]θ̄ξ̄

(p)>
α . (56)

Hence, Eq. (55) has the following form:

−E[M̄−∆∗
2Mθ̄]

=−2σ2

N2
M̄

−
N
X

α=1

3
X

k,l,m,n,p,q=1

W̄ (km)
α W̄ (ln)

α W̄ (pq)
α (θ̄,
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0 [ξα]θ̄)(ξ̄(p)

α , M̄
−

V
(mn)
0 [ξα]θ̄)ξ̄(k)

α

=−2σ2

N2
M̄

−
N
X

α=1

3
X

k,l,m,n=1

W̄ (kl)
α W̄ (mn)

α (ξ̄(k)
α ,

M̄
−

V
(lm)
0 [ξα]θ̄)ξ̄(n)

α . (57)

In the above derivation, we have used the identity

3
X

m,n=1

W̄ (km)
α (θ̄, V

(mn)
0 [ξα]θ̄)W̄ (nl)

α = W̄ (kl)
α , (58)

which is a consequence of the identity W̄ αW̄
−
α W̄ α = W̄ α, where

W̄ α is the matrix whose (kl) element is W̄
(kl)
α . Note that the (kl)

element of the pseudoinverse of the matrix W̄
−
α is (θ̄, V

(kl)
0 [ξα]θ̄)

from the definition of W̄
(kl)
α in Eq. (25). Thus, Eq. (53) can be

written as follows:

−E[M̄−∆2Mθ̄]

=−σ2

N
M̄

−
N
X

α=1

3
X

k,l=1

W̄ (kl)
α
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0 [ξα]θ̄ + (e(k)
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3
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α W̄ (mn)

α (ξ̄(k)
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V
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0 [ξα]θ̄)ξ̄(n)

α . (59)

6.3 The third term
The third term of Eq. (44) is rewritten as

E[M̄−∆2Lθ̄]

=E
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N
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3
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M̄

−
N
X

α=1

3
X

k,l=1

W̄ (kl)V
(kl)
0 [ξα]θ̄, (60)

where we have used Eqs. (51) and (58). The expression
E[∆1θ∆1ξ

(n)>
α ] in the above equation can be evaluated as fol-

lows:

E[∆1θ∆1ξ
(n)>
α ] = −E[M̄−∆0

1Mθ̄∆1ξ
(n)>
α ]

=−σ2

N
M̄

−
3
X

p,q=1

W̄ (pq)
α ξ̄

(p)
α θ̄

>
V

(qn)
0 [ξα]. (61)

Hence, Eq. (60) has the following form:

E[M̄−∆2Lθ̄]

=− σ2

N2
M̄

−
N
X

α=1

3
X

k,l,m,n=1

W̄ (km)
α W̄ (ln)

α (ξ̄(m)
α ,

M̄
−

ξ̄
(n)
α )V (kl)

0 [ξα]θ̄

+
σ2

N
M̄

−
N
X

α=1

3
X

k,l=1

W̄ (kl)V
(kl)
0 [ξα]θ̄. (62)

6.4 Second order bias
From the above results, we conclude that Eq. (44) has the fol-

lowing form:
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E[∆⊥
2 θ] = −σ2

N
M̄

−
N
X

α=1

3
X

k,l=1

W̄ (kl)
α (e(k)

α , θ̄)ξ̄(l)
α

+
σ2

N2
M̄

−
N
X

α=1

3
X

k,l=1

W̄ (km)
α W̄ (ln)

α (ξ̄(l)
α , M̄

−
V

(mn)
0 [ξα]θ̄)ξ̄(k)

α .(63)

7. Hyperaccurate Correction

In order to correct the solution θ by Eq. (63), we need to esti-
mate the unknown σ2. We also need to approximate the noiseless
values used in Eq. (63) by observed values. The resulting proce-
dure is as follows:
( 1 ) Using the ML solution θ and the matrix M computed from

it, estimate σ2 by

σ̂2 =
(θ, Mθ)

r − (n − 1)/N
, (64)

where n is the dimension of θ.
( 2 ) Compute the correction term by

∆cθ = − σ̂2

N
M−

n−1

N
X

α=1

3
X

k,l=1

W (kl)
α (e(k)

α , θ)ξ(l)
α

+
σ̂2

N2
M−

n−1

N
X

α=1

3
X

k,l=1

W (km)
α W (ln)

α (ξ(l)
α ,

M−
n−1V

(mn)
0 [ξα]θ)ξ(k)

α , (65)

where M−
n−1 is the pseudoinverse of M with truncated rank

n − 1.
( 3 ) Correct the ML solution θ to

θ ← N [θ − ∆cθ], (66)

where N [ · ] designates normalization to unit norm (N [a] ≡
a/‖a‖).

The estimation formula of Eq. (64) is obtained by noting that if
the minimum value of Eq. (22) is Ĵ , then NĴ/σ2 is subject to a
χ2 distribution with Nr− (n− 1) degrees of freedom [6] and that
the expectation of a χ2 variable is equal to its degrees of freedom.
Replacing the true values by their observations introduces errors
of O(σ), but since Eq. (65) is O(σ2) and the expectation of odd
order noise terms is zero, the resulting error of Eq. (65) is O(σ4).
Hence, the bias of the corrected θ is still 0 except O(σ4).

Note that Eq. (65) is an analytical expression, so it can be im-
mediately evaluated without any iterations. Of course, the trun-
cated pseudoinverse M−

n−1 need to be evaluated, but this is no
significant cost (recall that n = 6 for ellipse fitting and n = 9 for
fundamental matrix and homography computation). Here, we are
assuming that the ML solution θ is already computed by some
means. For this, any available method can be used, but if the
FNS of Chojnacki et al. [2] or its extension [11] is used, all the
quantities that appear in Eq. (65), i.e., ξ(k)

α , V
(kl)
0 [ξα], M , and

W
(kl)
α , are already evaluated in the course of the FNS computa-

tion. Hence, there is practically no additional computational cost
for evaluating Eq. (65).

From Eq. (17), we see that the vector e(k) in Eq. (65) is

e = (1, 0, 1, 0, 0, 0)> (67)

for ellipse fitting. However, we see from Eqs. (19) and (21) that

e(k) = 0 for the fundamental matrix and homography computa-
tion. In general, e(k) is 0 for typical “multiview” constraints for
computer vision, because noise in different images is assumed to
be uncorrelated.

In the past study [7], [8], the terms that involve e
(k)
α are ig-

nored. We now show by simulation that omission of e
(k)
α does not

effectively affect the results.

8. Experiments

8.1 Evaluation of accuracy
Since the computed θ and its true value θ̄ are both unit vectors,

we measure the discrepancy ∆θ between them by the orthogonal
component to θ̄ (Fig. 2),

∆⊥θ = P θ̄θ, P θ̄ ≡ I − θ̄θ̄
>

, (68)

where P θ̄ is the projection matrix along θ̄. We generate M in-
dependent noise instances and evaluate the bias B and the RMS
(root-mean-square) error D defined by

B=
‚

‚

‚

1
M

M
X

a=1

∆⊥θ(a)
‚

‚

‚

, (69)

D=

v

u

u

t

1
M

M
X

a=1

‖∆⊥θ(a)‖2, (70)

where θ(a) is the solution in the ath trial. The KCR lower bound
(see Eq. (29)) on D is given by

D ≥ σ√
N

q

trM̄−
, (71)

where tr denotes the matrix trace. For comparison, we tested the
following eight methods:
( 1 ) Least squares (LS) [8].
( 2 ) Iterative reweight [8].
( 3 ) The Taubin method [24] and its extension to multiple con-

straints (we omit the details).
( 4 ) Renormalization [5], [6].
( 5 ) HyperLS [13], [14], [22].
( 6 ) Hyper-renormalization [10] and its extension to multiple con-

straints (we omit the details).
( 7 ) ML [15].
( 8 ) ML with hyperaccurate correction.

8.2 Ellipse fitting
We define 30 equidistant points on the ellipse shown in Fig. 3.

The major and minor axis are set to 100 and 50 pixels, respec-
tively. We add independent Gaussian noise of mean 0 and stan-
dard deviation σ (pixels) to the x and y coordinates of each point
and fit an ellipse.

Figures 4(a), (b) plot the bias B and the RMS error D, respec-
tively, defined in (69) and (70) over 10000 independent trials for

Fig. 3 Thirty points on an ellipse.
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Fig. 4 The bias (a) and the RMS error (b) of the fitted ellipse for the
standard deviation σ of the noise added to the data in Fig. 3 over
10000 independent trials. 1) LS, 2) iterative reweight, 3) Taubin,
4) renormalization, 5) HyperLS, 6) hyper-renormalization, 7)
ML, 8) ML with hyperaccurate correction. The dotted line in
(b) indicates the KCR lower bound. The interrupted plots in-
dicate that iterations do not always converge beyond that noise
level.

Fig. 5 Simulated images of a curved grid surface viewed from two di-
rections.

each σ. The dotted line in Fig. 4(b) is the KCR lower bound of
(71). We can see that LS and iterative reweight have very large
bias and RMS error, while hyper-renormalization and ML with hy-
peraccurate correction both have very small bias and small RMS
error. We can also see that although the difference is very small,
the bias and the RMS error of ML with hypercorrection are even
smaller than those of hyper-renormalization. However, as the in-
terrupted plots in Fig. 4 show, the iterations of ML computation
(we used the FNS of Chojnacki et al. [2]) do not converge in the
presence of large noise. We also compared our solution with and
without using the e(k) term in Eq. (65) and found that the plots
in Fig. 4 are unchanged.

8.3 Fundamental matrix computation
Figure 5 shows simulated images of a curved grid surface viewed

from two directions. The image size is 600 × 600 pixels, and the
focal length is 600 pixels. We add Gaussian noise of mean 0 and
standard deviation σ (pixels) to the x and y coordinates of each
grid point independently and compute the fundamental matrix F .
The fundamental matrix F has rank 2, so it is constrained to be
det F = 0 [3]. Basically, the following three approaches exist for
imposing this rank constraint [17]:
( 1 ) A posteriori correction: The matrix F is optimally computed

without considering the rank constraint and then optimally
corrected so that it is satisfied.

( 2 ) Internal access: The matrix F is parameterized so that the
rank constraint is identically satisfied and then optimized
within the resulting smaller parameter space.

( 3 ) External access: Iterations are done in the space of uncon-
strained F in such a way the rank constraint is automatically
satisfied at the time of convergence.

Here, we adopt the a posteriori correction approach and compare
the accuracy of various methods without considering the rank
constraint.

Figures 6(a), (b) plot the bias B and the RMS error D, respec-
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Fig. 6 The bias (a) and the RMS error (b) of the computed fundamen-
tal matrix for the standard deviation σ of the noise added to the
data in Fig. 5 over 10000 independent trials. 1) LS, 2) iterative
reweight, 3) Taubin, 4) renormalization, 5) HyperLS, 6) hyper-
renormalization, 7) ML, 8) ML with hyperaccurate correction.
The dotted line in (b) indicates the KCR lower bound.

Fig. 7 Simulated images of a planar grid surface viewed from two di-
rections.
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Fig. 8 The bias (a) and the RMS error (b) of the computed homog-
raphy for the standard deviation σ of the noise added to the
data in Fig. 7 over 10000 independent trials. 1) LS, 2) iterative
reweight, 3) Taubin, 4) renormalization, 5) HyperLS, 6) hyper-
renormalization, 7) ML, 8) ML with hyperaccurate correction.
The dotted line in (b) indicates the KCR lower bound.

tively, defined in (69) and (70) over 10000 independent trials for
each σ. The dotted line in Fig. 6(b) is the KCR lower bound of
(71). We can see that LS and iterative reweight have very large
bias and RMS error and that other hyper-renormalization and ML
with hyperaccurate correction have very small bias. However, the
RMS error is almost the same for all methods other than LS and
iterative reweight. Yet, a close examination shows that ML with
hypercorrection exhibits the highest accuracy.

8.4 Homography computation
Figure 7 shows simulated images of a planar grid surface viewed

from two directions. The image size is 800 × 800 pixels, and the
focal length is 600 pixels. We add Gaussian noise of mean 0 and
standard deviation σ (pixels) to the x and y coordinates of each
grid point independently and compute the homography between
the two images.

Figures 8(a), (b) plot the bias B and the RMS error D, re-
spectively, defined in (69) and (70) over 10000 independent trials
for each σ. The dotted line in Fig. 8(b) is the KCR lower bound
of (71). As in the case of ellipse fitting and fundamental matrix
computation, LS and iterative reweight have very large bias, re-
sulting in large RMS error. However, the bias and RMS error of
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all other methods are almost the same, and the KCR lower bound
is almost achieved. Yet, a close examination shows that ML with
hypercorrection exhibits the highest accuracy.

9. Concluding Remarks

We reexamined the scheme of hyperaccurate correction for im-
proving the accuracy of ML of geometric estimation based on
geometric constraints. So far, this was done only in the case of a
single scalar constraint. In this paper, we extended it to the case
of multiple constraints given as a vector equation and pointed out
the existence of a new correction term which was ignored in the
past.

The correction is done by evaluating a single analytical expres-
sion without iterations with almost no additional computational
cost. Moreover, if the FNS of Chojnacki et al. [2] or its exten-
sion [11] is used for computing the ML solution, all the quantities
necessary for the correction are already evaluated in the course of
the FNS computation, and hence practically no additional cost is
required.

We compared our hyperaccurate correction with the hyper-
renormalization of Kanatani et al. [10], the latest method regarded
as the best fitting method, by do numerical simulation of ellipse
fitting and fundamental matrix and homography computation.
We observed the following:
( 1 ) Inclusion of the new correction term does not effectively affect

the final solution.
( 2 ) The combination of ML and hyperaccurate correction can

achieve the highest accuracy among all existing methods.
( 3 ) For hyperaccurate correction, we first need to compute the

ML solution, but the iterations for it do not necessarily con-
verge in the presence of large noise.

We conclude that ML with hyperaccurate correction and hyper-
renormalization [10], which achieves the next highest accuracy, are
currently the best methods of all, each having its own advantage
and disadvantage.
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Appendix

A.1 Derivation of Eq. (36)

Let W α be the matrix whose (kl) element is W
(kl)
α (kl), and

V α be the matrix whose (kl) element is (θ̄, V
(kl)
0 [ξα]θ̄). By the

definition of W
(kl)
α (kl), we have W α = (V α)−r and hence the

identity V αW αV α = V α. Its expansion is

(V̄ α + ∆1V α + ∆2V α + · · · )(W̄ α + ∆1W α + ∆2W α

+ · · · )(V̄ α + ∆1V α + ∆2V α + · · · )
=(V̄ α + ∆1V α + ∆2V α + · · · ). (A.1)

We derive Eq. (36) by equating the terms of the same order
on both sides and using the identities W̄ αV̄ αW̄ α = W̄ α and
V̄ αW̄ αV̄ α = V̄ α. We also note that V̄ αW̄ α = W̄ αV̄ α is
the projection matrix onto the common domain of V̄ α and W̄ α

and that the errors ∆1V α and ∆1W α arise within that domain.
Equating the first order error terms, we obtain

∆1V αW̄ αV̄ α + V̄ α∆1W αV̄ α + V̄ αW̄ α∆1V α

=∆1V α. (A.2)

Multiplying both sides by W̄ α from left and right, we obtain
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W̄ α∆1V αW̄ αV̄ αW̄ α + W̄ αV̄ α∆1W αV̄ αW̄ α

+W̄ αV̄ αW̄ α∆1V αW̄ α = W̄ α∆1V αW̄ α. (A.3)

Hence, we have

W̄ α∆1V αW̄ α + ∆1W α + W̄ α∆1V αW̄ α

=W̄ α∆1V αW̄ α, (A.4)

from which ∆1W α is expressed in the form

∆1W α = −W̄ α∆1V αW̄ α. (A.5)

Its (kl) element is

∆1W
(kl)
α = −

L
X

m,n=1

W̄ (km)
α W̄ ln

α ∆1V
(mn)
α

=−2
L
X

m,n=1

W̄ (km)
α W̄ (ln)

α (∆1θ, V
(mn)
0 [ξα]θ̄). (A.6)

Thus, we obtain the first of Eq. (36). Equating the second order
error terms on both sides of Eq. (A.1), we obtain

∆2V αW̄ αV̄ α + V̄ α∆2W αV̄ α + V̄ αW̄ α∆2V α

+V̄ α∆1W α∆1V α + ∆1V αW̄ α∆1V α

+∆1V α∆1W αV̄ α = ∆2V α. (A.7)

Multiplying both sides by W̄ α from left and right, we obtain

W̄ α∆2V αW̄ αV̄ αW̄ α + W̄ αV̄ α∆2W αV̄ αW̄ α

+W̄ αV̄ αW̄ α∆2V αW̄ α + W̄ αV̄ α∆1W α∆1V αW̄ α

+W̄ α∆1V αW̄ α∆1V αW̄ α

+W̄ α∆1V α∆1W αV̄ αW̄ α = W̄ α∆2V αW̄ α, (A.8)

which is rewritten as

W̄ α∆2V αW̄ α + ∆2W α + W̄ α∆2V αW̄ α

+∆1W α(V̄ αW̄ α)∆1V αW̄ α

+W̄ α∆1V αW̄ α(V̄ αW̄ α)∆1V αW̄ α

+W̄α∆1V α(W̄αV̄α)∆1Wα =W̄α∆2VαW̄α. (A.9)

Substituting Eq. (A.5) into this, we obtain

W̄ α∆2V αW̄ α + ∆2W α + W̄ α∆2V αW̄ α

−∆1W αV̄ α∆1W α + ∆1W αV̄ α∆1W α

−∆1W αV̄ α∆1W α = W̄ α∆2V αW̄ α, (A.10)

from which ∆2W α is expressed in the form

∆2W α = ∆1W αV̄ α∆1W α − W̄ α∆2V αW̄ α. (A.11)

Its (kl) element is

∆2W
(kl)
α =

L
X

m,n=1

∆1W
(km)
α V̄ (mn)

α ∆1W
(nl)
α

−
L
X

m,n=1

W̄ (km)
α ∆2V

(mn)
α W̄ (nl)

α

=
L
X

m,n=1

∆1W
(km)
α ∆1W

(ln)
α (θ̄, V

(mn)
0 [ξα]θ̄)

−
L
X

m,n=1

W̄ (km)
α W̄ (ln)

α

“

(∆1θ, V
(mn)
0 [ξα]∆1θ)

+2(∆2θ, V
(mn)
0 [ξα]θ̄)

”

. (A.12)

Thus, we obtain the second of Eq. (36).

A.2 Derivation of Eq. (51)

Substituting Eqs. (31) and into Eq. (42), and noting that ξ(k)>
α θ

= 0, we can write ∆1θ as follows:

∆1θ = −M̄
−∆1Mθ̄

=−M̄
−
“ 1

N

N
X

α=1

L
X

k,l=1

W̄ (kl)
α (∆1ξ

(l)
α , θ̄)ξ̄(k)

α

”

. (A.13)

We evaluate E[∆1θ∆1θ
>] by eliminating the noise terms ξ(k)

α ,
using the identities of Eqs. (45) and (58).

E[∆1θ∆1θ
>]

=E[M̄−
“ 1

N

N
X

α=1

L
X

k,l=1

W̄ (kl)
α (∆1ξ

(l)
α , θ̄)ξ̄(k)

α

”

1
N

N
X

β=1

L
X

m,n=1

W̄
(mn)
β (∆1ξ

(n)
β , θ̄)ξ̄(m)>

β

”

M̄
−]

=E[M̄−
“ 1

N2

N
X

α,β=1

L
X

k,l,m,n=1

W̄ (kl)
α W̄

(mn)
β

(θ̄, ∆1ξ
(l)
α )(∆1ξ

(n)
β , θ̄)ξ̄(k)

α ξ̄
(m)>
β

”

M̄
−]

=M̄
−
“ 1

N2

N
X

α,β=1

L
X

k,l,m,n=1

W̄ (kl)
α W̄

(mn)
β

(θ̄, E[∆1ξ
(l)
α ∆1ξ

>(n)
β ]θ̄)ξ̄(k)

α ξ̄
(m)>
β

”

M̄
−

=M̄
−
“ 1

N2

N
X

α,β=1

L
X

k,l,m,n=1

W̄ (kl)
α W̄

(mn)
β

(θ̄, σ2δαβV
(ln)
0 [ξα]θ̄)ξ̄(k)

α ξ̄
(m)>
β

”

M̄
−

=M̄
−
“ σ2

N2

N
X

α=1

L
X

k,m=1

“

L
X

l,n=1

W̄ (kl)
α (θ̄, V

(ln)
0 [ξα]θ̄)

W̄ (mn)
α

”

ξ̄
(k)
α ξ̄

(m)>
α

”

M̄
−

=
σ2

N
M̄

−
“ 1

N

N
X

α=1

L
X

k,m=1

W̄ (km)
α ξ̄

(k)
α ξ̄

(m)>
α

”

M̄
−

=
σ2

N
M̄

−
M̄M̄

− =
σ2

N
M̄

−
. (A.14)
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