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Compact Fundamental Matrix Computation

Kenichi Kanatani†1 and Yasuyuki Sugaya†2

A very compact algorithm is presented for fundamental matrix computa-
tion from point correspondences over two images. The computation is based
on the maximum likelihood (ML) principle, minimizing the reprojection er-
ror. The rank constraint is incorporated by the EFNS procedure. Although
our algorithm produces the same solution as all existing ML-based methods,
it is probably the most practical of all, being small and simple. By numerical
experiments, we confirm that our algorithm behaves as expected.

1. Introduction

Computing the fundamental matrix from point correspondences is the first step
of many computer vision applications including camera calibration, image rec-
tification, structure from motion, and new view generation7),26). Although its
robustness is critical in practice, procedures for removing outlying matches de-
pend on computation for inliers. For example, RANSAC-type methods randomly
select matches and compute the fundamental matrix by hypothesizing that they
are inliers. Then, the solution that has a maximum support is adopted7),26). In
this paper, we focus on computation for inliers.

Since feature points extracted from images have uncertainty to some degree,
we need statistical optimization, modeling the uncertainty as “noise” that obeys
a certain probability distribution. The standard model is independent Gaussian
noise, which is coupled with maximum likelihood (ML) estimation. This results
in the minimization of so called the reprojection error, also known as the Gold
Standard7).

Although all existing ML-based methods minimize the same function, vast
differences exist in their computational processes. This is mainly due to the fact
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Fig. 1 (a) A posteriori correction. (b) Internal access. (c) External access.

that the fundamental matrix is constrained to have rank 2. The strategies for
incorporating this constraint are roughly classified into three categories:
A posteriori correction. The fundamental matrix is first computed without

considering the rank constraint and is modified a posteriori so as to sat-
isfy it (Fig. 1(a)). If the rank constraint is not considered, the computation
is vastly simplified7),26). The crudest method, yet widely used, is to mini-
mize the square sum of the epipolar equation, called least squares, algebraic
distance minimization, or 8-point algorithm5). The Taubin method24) incor-
porates the data covariance matrices in the simplest way. These two yield
the solution with simple algebraic manipulations10),13). For incorporating the
ML viewpoint, one needs iterations, for which many schemes exist including
FNS (Fundamental Numerical Scheme)3), HEIV (Heteroscedastic Errors-In-
Variables)16),17), and the projective Gauss-Newton iterations11). For imposing
the rank constraint, the most naive method, yet widely used, is to compute
the SVD of the computed fundamental matrix and replace the smallest singu-
lar value by 05). A more sophisticated method is the optimal correction9),17):
the solution is moved in the statistically mostly likely direction until it sat-
isfies the rank constraint (Fig. 1(a)).

Internal access. The fundamental matrix is parameterized so that the rank
constraint is identically satisfied and is optimized in the (“internal”) pa-
rameter space (Fig. 1(b)). Many types of such parameterization have been
proposed including algebraic elimination of the rank constraint and the ex-
pression in terms of epipoles18),26),27). Bartoli and Sturm1) regarded the SVD
of the fundamental matrix as its parameterization and did search in an aug-
mented space. Sugaya and Kanatani19) directly searched a 7-D space by the
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Levenberg-Marquardt (LM) method.
External access. We do iterations in the (“external”) 9-D space of the funda-

mental matrix in such a way that an optimal solution that satisfies the rank
constraint automatically results (Fig. 1(c)). This concept was first introduced
by Chojnacki et al.4), who presented a scheme called CFNS (Constrained
Fundamental Numerical Scheme).

In this paper, we present a new method based on the external access principle.
Its description is far more compact than any of existing ML-based methods.
Although there is no accuracy gain, since all ML-based methods minimize the
same function, the compactness of the algorithm is of great advantage. The
reason the non-optimal 8-point algorithm5) is still widely used is probably for
fear of coding a complicated program and uneasiness at relying on “download”.
Our algorithm is simple enough to code oneself?1, consisting only of vector and
matrix operations in 9-D, just like the popular 8-point algorithm, yet producing
an optimal solution. We describe our algorithm in Sec. 2 and give a derivation
in Sec. 3. In Sec. 4, we confirm its performance by numerical experiments. We
conclude in Sec. 5.

2. Optimal Fundamental Matrix Computation

Given two images of the same scene, suppose a point (x, y) in the first image
corresponds to (x′, y′) in the second. We represent the corresponding points by
3-D vectors

x =

 x/f0

y/f0

1

 , x′ =

 x′/f0

y′/f0

1

 , (1)

where f0 is a scaling constant of the order of the image size?2. As is well known,
x and x′ satisfy the epipolar equation,

(x, Fx′) = 0, (2)
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where and hereafter we denote the inner product of vectors a and b by (a, b).

?1 But one can try ours if one wishes:
http://www.iim.ics.tut.ac.jp/~sugaya/public-e.html

?2 This is for stabilizing numerical computation5). In our experiments, we set f0 = 600 pixels.

The matrix F is of rank 2 and called the fundamental matrix ; it depends on
the relative positions and orientations of the two cameras and their intrinsic
parameters (e.g., their focal lengths) but not on the scene or the choice of the
corresponding points. As can be seen from Eq. (2), the scale of the fundamental
matrix F is indeterminate, so we normalize it to unit Frobenius norm ‖F ‖ = 1.

Suppose N correspondence pairs {xα, x′
α}N

α=1 are detected. If the noise in
their x- and y-coordinates is assumed to be independent, identical, and Gaussian,
maximum likelihood (ML) is equivalent to minimizing the reprojection error

E =
N∑

α=1

(
‖xα − x̄α‖2 + ‖x′

α − x̄′
α‖2

)
, (3)

with respect to x̄α, x̄′
α, and F subject to

(x̄α,F x̄′
α) = 0, α = 1, ..., N. (4)

No simple procedure exists for minimizing Eq. (3) subject to Eq. (4) and the
rank constraint on F . Many researchers minimized the Sampson error (to be
discussed later) that approximates Eq. (3)7),26). Alternatively, the minimization
is done in an “augmented” parameter space, as done by Bartoli and Sturm1),
computing a tentative 3-D reconstruction and adjusting the camera positions
and the intrinsic parameters so that the resulting projection images are as close
to the input images as possible. Such a strategy is called bundle adjustment25).
However, search in a high dimensional space, in particular if one wants a globally
optimal solution, requires a large amount of computation6),8).

We now present a dramatically compact formulation, which is equivalent to
bundle adjustment but not in high dimensions; the computation is done in the
9-D space of F . Define 9-D vectors
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u =



F11

F12

F13

F21

F22

F23

F31

F32

F33


, u† ≡ N [



u5u9 − u8u6

u6u7 − u9u4

u4u8 − u7u5

u8u3 − u2u9

u9u1 − u3u7

u7u2 − u1u8

u2u6 − u5u3

u3u4 − u6u1

u1u5 − u4u2


], (5)

where N [ · ] denotes normalization to unit norm. The vector u encodes the nine
elements of the fundamental matrix F . The normalization ‖F ‖ = 1 is equivalent
to ‖u‖ = 1. The vector u† encodes the nine elements of the cofactor F † of F ,
so we call u† the cofactor vector of u. We denote by “detu” the determinant of
the matrix F corresponding to u.

In order to emphasize the compactness of our algorithm, we state it first and
then give its derivation, which is straightforward but rather lengthy. The main
routine of our algorithm goes as follows:
main
( 1 ) Initialize u, and let E0 = ∞ (a sufficiently large number), x̂α = xα, ŷα =

yα, x̂′
α = x′

α, ŷ′
α = y′

α, and x̃α = ỹα = x̃′
α = ỹ′

α = 0, α = 1, ..., N .
( 2 ) Compute the following 9-D vectors ξα and the 9 × 9 matrices V0[ξα]:

ξα =



x̂αx̂′
α + x̂′

αx̃α + x̂αx̃′
α

x̂αŷ′
α + ŷ′

αx̃α + x̂αỹ′
α

f0(x̂α + x̃α)
ŷαx̂′

α + x̂′
αỹα + ŷαx̃′

α

ŷαŷ′
α + ŷ′

αỹα + ŷαỹ′
α

f0(ŷα + ỹα)
f0(x̂′

α + x̃′
α)

f0(ŷ′
α + ỹ′

α)
f2
0


, (6)

V0[ξα]=



x̂2
α + x̂′2

α x̂′
αŷ′

α f0x̂
′
α x̂αŷα 0 0 f0x̂α 0 0

x̂′
αŷ′

α x̂2
α + ŷ′2

α f0ŷ
′
α 0 x̂αŷα 0 0 f0x̂α0

f0x̂
′
α f0ŷ

′
α f2

0 0 0 0 0 0 0
x̂αŷα 0 0 ŷ2

α + x̂′2
α x̂′

αŷ′
α f0x̂

′
αf0ŷα 0 0

0 x̂αŷα 0 x̂′
αŷ′

α ŷ2
α + ŷ′2

α f0ŷ
′
α 0 f0ŷα0

0 0 0 f0x̂
′
α f0ŷ

′
α f2

0 0 0 0
f0x̂α 0 0 f0ŷα 0 0 f2

0 0 0
0 f0x̂α 0 0 f0ŷα 0 0 f2

0 0
0 0 0 0 0 0 0 0 0


.

(7)

( 3 ) Call EFNS (described below) to update u.
( 4 ) Update x̃α, ỹα, x̃′

α, ỹ′
α, x̂α, ŷα, x̂′

α, and ŷ′
α by(

x̃α

ỹα

)
← (u, ξα)

(u, V [ξ̂α]u)

(
u1 u2 u3

u4 u5 u6

)  x̂′
α

ŷ′
α

f0

 ,

(
x̃′

α

ỹ′
α

)
← (u, ξα)

(u, V [ξ̂α]u)

(
u1 u4 u7

u2 u5 u8

)  x̂α

ŷα

f0

 ,

x̂α ← xα − x̃α, ŷα ← yα − ỹα, x̂′
α ← x′

α − x̃′
α, ŷ′

α ← y′
α − ỹα. (8)

( 5 ) Compute the reprojection error

E =
N∑

α=1

(x̃2
α + ỹ2

α + x̃′2
α + ỹ′2

α ). (9)

If E ≈ E0, return u and stop. Else, let E0 ← E and go back to Step (2).

In our preliminary version14), the least-squares method (see Appendix A.1) was
suggested for the initialization in Step (1). Later, we have experimentally found
that the Taubin method24) (see Appendix A.2) results in better convergence
performance in the presence of large noise. In our preliminary version14), we
stopped the iterations when the update of u becomes sufficiently small, but we
have later experimentally found that the use of the reprojection error as in Step
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(5) exhibits stabler convergence, because the EFNS procedure in Step (3), as
described below, is iterated with respect to u:
EFNS
( 1 ) Compute the following 9 × 9 matrices M and L:

M =
N∑

α=1

ξαξ>
α

(u, V0[ξα]u)
, L =

N∑
α=1

(u, ξα)2V0[ξα]
(u, V0[ξα]u)2

. (10)

( 2 ) Compute the cofactor vector u† in Eqs. (5) and the 9×9 projection matrix

P u† ≡ I − u†u†>. (11)

( 3 ) Compute the following 9 × 9 matrices:
X = M − L, Y = P u†XP u† . (12)

( 4 ) Compute the two unit eigenvectors v1 and v2 of Y for the smallest eigen-
values, and compute

û = (u, v1)v1 + (u, v2)v2. (13)
( 5 ) Compute

u′ = N [P u†û]. (14)
( 6 ) If u′ ≈ u up to sign, return u′ and stop. Else, let u ← N [u + u′] and go

back to Step (1).

In our preliminary version14), two eigenvectors for the eigenvalues having the
smallest absolute value were computed in Step (4). Later, we have experimentally
found that computing two eigenvectors for the smallest eigenvalues results in
better convergence in the presence of large noise. The same observation was made
for the FNS of Chojnacki et al.3), for which computing the smallest eigenvalue,
rather than the eigenvalue having the smallest absolute value, exhibits better
convergence (see 11), 13) for experimental comparison).

3. Derivation

The derivation of the main routine and the EFNS procedure is rather lengthy.
To make understanding easy, we describe the basic logic here. The omitted details
are given in the Appendix.

3.1 Derivation of the Main Routine
3.1.1 First Approximation.
We want to compute x̄α and x̄′

α that minimize Eq. (3) subject to Eq. (4), but
we may alternatively write

x̄α = xα − ∆xα, x̄′
α = x′

α − ∆x′
α, (15)

and compute the correction terms ∆xα and ∆x′
α. Substituting Eqs. (15) into

Eq. (4), we have

E =
N∑

α=1

(
‖∆xα‖2 + ‖∆x′

α‖2
)
. (16)

The epipolar equation, Eq. (4), becomes
(xα − ∆xα, F (x′

α − ∆x′
α)) = 0. (17)

Ignoring the second order term in the correction terms, we obtain

(Fx′
α, ∆xα) + (F>xα, ∆x′

α) = (xα, Fx′
α). (18)

Since the correction should be done in the image plane, we have the constraints
(k, ∆xα) = 0, (k, ∆x′

α) = 0, (19)
where we define k ≡ (0, 0, 1)>. Introducing Lagrange multipliers for Eqs. (18) and
(19), we obtain ∆xα and ∆x′

α that minimize Eq. (16) as follows (see Appendix
A.3):

∆xα =
(xα, Fx′

α)P kFx′
α

(Fx′
α, P kFx′

α) + (F>xα, P kF>xα)
,

∆x′
α =

(xα, Fx′
α)P kF>xα

(Fx′
α, P kFx′

α) + (F>xα, P kF>xα)
. (20)

Here, P k is the 3 × 3 projection matrix along k:

P k ≡ I − kk>. (21)

Substituting Eqs. (20) into Eq. (16), we obtain (see Appendix A.4)

E =
N∑

α=1

(xα,Fx′
α)2

(Fx′
α, P kFx′

α) + (F>xα, P kF>xα)
, (22)

which is known as the Sampson error7). Suppose we have obtained the matrix
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F that minimizes Eq. (22) subject to det F = 0. Writing it as F̂ and substituting
it into Eqs. (15), we obtain

x̂α = xα − (xα, F̂ x′
α)P kF̂ x′

α

(F̂ x′
α, P kF̂ x′

α) + (F̂
>

xα, P kF̂
>

xα)
,

x̂′
α = x′

α − (xα, F̂ x′
α)P kF̂

>
xα

(F̂ x′
α, P kF̂ x′

α) + (F̂
>

xα, P kF̂
>

xα)
. (23)

3.1.2 Higher Order Correction.
The solution of Eqs. (23) is only a first approximation. So, we estimate the

true solution x̄α and x̄′
α by writing, instead of Eqs. (15),

x̄α = x̂α − ∆x̂α, x̄′
α = x̂′

α − ∆x̂′
α, (24)

and computing the correction terms ∆x̂α and ∆x̂′
α, which are small quantities

of higher order than ∆xα and ∆x′
α. Substitution of Eqs. (24) into Eq. (3) yields

E =
N∑

α=1

(
‖x̃α + ∆x̂α‖2 + ‖x̃′

α + ∆x̂′
α‖2

)
, (25)

where we define
x̃α = xα − x̂α, x̃′

α = x′
α − x̂′

α. (26)
The epipolar equation, Eq. (4), now becomes

(x̂α − ∆x̂α, F (x̂′
α − ∆x̂′

α)) = 0. (27)
Ignoring second order term in ∆x̂α and ∆x̂′

α, we have

(F x̂′
α, ∆x̂α) + (F>x̂α, ∆x̂′

α) = (x̂α, F x̂′
α). (28)

This is a higher order approximation of Eq. (4) than Eq. (18). Introducing
Lagrange multipliers to Eq. (28) and the constraints

(k, ∆x̂α) = 0, (k, ∆x̂′
α) = 0, (29)

we obtain ∆x̂α and ∆x̂′
α as follows (see Appendix A.5):

∆x̂α =

(
(x̂α, F x̂′

α) + (F x̂′
α, x̃α) + (F>x̂α, x̃′

α)
)
P kF x̂′

α

(F x̂′
α,P kF x̂′

α) + (F>x̂α, P kF>x̂α)
− x̃α,

∆x̂′
α =

(
(x̂α, F x̂′

α) + (F x̂′
α, x̃α) + (F>x̂α, x̃′

α)
)
P kF>x̂α

(F x̂′
α, P kF x̂′

α) + (F>x̂α,P kF>x̂α)
− x̃′

α. (30)

The reprojection error of Eq. (25) now has the form (see Appendix A.6)

E =
N∑

α=1

(
(x̂α, F x̂′

α) + (F x̂′
α, x̃α) + (F>x̂α, x̃′

α)
)2

(F x̂′
α, P kF x̂′

α) + (F>x̂α, P kF>x̂α)
. (31)

Suppose we have obtained the matrix F that minimizes this subject to det F =
0. Writing it as F̂ and substituting it into Eqs. (30), we obtain from Eqs. (26)
the solution

ˆ̂xα = xα −

(
(x̂α, F̂ x̂′

α) + (F̂ x̂′
α, x̃α) + (F̂>x̂α, x̃′

α)
)
P kF̂ x̂′

α

(F̂ x̂′
α, P kF̂ x̂′

α) + (F̂>x̂α, P kF̂>x̂α)
,

ˆ̂x
′
α = x′

α −

(
(x̂α, F̂ x̂′

α) + (F̂ x̂′
α, x̃α) + (F̂>x̂α, x̃′

α)
)
P kF̂>x̂α

(F̂ x̂′
α,P kF̂ x̂′

α) + (F̂>x̂α, P kF̂>x̂α)
. (32)

The resulting { ˆ̂xα, ˆ̂x
′
α} are a better approximation than {x̂α, x̂′

α}. Rewriting
{ ˆ̂xα, ˆ̂x

′
α} as {x̂α, x̂′

α}, we repeat this computation until the iterations converge.
In the end, ∆x̂α and ∆x̂′

α in Eq. (27) become 0, and the epipolar equation is
exactly satisfied.

3.1.3 Compact 9-D Description.
The above algorithm is greatly simplified by using the 9-D vector encoding

of Eqs. (5). The definition of ξα in Eq. (6) and V0[ξα] in Eq. (7) implies the
following identities:

(x̂α, F̂ x̂′
α) + (F̂ x̂′

α, x̃α) + (F̂>x̂α, x̃′
α) =

(u, ξα)
f2
0

, (33)

(F̂ x′
α, P kF̂ x′

α) + (F̂>xα, P kF̂>xα) =
(u, V0[ξα]u)

f2
0

. (34)

If we define x̃α and x̃′
α by Eqs. (26), we obtain from Eqs. (32) the update form

in Eqs. (8). If we let x̂α = xα, ŷα = yα, x̂′
α = x′

α, ŷ′
α = y′

α, and x̃α = ỹα = x̃′
α

= ỹ′
α = 0, as in the Step (1) of the main routine, the update form of Eqs. (8)

is equivalent to Eqs. (23). Thus, the main routine is completed except Step (3),
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where we need to minimize Eqs. (22) and (31) subject to det F = 0. We now
describe our EFNS procedure for this.

3.2 Derivation of EFNS
3.2.1 Problem.
Using the identities in Eqs. (33) and (34), we can rewrite Eq. (31) as

E =
1
f2
0

N∑
α=1

(u, ξα)2

(u, V0[ξα]u)
. (35)

If we let x̂α = xα, ŷα = yα, x̂′
α = x′

α, ŷ′
α = y′

α, and x̃α = ỹα = x̃′
α = ỹ′

α = 0, as in
the Step (1) of the main routine, this reduces to the Sampson error in Eq. (22).
Thus, the remaining problem is to minimize Eq. (35) subject to detu = 0.

3.2.2 Geometry.
The necessary and sufficient condition for E to be stationary at a point u

on the 8-D unit sphere S8 in R9 is that its gradient ∇uE is orthogonal to the
hypersurface defined by detu = 0. Direct manipulation shows

u† = N [∇u det u]. (36)

In other words, u† is the unit surface normal to the hypersurface defined by
det u = 0. It follows that ∇uE should be parallel to the cofactor vector u† at
the stationary point. Differentiating Eq. (35) with respect to u, we see that

∇uE =
2
f2
0

Xu, (37)

where X is the matrix in Eqs. (12). Using the projection matrix P u† in Eq. (11),
we can express the parallelism of ∇uE and u† as

P u†Xu = 0. (38)
The rank constraint detu = 0 is equivalently written as

(u†, u) = 0, (39)

which is a direct consequence of the identity F †F = (detF )I. In terms of the
projection matrix P u† , the rank constraint Eq. (39) is equivalently written as

P u†u = u. (40)
It follows that the stationarity condition of Eq. (38) is written as

Y u = 0, (41)

where Y is the matrix defined in Eqs. (12). Our task is to compute the solution
u that satisfies the stationarity condition of Eq. (41) and the rank constraint
Eq. (40).

3.2.3 Justification of the Procedure.
We now show that the desired solution can be obtained by the EFNS routine

in Sec. 2. To show this, we prove that when the iterations have converged, the
eigenvectors v1 and v2 of Y both have eigenvalue 0. From the definition of Y in
Eqs. (12) and P u† in Eq. (11), the cofactor vector u† is always an eigenvector of
Y with eigenvalue 0. This means that either v1 or v2 has eigenvalue 0. Suppose
v1 has nonzero eigenvalue λ (6= 0). Then, v2 = ±u†. By construction, the
vector û in Eq. (13) belongs to the linear span of v1 and v2 (= ±u†), which are
mutually orthogonal, and the vector u′ in Eq. (14) is a projection of û within
that linear span onto the direction orthogonal to u†. Hence, u′ should coincide
with ±v1. After the iterations have converged, we have u = u′ (= ±v1), so u

is an eigenvector of Y with eigenvalue λ, i.e., Y u = λu. Computing the inner
product with u on both sides, we have

(u, Y u) = λ. (42)
On the other hand, u (= ±v1) is orthogonal to the cofactor vector u† (= ±v2),
so P u†u = u. Hence,

(u, Y u) = (u, P u†XP u†u) = (u,Xu) = 0, (43)
because from the definition of X in Eqs. (12) we see that (u,Xu) = 0 is an iden-
tity in u. In fact, we can confirm from the definition of M and L in Eqs. (10)
that (u, Mu) = (u, Lu) holds identically in u. Since Eqs. (42) and (43) contra-
dict our assumption that λ 6= 0, v1 is also an eigenvector of Y with eigenvalue
0. Thus, Eqs. (40) and (41) both hold, so u is the desired solution.

3.2.4 Observations.
The EFNS was first introduced by Kanatani and Sugaya12) as a general con-

strained parameter estimation in abstract terms. It is a straightforward extension
of the FNS of Chojnacki et al.3) (See Appendix A.7) to an arbitrary number of
constraints. In fact, if we replace P u† in Eqs. (12) by the identity I, the result-
ing procedure reduces to FNS. For this reason, Kanatani and Sugaya12) called it
EFNS (Extended FNS ). They applied it to minimization of the Sampson error in
Eq. (22) and pointed out that the CFNS of Chojnacki et al.4) does not necessarily
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converge to a correct solution while EFNS does (see Appendix A.8). Our finding
here is that we can also minimize the reprojection error by repeated use of EFNS
after introducing the intermediate variables ξα and V0[ξα] as in Eqs. (6) and (7).

The justification of EFNS described earlier relies on the premise that the it-
erations converge. As pointed out in 12), if we let u ← u′ in the Step (6) of
the EFNS routine, the next value of u′ computed in Step (5) often reverts to
the former value of u, falling in infinite looping. So, the “midpoint” (u′ + u)/2
is normalized to a unit vector N [u′ + u]. This greatly improves convergence.
In fact, we have confirmed that this technique also improves the convergence of
FNS, which sometimes oscillates in the presence of very large noise.

Theoretically speaking, our algorithm may not produce a global minimum of
the reprojection error in Eq. (3). The problem is not the main routine, which
is essentially the optimal triangulation of Kanatani et al.15). However, EFNS is
not theoretically guaranteed to reach the absolute minimum of E in Eq. (35),
although we have never experienced the contrary in all our experiments.

If the EFNS routine is replaced by a method that can always reach the global
minimum of the Sampson error, e.g., by incorporating the branch and bound
principle6),8), our scheme automatically converts to a method that always com-
putes the global minimum of the reprojection error. However, such a conversion
may lose the efficiency and compactness of our scheme.

4. Performance Confirmation

Figure 2(a) shows simulated images of two planar grid surfaces. The image
size is 600× 600 pixels with 1200 pixel focal length. We added random Gaussian
noise of mean 0 and standard deviation σ to the x- and y-coordinates of each
grid point independently and from them computed the fundamental matrix.

Since all existing ML-based methods minimize the same reprojection error,
their mutual accuracy comparison does not make sense. Rather, our concern is
if our algorithm really converges to a correct solution. To see this, we compare
our algorithm with a carefully tuned alternative method: we compute an initial
solution by least squares, from which we start the FNS of Chojnacki et al.3),
and the resulting solution is optimally corrected to satisfy the rank constraint

 0

 0.1

 0.2

 0.3

 0  1  2  3  4σ

(a) (b)

Fig. 2 (a) Simulated images of planar grid surfaces. (b) The RMS error vs. noise level σ.
The plot for our algorithm (solid line) and plot for the alternative method (dashed
line) completely overlap. Chained line: the 8-point algorithm. Dotted line: KCR lower
bound.

(see Appendix A.9). From it, we start a direct 7-D search, using the Levenberg-
Marquardt (LM) method19).

Figure 2(b) plots, for each σ, the root mean square (RMS) of ‖P U û‖ for the
computed solution û over 10,000 independent trials with different noise, where
P U (≡ I − uu> − u†u†>) denotes projection onto the space of deviations from
the true solution u that satisfies the rank constraint detu = 0. As a reference,
the chained line shows the corresponding result of the 8-point algorithm5) (least
squares followed by SVD rank correction), and the dotted line indicates the
theoretical accuracy limit (KCR lower bound2),9)).

Fig. 2(b) actually shows the plot for our algorithm (solid line) and the plot
for the alternative method (dashed line), but they overlap so completely that
we cannot tell the difference. Thus, the same solution is reached although their
paths of approach may be different (Fig. 1). We also see that the accuracy almost
coincides with the theoretical limit, so no further improvement can be hoped for.
As predicted, the 8-point algorithm performs poorly. Doing many experiments
(not all shown here), we observed the following:
( 1 ) The main routine converges after a few (at most four) iterations.
( 2 ) If we skip Step (3) and stop at Step (5) without doing any further iterations,

we obtain the Sampson solution. Yet, it coincides with the final solution up
to three to four decimal places. The high accuracy of the Sampson solution
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was also noted by Zhang26).
( 3 ) If initialized by least squares, the 7-D search does not necessarily arrive at

the true minimum of the reprojection error, being trapped to local minima,
as reported in 20). After a careful tuning as described above, the solution
coincides with our algorithm, which directly arrives at the same solution
without any such tuning.

5. Concluding Remarks

We have presented a very compact algorithm for computing the fundamental
matrix from point correspondences over two images based on the ML princi-
ple using the EFNS procedure. The computation consists of vector and matrix
operations in the 9-D space of F as the 8-point algorithm. By numerical experi-
ments, we have confirmed that our algorithm behaves satisfactorily. Because of
its compactness and good performance, we expect it to be a standard tool for
fundamental matrix computation.

The performance of our algorithm depends on the performance of the EFNS
routine, which minimizes the Sampson error in Eq. (35) subject to the rank
constraint detu = 0. If another method is available for minimizing Eq. (35), we
can substitute it for the EFNS, and the main routine minimizes the reprojection
error in Eq. (3). The problem of finding a better method for Sampson error
minimization is open for future research.
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Appendix

A.1 Least Squares
We minimize

JLS =
N∑

α=1

(u, ξα)2 = (u, MLSu), (44)

where we define

MLS =
N∑

α=1

ξαξ>
α . (45)

The function JLS can be minimized by the unit eigenvector of the 9 × 9 matrix
MLS for the smallest eigenvalue. Alternatively, we can compute the SVD of the

9 × N matrix (ξ1 · · · ξN ).
A.2 Taubin Method
We approximate the denominators in Eq. (35) by their average. Disregarding

the constant multiplier, which does not affect the minimization, we let

JTB =
∑N

α=1(u, ξα)2∑N
α=1(u, V0[ξα]u)

=
(u,MLSu)
(u, NTBu)

, (46)

where we define

NTB ≡
N∑

α=1

V0[ξα]. (47)

The function JTB is minimized by solving the generalized eigenvalue problem
MLSu = λNTBu (48)

for the smallest generalized eigenvalue. However, we cannot directly solve this,
because NTB is not positive definite. So, we decompose ξα, u, and V0[ξα] in the
form

ξα =

(
zα

f2
0

)
, u =

(
v

F33

)
, V0[ξα] =

(
V0[zα] 0
0> 0

)
. (49)

and define 8 × 8 matrices M̃TB and ÑTB

M̃TB =
N∑

α=1

z̃αz̃>
α , ÑTB =

N∑
α=1

V0[zα], (50)

where

z̃α = zα − z̄, z̄ =
1
N

N∑
α=1

zα. (51)

Then, Eq. (48) splits into two equations

M̃TBv = λÑTBv, (v, z̄) + f2
0 F33 = 0. (52)

We compute the unit generalized eigenvector v of the first equation for the small-
est generalized eigenvalue λ. The second equation gives F33, and u is given by
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u = N
[( v

F33

)]
. (53)

The idea of replacing the denominator of each summand by the average of all
the denominators originates from the paper by Taubin24), hence the name of this
method. However, a similar idea was already presented in 1990s by Tagawa et
al.21)–23) in relation to 3-D interpretation of optical flow.

A.3 Derivation of Eqs. (20)
Introducing Lagrange multipliers λα, µα, and µ′

α for the constraints of Eqs. (18)
and (19) to Eq. (16), we let the derivatives of

N∑
α=1

(
‖∆xα‖2 + ‖∆x′

α‖2
)
−

N∑
α=1

λα

(
(Fx′

α,∆xα) + (F>xα,∆x′
α)

−(xα, Fxα)
)
−

N∑
α=1

µα(k,∆xα) −
N∑

α=1

µ′
α(k, ∆x′

α), (54)

with respect to ∆xα and ∆x′
α be 0, resulting in

2∆xα − λαFx′
α − µαk = 0, 2∆x′

α − λαF>xα − µ′
αk = 0. (55)

Multiplying the projection matrix P k in Eq. (21) on both sides from left and
noting that P k∆xα = ∆xα, P k∆x′

α = ∆x′
α, and P kk = 0, we have

2∆xα − λαP kFx′
α = 0, 2∆x′

α − λαP kF>xα = 0. (56)

Hence, we obtain

∆xα =
λα

2
P kFx′

α, ∆x′
α =

λα

2
P kF>xα. (57)

Substituting these into (18), we have

(Fx′
α,

λα

2
P kFx′

α) + (F>xα,
λα

2
P kF>xα) = (xα, Fx′

α), (58)

and hence
λα

2
=

(xα,Fx′
α)

(Fx′
α, P kFx′

α) + (F>xα, P kF>xα)
. (59)

Substituting this into Eqs. (57), we obtain Eqs. (20).

A.4 Derivation of Eq. (22)
If we substitute Eqs. (20) into Eq. (16), the reprojection error E becomes

N∑
α=1

(∥∥∥ (xα,Fx′
α)P kFx′

α

(x′
α, F>P kFx′

α) + (xα, FP kF>xα)

∥∥∥2

+
∥∥∥ (xα, Fx′

α)P kF>xα

(x′
α, F>P kFx′

α) + (xα,FP kF>xα)

∥∥∥2)
=

N∑
α=1

(xα, Fx′
α)2(‖P kFx′

α‖2 + ‖P kF>xα‖2)(
(Fx′

α,P kFx′
α) + (F>xα, P kF>xα)

)2

=
N∑

α=1

(xα, Fx′
α)2

(Fx′
α,P kFx′

α) + (F>xα, P kF>xα)
, (60)

where we have noted that due to the identity P 2
k = P k we have ‖P kFx′

α‖2

= (P kFx′
α, P kFx′

α) = (Fx′
α, P 2

kFx′
α) = (Fx′

α,P kFx′
α). Similarly, we have

‖P kF>xα‖2 = (F>xα,P kF>xα).
A.5 Derivation of Eqs. (30)
Introducing Lagrange multipliers λα, µα, and µ′

α for the constraints of Eqs. (28)
and (29) to Eq. (25), we let the derivatives of

N∑
α=1

(
‖x̃α+∆x̂α‖2+‖x̃′

α+∆x̂′
α‖2

)
−

N∑
α=1

λα

(
(F x̂′

α, ∆x̂α)+(F>x̂α, ∆x̂′
α)

−(x̂α, F x̂′
α)

)
−

N∑
α=1

µα(k,∆x̂α)−
N∑

α=1

µ′
α(k, ∆x̂′

α), (61)

with respect to ∆x̂α and ∆x̂′
α be 0, resulting in

2(x̃α + ∆x̂α) − λαF x̂′
α − µαk = 0,

2(x̃′
α + ∆x̂′

α) − λαF>x̂α − µ′
αk = 0. (62)

Multiplying P k on both sides from left, we have

2x̃α + 2∆x̂α − λαP kF x̂′
α = 0, 2x̃α + 2∆x̂′

α − λαP kF>x̂α = 0. (63)

Hence, we have
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∆x̂α =
λα

2
P kF x̂′

α − x̃α, ∆x̂′
α =

λα

2
P kF>x̂α − x̃′

α. (64)

Substituting these into (27), we obtain

(F x̂′
α,

λα

2
P kF x̂′

α − x̃α) + (F>x̂α,
λα

2
P kF>x̂α − x̃′

α) = (x̂α, F x̂′
α), (65)

and hence

λα

2
=

(x̂α,F x̂′
α) + (F x̂′

α, x̃α) + (F>x̂α, x̃′
α)

(F x̂′
α,P kF x̂′

α) + (F>x̂α, P kF>x̂α)
. (66)

Substituting this into Eqs. (64), we obtain Eqs. (30).
A.6 Derivation of Eq. (31)
If we substitute Eqs. (30) into Eq. (25), the reprojection error E becomes

N∑
α=1

(∥∥∥
(
(x̂α, F x̂′

α) + (F x̂′
α, x̃α) + (F>x̂α, x̃′

α)
)
P kF x̂′

α

(F x̂′
α, P kF x̂′

α) + (F>x̂α, P kF>x̂α)

∥∥∥2

+
∥∥∥

(
(x̂α, F x̂′

α) + (F x̂′
α, x̃α) + (F>x̂α, x̃′

α)
)
P kF>x̂α

(F x̂′
α, P kF x̂′

α) + (F>x̂α,P kF>x̂α)

∥∥∥2)
=

N∑
α=1

(
(x̂α, F x̂′

α) + (F x̂′
α, x̃α) + (F>x̂α, x̃′

α)
)2(

‖P kF x̂′
α‖2

+‖P kF>x̂α‖2
)/(

(F x̂′
α, P kF x̂′

α) + (F>x̂α, P kF>x̂α)
)2

=
N∑

α=1

(
(x̂α, F x̂′

α) + (F x̂′
α, x̃α) + (F>x̂α, x̃′

α)
)2

(F x̂′
α, P kF x̂′

α) + (F>x̂α, P kF>x̂α)
. (67)

A.7 FNS
The FNS (Fundamental Numerical Scheme) of Chojnacki et al.3) is based on

the fact that the derivative of Eq. (35) with respect to u has the form

∇uE =
2
f2
0

Xu, (68)

where X is the 9 × 9 matrix in Eqs. (12). The FNS solves
Xu = 0. (69)
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Fig. 3 The convergence of det F and the residual J by CFNS for different initializations (σ
= 1): LS (solid lines), SVD-corrected LS (dashed lines), and the true value (chained
lines). All solutions are SVD-corrected in the final step.

by the following iterations:
( 1 ) Initialize u.
( 2 ) Compute the 9 × 9 matrix X in Eqs. (12).
( 3 ) Solve the eigenvalue problem

Xu′ = λu′, (70)
and compute the unit eigenvector u′ for the smallest eigenvalue λ.

( 4 ) If u′ ≈ u up to sign, return u′ and stop. Else, let u ← u′ and go back to
Step (2).

A.8 Convergence of CFNS
In short, the CFNS (Constrained Fundamental Numerical Scheme) of Choj-

nacki et al.4) is a method that imposes a penalty for det F 6= 0 in the course of
the FNS iterations, while our EFNS projects the intermediate solution onto the
subspace of det F = 0 in the course of the FNS iterations.

If we use CFNS to the example in Fig. 2(a), we obtain Fig. 3, which shows
a typical instance (σ = 1) of the convergence of detF and the Sampson error
residual J (= f2

0 E) from different initial values: least-squares (LS) solution (solid
lines), the SVD-corrected (i.e. forced to have determinant 0 via SVD) LS solution,
and the true value (chained lines). In the end, the solutions are corrected to have
determinant 0 via SVD, as prescribed by Chojnacki et al.4). The dotted lines
show the values expected to converged to.

The LS solution has an excessively low residual J , since the rank constraint
det F = 0 is ignored. So, J needs to be increased to achieve det F = 0, but
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Fig. 4 The corresponding results by EFNS.

CFNS fails to increase J . As a result, det F remains nonzero and drops to 0 by
the final SVD correction, causing a sudden upward jump in J . If we start from
SVD-corrected LS, the residual J first increases, making det F nonzero, but in
the end both J and detF converge in an expected way. In contrast, the true
value has a very large J , so CFNS tries to decrease it at the cost of an increase in
det F , which never reverts to 0 until the final SVD. Figure 4 shows corresponding
results by EFNS. Both J and detF converge to their correct values with stably
attenuating oscillations.

We mean by “convergence” the state of the same solution repeating itself in the
course of iterations. In mathematical terms, the resulting solution is a fixed point
of the iteration operator. Chojnacki et al.4) proved that their solution is a fixed
point of CFNS. They expected to arrive at that solution by their scheme. As
demonstrated in Fig. 3, however, CFNS has many other fixed points, and which
to arrive at depends on initialization. In contrast, any fixed point of EFNS is
necessarily the desired solution, as proved in Sec. 3.2.2.

A.9 Optimal Correction
The fundamental matrix F computed without considering the rank constraint

is moved in the statistically mostly likely direction until it satisfies the rank
constraint. The procedure goes as follows:

IPSJ Transactions on Computer Vision and Applications Vol. 2 *–** (Mar.2010) c©2010 Information Processing Society of Japan

( 1 ) Compute the 9 × 9 matrix M in Eqs. (10) and the 9 × 9 matrix V0[u] by
V0[u] = M−

8 , (71)
where ( · )−r denotes pseudoinverse constrained to have rank r.

( 2 ) Update u as follows:

u ← N [u − 1
3

(u, u†)V0[u]u†

(u†, V0[u]u†)
]. (72)

( 3 ) If (u,u†) ≈ 0, return u and stop. Else, update the matrix V0[u] in the
following form and go back to Step (3):

V0[u] ← P uV0[u]P u, (73)

(Released March 11, 2010)

Recall that u† is the cofactor vector of u. Note that detF = (u, u†)/3, which is
a direct consequence of the identity F †F = (detF )I.

(Received March 25, 2009)
(Revised October 6, 2009)

(Accepted October 7, 2009)

(Communicated by Fay Huang)

Kenichi Kanatani received his B.E., M.S., and Ph.D. in applied
mathematics from the University of Tokyo in 1972, 1974 and 1979,
respectively. After serving as Professor of computer science at
Gunma University, Gunma, Japan, he is currently Professor of
computer science at Okayama University, Okayama, Japan. He is
the author of many books on computer vision and received many
awards including the best paper awards from IPSJ (1987) and

IEICE (2005). He is an IEEE Fellow.

Yasuyuki Sugaya received his B.E., M.S., and Ph.D. in com-
puter science from the University of Tsukuba, Ibaraki, Japan, in
1996, 1998, and 2001, respectively. From 2001 to 2006, he was
Assistant Professor of computer science at Okayama University,
Okayama, Japan. Currently, he is Associate Professor of informa-
tion and computer sciences at Toyohashi University of Technology,
Toyohashi, Aichi, Japan. His research interests include image pro-

cessing and computer vision. He received the IEICE best paper award in 2005.

70


